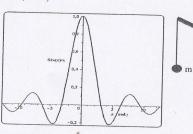
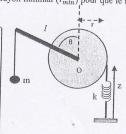
Prof Badr-Ezzamane Mustapha

Annales Concours

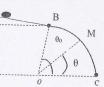

ENSAM


	8				
Université Hassan II Casablanca	Concours d'entr	ée en 1 ^{ère} année des années p	pré	paratoires de l'ENSAM Casablanca-Meknès	Université Moulay Isma
UZ	SERIES Epreuve de physique /	5 : SCIENCES EXPERIMENT 1 août 2016	ΓAI	LES ET BRANCHES TECHNIQUES Durée : 2h00	1 10000
	Nom:		1	La fiche ne doit porter aucun signe indicatif ni signature	
A Mensam	Prénom:		1	L'épreuve contient 2 pages. Elle est composée de deux parties indépendantes : une partie rédaction et une partie OCM.	<u>A'A</u>
	CNE:	Signature du candidat	1	L'usage de la calculatrice programmable est strictement interdit.	المحرسة الوطنية العليا للغاوة و المهور 1925 ما 1930 MOTH 1998 الاتكالا الاتكا

Physique I (Mécanique) : Exercice 1:

Un disque, pouvant tourner sans frottement autour d'un axe horizontal, est soumis à l'action d'un ressort de raideur k et celle d'une masse suspendue à l'extrémité d'une tige (sans masse, longueur : l) solidaire passant par son axe. Un fil inextensible relie une extrémité du ressort et le point de la tige situé sur le pourtour du disque ; le fil ne glisse pas sur la poulie. On donne $J=\frac{1}{2}mr^2$ le moment d'inertie du disque par rapport à son axe de rotation. Lorsque le ressort est au repos, la tige est verticale ($\theta = 0$). Déterminer :

- 1.1. L'énergie potentielle du système.
- 1.2. L'énergie cinétique du système.
- 1.3. L'équation différentielle vérifiée par θ .
- 1.4. Les positions d'équilibres.
- 1.5. En utilisant le graphe ci-dessous et sachant que $\frac{kr^2}{mat} = 0.5$, déterminer numériquement les positions d'équilibres.
- 1.6. Pour les faibles valeurs de heta, Déterminer le rayon minimal (r_{min}) pour que le mouvement soit stable (Borné).



Exercice 2:

Une piste de ski a le profil représenté ci-dessous. La partie rectiligne (AB=l) est incliné d'un angle lpha par rapport à l'horizontale. La partie BC est une portion d'un cercle (0,r) telle que $\left(\overrightarrow{OC},\overrightarrow{OB}\right)=\theta_0.$ On néglige les frottements et on assimile le skieur à un point matériel de masse mqui fait le départ au point A sans vitesse initiale. En fonction de θ_0^* , θ , α , g, r et l, Déterminer

- 2.1. La réaction de la piste circulaire sur le skieur. A 2.2. La valeur θ_1 de θ , pour laquelle le skieur
- quitte la piste BC?
- 2.3. la relation entre $\theta_0,\,\alpha,\,r$ et l permettant au skieur de décoller au point B.
- 2.4. L'équation différentielle que satisfait l'angle θ .

QCM Physique I (Mécanique) :

1. Un point matériel se déplaçant dans le plan (xoy) est repéré

par $\begin{cases} x = 2t \\ y = t^2 \end{cases}$. Le rayon de courbure de sa trajectoire est :

a. $R_c=2\sqrt{1+t^2}$ b. $R_c=2/\sqrt{1+t^2}$ c. $R_c=2(1+t^2)^{3/2}$ d. $R_c=2(1+t^2)^{-3/2}$ 2. Un disque (D) de centre C et de rayon R se met enmouvement dans la plan (xoy). Il est parfaitement attaché par

un ressort de raideur (k) et de masse négligeable.

Le moment d'inertie de (D) par rapport à son axe est $J = \frac{1}{2} mR^2$

L'équation différentielle que satisfait l'abscisse du centre est :

a.
$$\ddot{x} + \frac{k}{m}x = 0$$
 b. $\ddot{x} + \frac{2k}{3m}x = 0$ c. $\ddot{x} + \frac{3k}{2m}x = 0$ d. $\ddot{x} + \frac{2k}{m}x = 0$

- 3. Un point matériel M de masse m est lâché sans vitesse initiale d'une hauteur h. On suppose que les frottements sont négligeables. Le champ de pesanteur se met sous la forme suivante g(z)=
- $g_0 \frac{R^2}{(R+z)^2}$. R: rayon de la terre et z l'altitude du point M. La durée suffisante pour que M arrive au

a.
$$(1+\frac{z}{R})\sqrt{\frac{2h}{g_0}}$$
 b. $\sqrt{\frac{2h}{g_0}}$ c. $\int_0^h \frac{(1+\frac{z}{R})dz}{\sqrt{2g_0.(h-z)}}$ d. $\int_0^h \frac{dz}{\sqrt{2g_0.(h-z)}}$

c.
$$\int_0^h \frac{(1+\frac{z}{R})dz}{\sqrt{2g_0.(h-z)}}$$

d.
$$\int_0^h \frac{dz}{\sqrt{2g_0.(h-z)}}$$

a. $(1 - R) \sqrt{g_0}$ 4. La figure ci-dessous représente l'association de trois ressous point matériel de masse m. La raideur du ressort équivalent est : $(1 - R) \sqrt{g_0}$

a.
$$k_1 + k_2 + k_3$$
 b. $k_1 + \frac{k_2 k_3}{k_2 + k_3}$ c. $k_2 + \frac{k_1 k_3}{k_1 + k_3}$

c.
$$k_2 + \frac{k_1 k_3}{k_1 + k_3}$$
 d

d.
$$k_3 + \frac{k_2 k_1}{k_2 + k_1}$$

5. Un neutron de masse m et animé d'une vitesse v_0 (E_{c0}) entre en collision frontale (choc direct) avec un noyau au repos de masse lpha m (lpha est un coefficient). Le choc est supposé parfaitement élastique (Conservation de l'énergie cinétique et de quantité de mouvement). En supposant qu'un neutron subit plusieurs chocs successifs dans les mêmes conditions. Au bout de n chocs, l'énergie cinétique du neutron est :

$$\text{a. } E_{cn} = \left[\frac{1+k}{1-k}\right]^{2n} E_{c0} \ \text{ b. } E_{cn} = n \frac{1-k}{1+k} E_{c0} \ \text{ c. } E_{cn} = \left[\frac{1-k}{1+k}\right]^n E_{c0} \ \text{ d. } E_{cn} = \left[\frac{1-k}{1+k}\right]^{2n} E_{cn} \ \text{ d. } E_{cn} = \left[\frac{1-k}{1+k}\right]^{$$

6. En mars 1979, la sonde Voyager 1 s'approchant de Jupiter à une altitude z mesure le champ gravitationnel G crée par cette planète. ($G_1 = G(z_1)$ et $G_2 = G(z_2)$). Le rayon de Jupiter est :

a.
$$\frac{z_2-z_1}{\frac{G_1}{G_2}-1}-z_1$$
 b. $\frac{z_1-z_2}{\frac{G_2}{G_1}-1}-z_2$ c. $\frac{z_2-z_1}{\sqrt{\frac{G_1}{G_2}}-1}-z_1$ d. $\frac{z_1-z_2}{\sqrt{\frac{G_2}{G_1}}-1}-z_2$

Fiche de répon	se:	Physique I (Mécanique) : Ilus				
N° question	Réponse	Physique I (Mécanique) : Une re	N° question	une réponse faus		
1.1	$E_P=$	11016	14 question		Réponse	Note
	D_{P}		1.6.	r _{min} =		
1.2.	$E_C=$		2.1.			
1.3.						
1.5.			2.2.	Θ_I =	8	
1.4.						
		5	2.3.			No.
1.5.			2.4.			
TOTAL /20mg			2.7.			

TOTAL/20pts

N° question		R	éponse		Note	N° question	T ab do rep	onse. o, one rep	oonse fausse ou pli	is d'une seule re	ponse:-1
1.	a. 🗆	b. 🗆	0. 0	1 _	-	11 question	-	1	Réponse		Note
			<i>c</i> . \Box	d. 🗆		1.	a. 🗆	<i>b</i> . □	с. 🗆	d. 🗆	
	a. 🗆	<i>b</i> . \Box	€. □	1 -	-						
		0. 0	ι. υ	d. 🗆		2.	a. 🗆	b. 🗆	с. 🗆	d. 🗆	
	a. 🗆	b. 🗆			-						
		0. [<i>c</i> . □	d. □		3.	a. 🗆	<i>b</i> . □	c. 🗆	d. 🗆	

Concours d'entrée en 1ère année des années préparatoires de l'ENSAM Casablanca-Meknès

SERIES: SCIENCES EXPERIMENTALES ET BRANCHES TECHNIQUES

Epreuve de physique / 1 août 2016

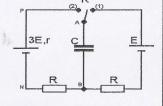
Durée: 2h00

Université Moulay Ismail

La fiche ne doit porter aucun signe indicatif ni signature

L'épreuve contient 2 pages. Elle est composée de deux parties indépendantes : une partie rédaction et une partie QCM.

L'usage de la calculatrice programmable est strictement interdit.


المجرسة الوطنية العليا للفنوخ والمهن SCOR PROMIL KNOWN CHOS IT FIND

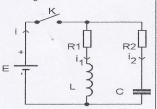
Physique II (Electricité):

Exercice 1: On considère le montage électrique représenté sur la figure ci-dessous. il comporte :

- Un générateur de tension idéal de force électromotrice E.
- Un générateur de tension de force électromotrice 3E et de résistance interne r;
- Un condensateur C.
- Deux conducteurs ohmiques R₁= R₂= R.
- Un interrupteur K.

Dans un premier temps, on charge le condensateur sous une tension E (l'interrupteur K est en position (1)).

- 1.1. Donner l'expression de la charge Q0 prise par le condensateur en régime permanant.
- 1.2. Donner la valeur de l'intensité du courant i qui traverse le condensateur.
- À l'instant t = 0 on bascule K en position (2).
- 1.3. Donner la valeur de l'intensité du courant i(0) qui traverse le condensateur.
- 1.4. Lorsque K est en position (2) depuis très longtemps, quelle est l'expression de la charge finale


La solution de l'équation différentielle à laquelle obéit q(t) est de la forme $q(t) = A + Be^{-\frac{t}{t}}$ où A, B et τ sont des constantes.

- 1.5. Exprimer A et B en fonction des données du problème.
- 1.6. Comment se nomme τ ? Donner son expression.
- 1.7. Quelle est l'expression de l'intensité i(t) du courant ?

Exercice 2 : On considère le montage électrique représenté sur la figure ci-dessous.

Le condensateur est déchargé à l'instant t=0 où on ferme l'interrupteur K. la résistance du générateur de tension est négligeable.

- 2.1. Déterminer l'intensité du courant i1(t).
- 2.2. Déterminer l'intensité du courant i2(t).
- 2.3. Déterminer l'instant to où le courant i(t) débité par le générateur de la tension est maximum, et calculer la valeur i_{max} si L=0.5H, C=1 μ F, R1=1 Ω , R2=10⁶ Ω et E=2V

QCM Physique II (Electricité):

1. On réalise le montage représenté sur la figure suivante :

C1

On bascule l'interrupteur en position 1 puis on le fait passer en position 2. Déterminer :

- 1.1. la charge Q_I du condensateur C_I :
- a. 2,86 μC; **b.** $7.15\mu\text{C}$; **c.** $10\mu\text{C}$;
 - 1.2. l'énergie totale des deux condensateurs :
 - b. 10 μJ c. 50 µJ. d. 54,3 μJ
- 2. Dans un circuit RLC parallèle l'équation différentielle vérifiée par i en fonction de :

$$\omega_0=rac{1}{\sqrt{LC}}$$
 et $\lambda=rac{1}{2RC\omega_0}$ est donnée par : $rac{d^2i}{dt^2}+2\lambda\omega_0rac{di}{dt}+\omega_0^2i=0$. Déterminer :

2.1. l'impédance équivalente du dipôle AB pour $\omega=\omega_0$:

- b. $1/\sqrt{LC}$;
 - 2.2. la valeur de R pour avoir le régime critique (régime qui correspond au retour le plus rapide de i vers zéro sans oscillations) sachant que i(t=0)=i₀≠0 et u(t=0)=0.

 l_{max}

- c. $2\sqrt{\frac{L}{c}}$;
- Quelle est la résistance équivalente du dipôle AB du montage suivant:

4. Un voltmètre se comporte comme :

b. 3R

- a. Un fil (résistance 0Ω)
- b. Un interrupteur ouvert (résistance infinie)
- c. une résistance de faible valeur
- d. une résistance de forte valeur (>1 $M\Omega$)

N° question	Réponse	Note	N° question		Réponse	Note
1.1.	$Q_0 =$		1.6.		$\dot{t} =$	
1.2.	$i(\infty) =$		1.7.	i(t) =		
1.3.	i(0) =		2.1.	$i_1(t) =$		
1.4.	$q(\infty) =$		2.2.	$i_2(t) =$,	
1.5.	A = B =		2.3	$t_0 =$	i_{max}	

TOTAL/20pts

OCM Physique II (Electricité) Une réponse juste : +2 Pas de réponse :0. Une réponse fausse ou plus d'une seule réponse :-1

N° question		Réj	ponse		Note	N° question			Réponse		Note
1.1.	a. 🗆	b. 🗆	c. 🗆	∘ d. □		2.2.	a. 🗆	<i>b</i> . 🗆	c. 🗆	d. 🗆	
1.2.	a. 🗆	b. 🗆	c. 🗌	d. 🗆		3.	a. 🗆	b. 🗆	c. 🗌	d. 🗆	
2.1.	a. 🗆	b. 🗆	c. 🗆	d. 🗆		4.	a. 🗆	b. 🗆	c. 🗆	d. 🗆	

TOTAL/12pts

TOTAL de l'épreuve de physique /64pts

Corrigé Physique 2016

SC. 40 20 BT.

Physique II (Ek	Physique II (Electricité): Une réponse juste: 2pts, une réponse fausse ou pas de réponse: 0	rse juste: 2pts,	une réponse faus	se ou pas de re	ponse: 0			,			
N° question		Réponse	nse		Note	N° question		Répo	Réponse		Note
1.1.	Q0 = CE	עו				1.6.	Constante du	*	$\tau = (R_{+r})C$	3)C	
1.2.	$i(\infty) = 0$					1.7.	i(t) = C. Le etc. Ref etc.	SE EV	1 2 X X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	2/2-0	
<i>I.3.</i>	i(0) = 0	2 FE				2.1.	$i_1(t) = \frac{\epsilon}{\alpha}$	E (1-6-Et)	(Krt)		
1.4.	$d(\infty) = 0$	3) 35. J	C. U.(w) = 3EC			2.2.	$i_2(t) = \frac{\bar{c}}{R}$	E C- MAC			
1.5.	A = 3EC	,)	B = -2EC	ر ا		2.3	$t_0 = \infty$		max =	n/g	
TOTAL/20pts											
QCM Physique.	QCM Physique II (Electricité) Une réponse juste : + 2, Pas de réponse : 0, Une réponse fausse ou plus d'une seule réponse :-1	: éponse juste :	+ 2, Pas de répon	ise: 0, Une répu	onse fausse	ou plus d'une seul	e réponse :-I				
N° question		Réponse	156		Note	N° question		Rép	Réponse		Note
I.I.	a. b.	b. \Box	c.	, d.		2.2.	a. a b	р. П	C. []	d. \Box	
1.2.	a. b.	b. \Box	<i>c.</i>	d. [3.	a	b. \Box	c. [d. [
2.1.	a. 🔳 b.	b. \Box	C. [d. \Box		4.	a. \Box b	b.	C. [d. \Box	-
TOTAL/12pts			Kananaga aya asiyaasaa kanana kanana ayaa ayaa ayaa ayaa aya								
TOTAL a	TOTAL de l'épreuve de physique/64pts	de physi	ique /64pt.	S						4	
									and the second s	The state of the s	

Moutamadris.ma

Fiche de réponse :		Physique I (Mé	Physique I (Mécanique) : Une réponse juste : 2pts, une réponse fausse ou pas de réponse : 0	onse juste : 2pts,	une réponse fau	sse ou pas de rep	onse : 0		
No question		Réponse	Note	Nº question		Réponse	onse		Note
$I.I$ $E_P=$	ĬI			1.6.	rmin=				
1.2. E _C =	`11			2.1.					
I.3.				2.2.	$\theta_I =$				
I.4.		5		2.3.					
1.5.				2.4.		·			
TOTAL/20pts								¥	
Fiche de réponse :		QCM Physique I (Mécanique) Une réponse juste : +	Mécanique) Une	réponse juste : + 2,		e: 0, Une répon.	se fausse ou plus	Pas de réponse : 0, Une réponse fausse ou plus d'une seule réponse :- I	onse :-I
N° question		Réponse	Note	Nº question		Rép	Réponse		Note
I. a. 🗆	D b. D	c. m d. 🗆		*	a. o	b. 🗆	c. 🗆	d.	
2. a. a	b . □	c. 0 d. 0		N	<i>a</i>	b. 🗆	c. 	d. \Box	
3. a.	D b. m	c. D d. D		8	<i>a.</i> \Box	<i>b</i> . П	c. m	d. 🗆	
TOTAL/12pts			er CAC CAC I Can'n ger promise representation communication of the second of the						

Concours d'entrée en 1^{ère} année des années préparatoires de l'ENSAM Casablanca-Meknès

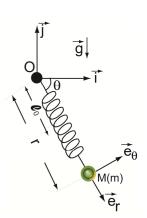
SERIES : SCIENCES EXPERIMENTALES ET BRANCHES TECHNIQUES

Epreuve de physique

Durée: 2h20min Le 2 Août 2014

- L'épreuve contient 4 pages. Elle est composée de deux parties indépendantes : une partie rédaction et une partie QCM.
- Répondre dans la feuille « fiche de réponse ».
- L'usage de la calculatrice programmable est strictement interdit.

PARTIE REDACTION

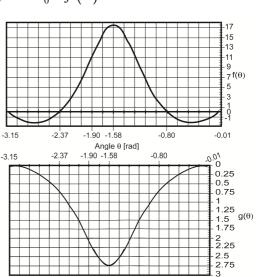

Physique I: (Mécanique) (Les parties A et B sont indépendantes)

Partie A

Le ressort étudié a une masse négligeable, une longueur à vide l_0 et une constante de raideur k. Une de ses extrémités est accrochée à une pointe O liée à un mur. Dans l'autre extrémité est attaché un point matériel M de masse m=5kg. Le système (Masse m+Ressort) tourne librement dans un plan vertical autour de O. Le mouvement peut être repéré dans les deux référentiels suivants:


- $\Re\left(O,\vec{i},\vec{j}\right)$ un référentiel fixe considéré galiléen et lié au mur,
- \mathbb{R}_s un référentiel tournant muni de la base polaire $\left(O, \vec{e}_r, \vec{e}_\theta\right)$ où M est repéré par ses coordonnées polaires r et θ .

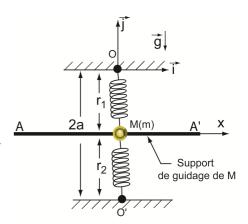
L'angle $\theta(\vec{i},\vec{e}_r)$ est compté positivement dans le sens trigonométrique. A l'équilibre, le système (Masse m + Ressort) est stabilisé à une position verticale du faite de la pesanteur terrestre. On prendra $g=9.81 \, \text{m/s}^2$ et on négligera les frottements de l'air.



- 1. Exprimer les différentes forces s'exerçant sur la masse M.
- 2. Lorsque le système est à l'équilibre, exprimer la distance à l'origine r_e du point M.
- 3. Exprimer le vecteur j dans la base polaire.

Le point M est maintenant lâché sans vitesse initiale et sans imposer de compression au ressort avec un angle $\theta = 0$ (horizontalement). Un système de capteur permet le suivi temporel de la position du point M pendant un laps de temps. A partir de cette acquisition de données, les deux fonctions suivantes sont calculées: $g(\theta) = r - l_0$ et $f(\theta) = r\dot{\theta}^2 - \ddot{r}$.

- 5. Donner l'expression de l'accélération $\gamma(M/R)$.
- 6. En projetant sur la base polaire l'équation vectorielle issue de l'application du principe fondamental de la dynamique sur le point M, donner les deux équations différentielles en r et en θ .
- 7. Ré-exprimer l'équation différentielle contenant le terme \ddot{r} à l'aide des fonctions $f(\theta)$ et $g(\theta)$.
- **8.** A partir des deux figures ci-contre et de l'équation obtenue en 7, déterminer la valeur moyenne de (k/m).
- 9. D'après les questions précédentes calculer k et l_0 . (On prend $r_e = 298cm$)

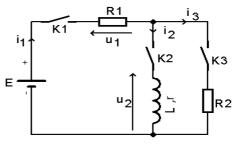


Partie B

Supposant maintenant que la masse M(m) est reliée à deux ressorts, identiques à celui étudié précédemment dans la partie A, placés verticalement (figure cicontre). Les extrémités O et O' des ressorts sont fixées à des points fixes et distants de 2a, avec $a > l_0$. A l'équilibre, on désignera par r_1 la longueur du ressort OM et par r_2 celle du ressort OM.

10. A l'équilibre, calculer les longueurs r_1 et r_2 des ressorts en fonction de m, g, a et k.

Considérant maintenant que la masse M(m) peut coulisser sur un dispositif convenable assurant un guidage parfait (sans frottement) suivant l'axe AA'. On suppose que l'on peut faire l'approximation $r_1 = r_2 = a$. On déplace horizontalement la masse m avec la distance δ à partir de sa position d'équilibre et on lâche le système sans vitesse initiale.

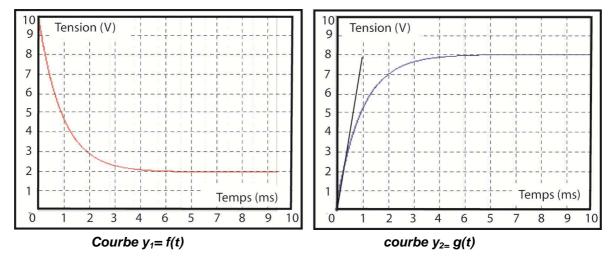


- 11. Etablir l'équation différentielle du mouvement de la masse m.
- 12. Dans le cas où $\delta \ll a$, déduire l'expression de la période T du mouvement de la masse m.

Physique II (Electricité):

On considère le circuit représenté sur le schéma ci-dessous, il comporte :

- Un générateur de tension continue E.
- Une bobine d'inductance L et de résistance interne r.
- Deux conducteurs ohmiques $R_1 = 10\Omega$ et $R_2 = 10\Omega$.
- Trois interrupteurs K₁, K₂ et K₃.



Toutes les parties sont indépendantes et les valeurs des composants peuvent changer d'une partie à l'autre.

Partie A: K1 et K2 sont fermés et K3 est ouvert.

On note t=0 le temps où les interrupteurs basculent vers leurs positions respectives.

À cet instant, on procède à l'enregistrement de la tension aux bornes de la résistance R1 et de celle aux bornes de la bobine L. On obtient les courbes $y_1 = f(t)$ et $y_2 = g(t)$.

- 1. Identifier la grandeur \mathbf{y}_1 (tension aux bornes de la résistance ou tension aux bornes de la bobine).
- 2. Donner la valeur de la force électromotrice E du générateur de tension.

Le circuit étudié peut être caractérisé par sa constante de temps τ . Pour un circuit (R, L), on pose : $\tau = \frac{L}{R}$

- 3. Donner l'expression de R en fonction de R1 et r.
- **4.** Donner l'expression de $u_1(t)$ en fonction de E, R1, r et τ .

- 5. On admet que : $i_1(t) = A\left(1 e^{-\frac{t}{\tau}}\right)$. Calculer la valeur de A.
- 7. Donner la valeur de τ déterminée graphiquement.
- En déduire la valeur de L.
- Calculer l'énergie emmagasinée par la bobine quand le régime permanent est établi.

Partie B: K1, K2 et K3 sont fermés.

Dans cette partie, on note t=0 le temps où les interrupteurs basculent vers leurs positions respectives. On remplace L par une bobine d'inductance L1=10mH et de résistance interne négligeable.

- **10.** A t=0⁺, calculer l'intensité du courant i₁.
- 11. Etablir l'équation différentielle qui relie l'intensité du courant i₂(t) et sa dérivée en fonction de E, R1, R2 et L1.
- 12. Résoudre cette équation différentielle en supposant que l'intensité initiale du courant est $i_2(0)=0$.
- 13. Donner l'expression en fonction du temps de la tension u₁.
- **14.** Calculer les intensités i₁ et i₃ en régime permanant.
- 15. Calculer le temps de montée de l'intensité du courant i₂(t), celui-ci étant le temps nécessaire pour passer de 10% à 90%.
- 16. Calculer la résistance équivalente vue par la source de tension en régime permanant.

Partie C:

Dans cette partie, les interrupteurs K1, K2 et K3 étaient fermés pendant un long intervalle de temps. A l'instant t=0 on garde K2 et K3 fermés et on ouvre K1.

- 17. Etablir l'équation différentielle qui relie l'intensité du courant i₂ et sa dérivée.
- 18. Etablir en fonction du temps, l'expression de l'intensité du courant i₂.

PARTIE QUESTIONS A CHOIX MULTIPLES

Important: Cette épreuve est un Q.C.M (questions à choix multiples). Pour chaque question, on vous propose 4 réponses. Cocher la réponse juste par une croix dans la case correspondante.

Barème: Une réponse juste : + 2, Pas de réponse : 0, Une réponse fausse ou plus d'une seule réponse :-1

- Une balle A est lancée, sans vitesse initiale, à partir du toit d'un immeuble de hauteur H. En même temps, une balle B est lancée avec une vitesse initiale v_o du bas vers le haut du bâtiment. Quand A et B rentrent en collision, on a $v_a=2v_b$. Supposons que la collision se produit à une hauteur h et à l'instant t_c .
- 1.1 La vitesse initiale de la balle B est :

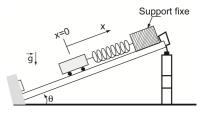
a.
$$v_o = \sqrt{g\left(H + \frac{3gh}{2}\right)}$$
 b. $v_o = \sqrt{\frac{gH + 3gh}{2}}$

b.
$$v_o = \sqrt{\frac{gH + 3gh}{2}}$$

$$\mathbf{c.} \ v_o = \sqrt{H - \frac{3gh}{2}}$$

$$\mathbf{d.} \ v_o = \sqrt{gH + \frac{2h}{H}}$$

1.2 Le temps en lequel la collision entre les deux balles se produit est:


a.
$$t_c = \frac{2}{3}g$$

b.
$$t_c = \frac{2}{3}v_0g$$

$$t_c = \frac{2v_0}{3g}$$

d.
$$t_c = \frac{v_0}{3 g}$$

Soit un ressort de longueur à vide l_0 et de constante de raideur k. L'une des extrémités du ressort est fixée et l'autre est liée à un chariot de masse m qui se déplace sans frottement sur un plan incliné d'un angle θ par rapport à l'horizontale. A cause du chariot, le ressort s'étire légèrement tel que $l>l_0$.

2.1 A l'équilibre, l'expression de l est:

a.
$$l = l_0 + \frac{mg\sin\theta}{k}$$
 b. $l = \frac{mg\cos\theta}{k}$

b.
$$l = \frac{mg\cos\theta}{k}$$

$$\mathbf{c.}\ l = l_0 + mgk\cos\theta$$

$$\mathbf{d.} \ l = mgl_0 + k\sin\theta$$

2.2 Maintenant, on déplace le chariot le long de la rampe de façon à comprimer le ressort à partir de la position d'équilibre jusqu'à une distance x_0 de l'origine. Ensuite, on le relâche (On prendra l'origine x=0 la position du chariot à l'équilibre). Donner la vitesse du chariot lorsqu'il revient à sa position d'équilibre?

a.
$$\sqrt{gx_0\sin\theta + \frac{k}{2m}x_0^2}$$
 b. $\sqrt{mg\sin\theta + \frac{k}{2m}x^2}$ **c.** $\sqrt{2gx_0\sin\theta + \frac{k}{m}x_0^2}$ **d.** $\sqrt{g\sin\theta + \frac{k}{2m}x_0^2}$

b.
$$\sqrt{mg\sin\theta + \frac{k}{2m}x^2}$$

$$\mathbf{c.} \sqrt{2gx_0 \sin \theta + \frac{k}{m}x_0^2}$$

d.
$$\sqrt{g\sin\theta} + \frac{k}{2m}x_0^2$$

3. La figure ci-contre est un régulateur à boules de James Watt. C'est un système permettant de réguler la vitesse de rotation d'une machine à vapeur. Il est constitué de 2 sphères, chacune est de masse m et est attachée à un bras rigide de masse négligeable et de longueur ℓ , lié à un arbre rotatif, et libre de pivoter vers le bas et vers le haut.

- **3.1.** Le système est en marche, les boules sphériques décrivent un cercle de rayon r autour de l'arbre de rotation. Quelle est l'accélération des boules ?
 - **a.** $\omega l^2 \cos \varphi$
- **b.** $\omega^2 l \sin \varphi$
- c. $\omega l \sin \varphi$
- **3.2.** Quelle est la valeur minimale ω_{min} de la vitesse angulaire pour que le dispositif fonctionne correctement?

a.
$$\sqrt{gl\sin\varphi}$$

b.
$$\sqrt{\frac{g}{l}}$$

c.
$$\frac{g}{l\omega^2}$$

d.
$$\frac{l}{g}\cos\varphi$$

3.3. Le rayon de la trajectoire des sphères est :

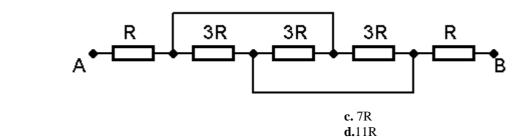
$$\mathbf{a.}\sqrt{l\left(1-\frac{mg^2}{l^2}\cos\varphi\right)}$$

b.
$$\sqrt{l\left(1-\frac{g^2}{l^2}\cos\varphi\right)}$$

$$\mathbf{c.} \sqrt{l \left(1 - \frac{g^2}{l^2 \omega^4}\right)}$$

$$\mathbf{d.} \sqrt{l^2 - \frac{g^2}{\omega^4}}$$

- 4. En alternative, un voltmètre mesure :
 - a. la valeur maximale de la tension.
 - **b.** la valeur minimale de la tension.
- 5. L'impédance Z d'un dipôle :
 - a. est indépendante de la fréquence N de la tension alternative.
 - **b.** augmente avec cette fréquence.
- **6.** Une bobine se comporte comme un conducteur ohmique :
 - **a.** lorsque le courant qui la traverse change de valeur.
 - **b.** lorsque la tension entre ces bornes change de valeur.
- 7. La tension ne peut pas présenter de discontinuité :
 - a. aux bornes d'un condensateur.
 - **b.** aux bornes d'une bobine.
- 8. Dans un régime apériodique d'un circuit RLC, le courant :
 - a. passe par un maximum puis converge vers une valeur finale.
 - b. converge de façon monotone vers sa valeur finale.


- c. la valeur efficace de la tension.
- d. la valeur instantanée de la tension.
- c. diminue avec cette fréquence.
- d. varie avec cette fréquence.
- c. en régime permanent.
- **d.** en régime variable.
- c. aux bornes d'un conducteur ohmique.
- d. aux bornes d'un interrupteur.
- c. oscille en convergeant vers une valeur finale.
- d. oscille en divergeant.
- 9. La constante d'amortissement d'un circuit RLC est :
 - a. L/R

a. 3R

b. 5R

b. 2L/R

- c. LR
- **d.** L/2R
- 10. Quelle est la résistance équivalente du dipôle AB du montage suivant :

Concours d'entrée en 1^{ère} année des années préparatoires de l'ENSAM Casablanca-Meknès SERIES : SCIENCES EXPERIMENTALES ET

Epreuve de physique

BRANCHES TECHNIQUES

Durée: 2h00 Le 2 Août 2014

Fiche de réponse

Important: La fiche ne doit porter aucun signe indicatif ni signature

Physique I (Mécanique) : Barème : Une réponse juste : 3pts, Une réponse fausse ou pas de réponse:0

N° question		vonse	Note
1.	$\vec{P} = -mg\vec{j}$ et $\vec{T} = -k(l_0 - r)\vec{e}_r$		3
2.	$r_e = l_0 + mg/k$		3
3.	$\vec{j} = \sin\theta \vec{e}_r + \cos\theta \vec{e}_\theta$		3
4.	$\vec{v}(M/\mathbb{R}) = \vec{r}\vec{e}_r + r\dot{\theta}\vec{e}_\theta$		3
5.	$\vec{\gamma}(M/\mathbb{R}) = (\ddot{r} - r\dot{\theta}^2)\vec{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\vec{e}_{\theta}$		3
6.	$\ddot{r} = r\dot{\theta}^2 - (r - l_0)\frac{k}{m} - g\sin\theta$	$\ddot{\theta} = -\frac{g\cos\theta}{r} - \frac{2\dot{r}\dot{\theta}}{r}$	1.5/1.5
7.	$g(\theta)\frac{k}{m} = f(\theta) - g\sin\theta$		3
8.	$Valeur\ moyenne \left(\frac{k}{m}\right) \approx 10$		3
9.	$k \approx 50N/m$	$l_0 \approx 2m$	1.5/1.5
10.	$r_1 = a \left(1 + \frac{mg}{2ak} \right)$	$r_2 = a \left(1 - \frac{mg}{2ak} \right)$	1.5/1.5
11.	$\ddot{x} = -\frac{2k}{m} \left(1 - \frac{l_0}{\sqrt{a^2 + \delta^2}} \right) x$		3
12.	$T = 2\pi \left(\sqrt{\frac{m}{2k\left(1 - l_0/a\right)}} \right)$		3
	TOTAL/36pts	7	

Physique II (Electricité) : Barème : Une réponse juste : 2pts, une réponse fausse ou pas de réponse:0

N° question	Réponse	Note
1.	y_1 représente la tension aux bornes de la bobine	2
2.	E=10V	2
3.	$R=R_I+r$	2
4	$u_1(t) = E \frac{R_1}{R_1 + r} \left(1 - e^{-\frac{t}{\tau}}\right) avec \ \tau = \frac{L}{R_1 + r}$	2
5.	$A = I_I(\infty)/R_I = 0.8A$	2
6.	$r=\mathrm{u}_2(\infty)/I_1(\infty)=2,5\Omega$	2
7.	τ =1ms	2
8.	$L=\tau*(R_1+r)=12,5mH$	2
9.	$w = \frac{1}{2}LI_2^2(\infty) = 4mJ$	2
10.	$i_1(0^+) = E/(R_1 + R_2) = 0.5A$	2
11.	$L_{1}\left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right)\frac{di_{2}}{dt} + i_{2} = \frac{E}{R_{1}}$ $i_{2}(t) = \frac{E}{R_{1}}\left(1 - e^{-\frac{t}{\tau_{1}}}\right) \ avec \ \tau_{1} = L_{1}\left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right)$	2
12.	$i_2(t) = \frac{E}{R_1} \left(1 - e^{-\frac{t}{\tau_1}} \right) \ avec \ \tau_1 = L_1 \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$	2
13.	$u_1(t) = E\left(1 - \frac{R_2}{R_1 + R_2}e^{-\frac{t}{\tau_1}}\right)$	2
14.	$i_{I}(\infty) = E/R_{I} = IA \qquad \qquad i_{3}(\infty) = 0$	1+1
15.	$t_m = \tau_1 \ln 9 = 4.394 ms$	2
16.	$R_{eq}=R_I=10\Omega$	2
17.	$i_2 + \frac{L_1}{R_2} \frac{di_2}{dt} = 0$	2
18.	$i_2(t) = i_2(0)e^{-\frac{t}{\tau_2}}$ avec $i_2(0) = 1A$ et $\tau_2 = \frac{L_1}{R_2} = 1ms$	2
	TOTAL/36pts	

PARTIE QCM :Barème : Une réponse juste : + 2, Pas de réponse : 0, Une réponse fausse ou plus d'une seule réponse :-1

	N° question		Répo	nse		Note
	1.1.	<i>a</i> . □	<i>b</i> .	c . \square	d . \square	
3	1.2.	<i>a</i> . \square	b . \square	c. 	d . \square	
[éca	2.1	a. 	<i>b</i> . \square	<i>c</i> . □	d . \square	
Mécanique	2.2	<i>a</i> . □	b . \square	<i>c</i> .	d . \square	
ue	3.1	a. 🗆	<i>b</i> .	<i>c</i> . □	d . \square	
	3.2	<i>a</i> . □	<i>b</i> .	<i>c</i> . □	d . \square	
	3.3	<i>a</i> . \square	<i>b</i> . \square	<i>c</i> . \square	<i>d</i> .	
	5.	a. 🗆	<i>b</i> . \square	c. 	d.	
	5. 6.	a. □ a. □	<i>b</i> . □ <i>b</i> . □	<i>c</i> . □	d. □ d. ■	
Ele						
Electri	6.	a. 🗆	<i>b</i> . \square	c. 🗆	<i>d</i> .	
Electricité	6. 7.	a	<i>b</i> . □ <i>b</i> . □	c	d. □	
Electricité	6. 7. 8.	a. □ a. □ a. □	b. □ b. □ b. □	c. □ c. □	d. □ d. □ d. □	
Electricité	6. 7. 8. 9.	a. □ a. □ a. □ a. ■	b. □ b. □ b. □ b. □	c. □ c. □ c. □ c. □	d. □ d. □ d. □ d. □	

W

Concours commun d'accès en Première année de l'ENSAM

Université Moulay Ismail Meknès Ecole Nationale Supérieure d'Arts et Métiers - Meknès Université Hassan II Mohammedia-Casablanca Ecole Nationale Supérieure d'Arts et Métiers - Casablanca

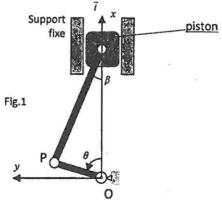
Filières : Sciences Expérimentales et Techniques

Epreuve de Physique Durée : 2h 15 min

le 29 Juillet 2013

- L'épreuve contient 5 pages
- Répondre dans la feuille : « Fiche des réponses » à rendre avec la feuille d'examen
- Calculatrice non autorisée

Physique I (Mécanique): Les parties I et II sont indépendantes.


L'objet de l'étude est un système, composé de 3 solides rigides (figure 1) qui sont un piston (un petit cylindre de masse m_p), une tige rigide (PQ) (inextensible) de longueur l, de masse négligeable et un bras (OP) de longueur R et de masse m_b , de moment d'inertie l_b (par rapport à l'axe fixe (O, Δ)). La tige (PQ) permet de lier le piston avec le bras et reste tout le temps en liaison avec le bras (au point P) et avec le piston (au point Q). Le mouvement du piston est une translation suivant l'axe vertical Ox, celui du bras (OP) est une rotation d'axe fixe (O,Δ) avec une vitesse de rotation constante ω_0 (rd/s). On note (figure 1):

- angle de rotation instantanée du bras: $\theta(t)$; angle d'inclinaison de la tige par rapport à $0x : \beta(t)$,
- position instantanée du piston : x(t) telle que $\overrightarrow{OQ} = x(t)\vec{i}$, avec \vec{i} est le vecteur unitaire suivant Ox;
- Rapport des dimensions : $\varepsilon = R/l$, L'accélération de la pesanteur : $\vec{g} = -g\vec{i}$, avec $g(m/s^2)$.

Important : La présente étude concerne seulement la plage de fonctionnement : $0 \le \theta(t) \le \pi$, correspondant à la descente du piston.

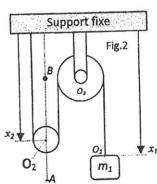
Partie I : l'objet de cette partie consiste à déterminer le couple produit sur le bras lors de la descente du piston.

- 1. En se basant sur un raisonnement purement géométrique (relations dans le triangle OPQ), exprimer l'angle d'inclinaison $\beta(t)$ en fonction de $\theta(t)$ et ε ; puis exprimer la position du piston x(t) en fonction de R, l et $\theta(t)$.
- 2. Quelle approximation peut-on considérer pour que x(t) peut s'écrire sous la forme : $x(t) \approx A\cos\theta(t) + B$, où A et B sont des constantes à identifier. Cette approximation sera considérée dans la suite du problème et on écrit : $x(t) = A\cos\theta(t) + B$.
- 3. Exprimer $\theta(t)$ (sachant que $\theta(t=0)=0$), la vitesse v(t) puis l'accélération $\gamma(t)$ du piston en fonction de R, ω_0 et le temps t.

Dans la suite, on considère que le piston est soumis sur sa face supérieure à une force supplémentaire $\vec{F} = -F(t)\vec{i}$, où $F(t) = F_0 \sin \theta(t)$ et F_0 est une constante positive donnée.

4. On désigne par $\vec{F}_{p/t}$ et $\vec{F}_{b/t}$ les forces appliquées sur la tige, respectivement par le piston (p) au point Q et par le bras (b) au point P. Etant donné que la masse de la tige (PQ) est négligeable, en appliquant le PFD (principe fondamental de la dynamique), trouver la relation entre ces deux forces en précisant leurs directions. Justifier la relation: $\vec{F}_{t/p} + \vec{F}_{p/t} = \vec{0}$, où $\vec{F}_{t/p}$ est la force appliquée par la tige (t) sur le

5. Au moyen d'un schéma (voir fiche des réponses), tracer le bilan des forces appliquées sur le piston. Respecter le sens du mouvement indiqué.


- 6. En appliquant le PFD et en tenant compte de l'approximation $\cos \beta \approx 1$, déterminer le module de la force $\vec{F}_{t/p}$, en fonction de m_p , g, \dot{x} , \ddot{x} , θ , λ et F_0 . En déduire le module de $\vec{F}_{t/b}$ (force de la tige (t) sur le bras
- 7. En appliquant le PFD (équation des moments) au bras, déterminer le couple C(t) produit sur ce bras, lors de la descente du piston, en fonction de m_p , m_b , g, \dot{x} , \ddot{x} , θ , $\ddot{\theta}$, λ , F_0 , R, I_b , sachant que la distance du point O à la droite (PQ) est approximée par $h(t) = R\sin\theta$. Exprimer C(t) en fonction de m_p , m_b , g, λ , F_0 , R, ω_0 et le temps t.

Partie II : Un système S de levage (fig.2) est constitué d'une masse m1, d'une poulie d'axe mobile, d'une poulie d'axe fixe et d'un câble inextensible, tel que :

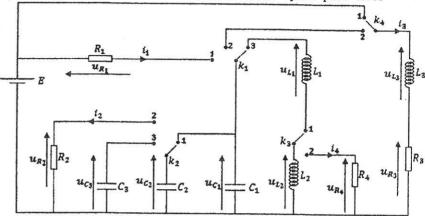
- Poulie mobile : centre O_2 , rayon R_2 , masse m_2 , moment d'inertie $\underline{n\acute{e}glig\acute{e}}$,
- Poulie d'axe fixe : centre O3 (qui fait la distance d par rapport au support fixe), rayon R3, moment d'inertie $I_3,$ vitesse de rotation (par rapport à son axe fixe) $\omega_3(t),$
- Câble : inextensible, longueur totale L, de masse négligeable.

La trajectoire du point O_2 est le segment de droite AB. On désigne par $x_1(t)$ et $x_2(t)$ les positions instantanées respectives de la masse m1 et de la poulie mobile. Le sens positif est orienté vers le bas, l'accélération de la pesanteur g est également vers le bas.

- 8. On note x_{01} et x_{02} les positions initiales (à t=0) respectives de m_1 et de m_2 , exprimer l'énergie potentielle Ep_1 de m_1 et Ep_2 de m_2 en fonction de $m_1,\ m_2,\ g,$ x_1 , x_2 , x_{01} et x_{02} en considérant Ep₁ nulle en x_{01} et Ep₂ nulle en x_{02} .
- 9. Exprimer l'énergie cinétique E_c de S en fonction de m_1 , m_2 , I_3 , \dot{x}_1 , \dot{x}_2 et ω_3 ; En déduire son énergie mécanique E_m en fonction de m_1 , m_2 , I_3 , R_3 , g, x_1 , x_2 , $x_{01}, x_{02}, \dot{x}_1 \text{ et } \dot{x}_2.$
- 10. Du fait que le câble est inextensible, sa longueur totale L vérifie à chaque instant l'équation $L=x_1+2x_2+C$. Trouver la constante C en fonction de R_2 , R_3 et la distance d.
- 11. Trouver l'accélération γ de la poulie mobile en fonction de $m_1,\ m_2,\ I_3,\ R_3$ et g.
- 12. A l'instant initial, les vitesses sont nulles. Trouver les équations horaires des vitesses $v_1(t)$, $v_2(t)$ et des positions $x_1(t)$, $x_2(t)$ en fonction de γ , x_{01} , x_{02} et le temps t.
- 13. En considérant à nouveau qu'à l'instant initial, les vitesses sont nulles (système au repos) et en se basant sur le résultat de la question 11, distinguer les cas possibles à propos du mouvement du système S.
- 14. Dans cette question, on supprime la masse m_1 et on tire verticalement vers le bas le câble par une force F (au point O_1) à fin de faire monter la masse m_2 . Exprimer cette force F (en statique) en fonction de m_2 et g. Peut-on imaginer l'intérêt pratique de ce système ?
- 15. Déterminer cette force si en plus on souhaite que la poulie 2 ait une accélération y constante donnée. Faire le calcul pour $m_2=100$ Kg, $g=10m/s^2$ et $\gamma=-2m/s^2$.

Physique II (Electricité): Les parties A, B, C, D et E sont indépendantes.

Le montage ci-dessous est alimenté par un générateur idéal de tension continue ayant pour force électromotrice : E = 10V.


Il comporte:

 Trois condensateurs de capacités: C₁, C₂ et C₃.

Trois bobines d'inductances :
 L₁, L₂ et L₃, ayant toutes des résistances internes négligeables.

Quatre conducteurs ohmiques:
 R₁, R₂, R₃ et R₄.

Quatre interrupteurs: k₁, k₂, k₃
 et k₄.

Le tableau suivant regroupe l'ensemble des composants avec leurs valeurs.

Composant	Nature	Valeur
R	Résistance	$R_1 = R_2 = R_3 = R_4 = 100 \Omega$
L	Bobine	$L_1 = L_2 = 50 mH et L_3 = 100 mH$
С	Condensateur	$C_1 = C_2 = 10 \mu\text{F} \text{et} C_3 = 100 \mu\text{F}$

Partie A. k_1 est en position (1) et k_2 est en position (1).

Dans cette partie, on note: C, la capacité du condensateur équivalent aux deux condensateurs C_1 et C_2 en parallèle, et t_0 , l'instant où les interrupteurs basculent vers leurs positions respectives. On suppose qu'à l'instant t_0 , les condensateurs sont totalement déchargés.

- 1. Quelle est la valeur de la capacité C en μF ?
- A l'instant t₀, quelle est la valeur, en mJ, de l'énergie stockée au sein du circuit ?
- 3. En supposant que $C = 5\mu F$, quelle est la valeur, en ms, de la constante du temps du circuit?
- 4. On donne l'expression temporelle de la tension : $u_{c_1}(t) = A(1 e^{-B.t})$. Déduire les constantes A et B en fonction de R_1 , C et E.
- 5. Donner l'expression temporelle du courant $i_1(t)$ en fonction de R_1 , C et E.

Partie B. k2 est en position (2).

Dans cette partie, on note: t_0 , l'instant où l'interrupteur k_2 bascule vers la position (2), et on suppose que $u_{c_2}(t_0) = 10V$.

- 6. Donner l'équation différentielle vérifiée par la tension $u_{C_2}(t)$ en fonction de R_2 et C_2 .
- 7. Pour quelle valeur de R_2 , en $k\Omega$, la constante du temps aurait du être égale à 10ms?
- 8. Quelle est l'énergie, en mJ, stockée dans le condensateur C_2 à l'instant t_0 ?

Partie C. k4 est en position (1).

- 9. Donner l'expression temporelle de la tension u_{L_3} en fonction de L_3 , R_3 et E.
- 10. Quelle est la valeur, en régime permanent, du courant i_3 en mA?
- 11. Lorsque le régime permanent est établi, quelle sera l'énergie stockée, en mJ, au niveau de la bobine? Partie D. k_1 est en position (3), k_2 est en position (1) et k_3 est en position (1).

Dans cette partie, on note L l'inductance équivalente des bobines L_1 et L_2 en série, et t_0 , l'instant où les interrupteurs basculent vers leurs positions respectives.

On suppose aussi que $u_{C_1}(t_0) = 5V$.

- 12. Quelle est la valeur, en mH, de l'inductance L?
- 13. Quelle est la valeur, en mJ, de l'énergie maximale qui sera stockée au niveau de la bobine L_1 ?
- 14. Quelle est la valeur maximale du courant traversant la bobine L_1 ?

Partie E. k_1 est en position (2), k_2 est en position (1) et k_4 est en position (2).

15. Donner l'équation différentielle vérifiée par la tension u_{c_1} .

(Voir correction 8-Math)

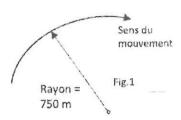
UNIVERSITE MOULAY ISMAIL ECOLE NATIONALE SUPERIEURE D'ARTS ET METIERS-MEKNES

Concours d'entrée en Première année de l'ENSAM de Meknès Filières : Sciences Expérimentales, et Techniques

Epreuve de Physique Durée : 2h 30

Meknès, le 26 Juillet 2012

- L'épreuve contient 6 pages


- Répondre dans la feuille : « Fiche des réponses » à rendre avec la feuille d'examen

- Toute application numérique manquant l'unité ne sera pas comptée

Physique I (Mécanique): Les parties I, II, et V sont indépendantes, les parties III et IV sont enchaînées.

Partie I: Une motocyclette roule sur un tronçon circulaire (virage) d'une route de 750 m de rayon. Elle roule avec une vitesse de 100 km/h. A un moment donné, le motocycliste ralentit avec une accélération constante. On désigne par v, γ_i , γ_n et γ la vitesse instantanée, l'accélération tangentielle, l'accélération normale et le module de l'accélération, respectivement. Sachant qu'au bout de 8s, la vitesse de la motocyclette est réduite à 75 km/h, calculer au début de freinage:

- 1. L'accélération tangentielle et l'accélération normale γ_i et γ_n de la motocyclette
- 2. Le module γ de l'accélération et l'angle α que fait la composante tangentielle γ , avec le vecteur accélération $\vec{\gamma}$.
- 3. Tracer sur le schéma, en respectant le sens de mouvement (fig.1) les différentes accélérations γ_{I} , γ_{n} , $\vec{\gamma}$ et α .

Partie II : La motocyclette a parcouru sur une route droite, une distance d, en 4 phases telles que :

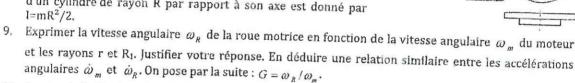
- Phase 1 ($0 \le t \le 6s$): elle part avec une vitesse initiale nulle, mais avec une accélération constante $(\gamma=1\text{m/s}^2)$ durant un temps de 6s
- Phase 2 ($6s \le t \le t_2$): à partir de t_1 =6s, elle a une accélération également constante mais de valeur γ =1,5m/s², durant un temps Δt_2 inconnu ; à la fin de cette deuxième phase, elle atteigne la vitesse v=12 m/s,
- Phase 3 ($t_2 \le t \le t_3$): elle conserve cette vitesse (v=12m/s) pendant un temps Δt_3 inconnu
- Phase 4 (t₃ ≤ t ≤ 40 s): elle est en freinage, sa décélération est constante, et elle s'arrête complètement en 6s.

Le temps total de la circulation du trajet est de T=40s. Les origines de la position x(t) et le temps t sont prises égales à zéro.

- 4. Calculer la vitesse de la motocyclette en $t=t_1=6s$ et calculer les temps t_2 et t_3 .
- 5. Calculer sa position x(t) pour $t=t_1$, $t=t_2$ et $t=t_3$. Calculer ensuite la distance totale parcourue d.

Partie III: Dans cette partie, on considère que la motocyclette soit de masse m (y compris la masse du motocycliste), qui roule sur un plan horizontal ou incliné avec une vitesse v (parallèle au chemin de déplacement). La motocyclette se met en mouvement grâce à son moteur qui développe une force de traction F, On note par $g(m/s^2)$ l'accélération de la pesanteur. Lors de son mouvement, la motocyclette est soumise à deux forces qui s'opposent au mouvement:

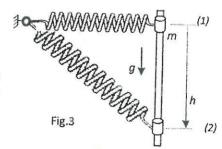
- Force F_r (appelée résistance au roulement), donnée par la formule : $F_r = f_r mg$, où f_r est un coefficient supposé constant;
- Force F_a , résistance de l'air (appelée force aérodynamique), donnée par l'expression: $F_a = \frac{1}{2} \rho A C_d v^2$, où ρ , A et C_d sont des constantes. ρ : masse volumique de l'air, A: surface frontale de la motocyclette et C_d : coefficient constant. La vitesse v est exprimée en m/s et F_a (N).


Les directions de F_r et F_a sont parallèles à la direction du mouvement. Pour les applications numériques, on prendra : g=10 m/s², m=200 kg, ρ = 1.25 Kg/m^3 , A=0.6 m², Cd=0.75. f_r = 0.007.

6. Pour une accélération constante γ, sur plan horizontal, exprimer la force de traction F de la motocyclette que son moteur doit fournir en fonction de la vitesse v, l'accélération γ et des données. Après A.N, donner F en fonction de v et γ, uniquement.

Dans cette question, la motocyclette grimpe une pente, qui fait un angle α=5° par rapport à l'horizontale, avec la loi de vitesse, décrite dans la partie précédente (Partie II). Faire l'A.N. et donner la force F en fonction de v seulement, pour les phases 1 et 4. Pour quelle vitesse v, F sera nulle (phase 2).

Partie IV: Dans l'objectif de déterminer les relations entre les grandeurs relatives au moteur de la motocyclette à celles relatives à la roue, nous considérons le montage d'essai de la figure 2: le moteur entraine l'une des deux roues (cette roue est appelée par la suite roue motrice) à travers une courroie inextensible (assimilée à un brin) et sans glissement (dans ce montage, les axes de rotation sont supposés fixes). La roue motrice est assimilée à un plateau composé de deux cylindres homogènes coaxiaux en aluminium de rayons respectifs R et R_1 , ayant même hauteur h, la masse volumique de l'aluminium est ρ_a = 2690 kg/m³. On donne :


- Le moment d'inertie du moteur : négligée
- Rayon de l'arbre moteur où passe la courroie : r =5,75 cm
- Grand rayon de la roue motrice, R=21cm, hauteur h (h=0.2 cm)
- Rayon au niveau de la roue (motrice), où passe la courroie, R₁=11,5 cm
- 8. Exprimer le moment d'inertie de la roue motrice, I_r , en fonction de ρ_R , h, R et R_1 . Calculer I_r (kg.m²). Rappel : le moment d'inertie d'un cylindre de rayon R par rapport à son axe est donné par $I=mR^2/2$.

- 10. Le couple T_e développé par le moteur est transmis à la roue motrice à travers la courroie, on désigne sa valeur par T_R , appliqué sur la roue. On admet la relation entre ces deux couples : $T_e = G.T_R$. Soit F_m la composante tangentielle qui matérialise l'action appliquée par le sol sur la roue motrice. Par application du principe de la dynamique à la roue, exprimer F_m en fonction de R, G, I_D , $\mathring{\omega}_R$ et T_e .
- 11. Pour un copule $T_c=k\omega_m$ (k est une constante), et après A.N., exprimer F_m en fonction de ω_R , $\dot{\omega}_R$ et k.
- 12. Pour une force F_m nulle, donner l'équation différentielle du mouvement de la roue sous la forme $a\dot{\omega}_R + b\omega_R = 0$, où on précise les constantes a et b en fonction de k, R, G, et I_r . Après A.N., donner ω_R en fonction du temps t (on prendra k=20).

Partie V: On considère un système composé d'un petit cylindre assimilé à un point matériel de masse m=10 kg et d'un ressort de raideur k=500 N/m et de longueur initiale $l_0=100$ mm, sa longueur dans la position horizontale (1) est l=200 mm. La masse m glisse sans frottement le long d'une tige verticale, tel qu'il est illustré sur la figure 3. La masse est lâchée du repos à partir de la position (1), elle atteint la position (2), située à la distance h avec une vitesse v_2 (2). On choisit la position (1) comme référence pour l'énergie potentielle due à la pesanteur. On note E_p : énergie potentielle, E_c : énergie cinétique et E_m : énergie mécanique, relatives au système.

- 13. Calculer E_{p1} et E_{m1} du système (masse-ressort) dans la position (1).
- 14. Exprimer E_{p2} , E_{c2} en fonction de m, g, l, l_0 , h, k et v_2 , du système dans la position (2).
- 15. Exprimer la vitesse v_2 de la masse lors de son passage vers le bas devant la position h, en fonction de m, g, h, l, l_0 et k. Calculer v_2 pour h=150 mm.

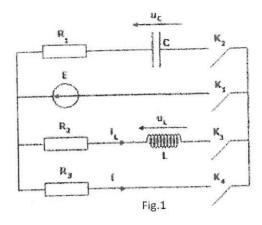
Moteur

Fig.2

rayon R

Roue

مكتبه أنسوار مرجان 2 س 13 مكناس ماتنه وفاكس 92 66 66 مكناس 05 35 46 66 92


Physique II (Electricité):

Problème.

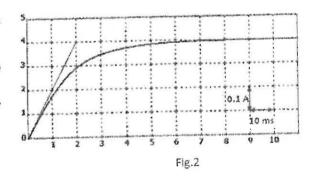
Sur la figure (Fig.1) est schématisé un circuit électrique comportant un générateur de tension continue de force électromotrice E = 10 V, un condensateur de capacité C, une bobine d'inductance L et de résistance négligeable, trois conducteurs ohmiques de résistances R₁, R₂ et R₃, et quatre interrupteurs K1, K2, K3 et K4.

On utilise une centrale d'acquisition qui permet de visualiser les tensions uc et ul et le courant il.

Toutes les expériences sont indépendantes, et les valeurs de R1, R2, R3 L et C peuvent changer d'une expérience à l'autre.

Expérience A.

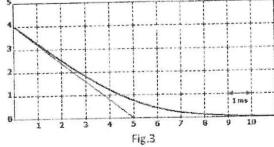
Dans cette expérience, les interrupteurs K_1 et K_2 sont fermés, K_3 et K_4 sont ouverts.


- 1. Donner l'équation différentielle vérifiée par la tension u_c en fonction de E, R_1 et C.
- 2. La résistance R_1 = 20 Ω , et la constante du temps du circuit vaut 0,4 ms. Déduire la valeur de la capacité C.
- 3. Une fois le condensateur totalement chargé, quelle sera l'intensité du courant ic qui le parcourt?
- 4. Si l'on remplace R_1 par deux conducteurs ohmiques montés en parallèle de résistances $R=10~\Omega$ chacun. Quelle sera la valeur de la constante du temps du nouveau circuit ?

Expérience B.

Dans cette expérience, les interrupteurs K1 et K3 sont fermés, K2 et K4 sont ouverts.

Le courant i_L est reporté sur la figure (Fig.2).


- 5. Quelle est la valeur numérique de la constante du temps du dipôle RL?
- 6. En déterminant la valeur finale du courant lu donner la valeur de la résistance R2.
- 7. Déduire la valeur de l'inductance L.

Expérience C.

Dans cette expérience, les interrupteurs K_2 et K_4 sont fermés, K_1 et K_3 sont ouverts. A l'instant t=0, le condensateur, supposé de capacité $C = 50 \,\mu\text{F}$, est complètement chargé. L'évolution de la tension u_c et reportée sur la figure (Fig.3). La résistance $R_1 = 20 \Omega$.

- 8. Quelle est la valeur de la sensibilité verticale (l'échelle en V/div)?
- 9. En déterminant la constante du temps du circuit, déduire la valeur de la résistance R3.

Expérience D.

On court-circuite les conducteurs ohmiques R_1 et R_2 (on peut supposer $R_1 = R_2 = 0$) et on remplace la bobine par une autre d'inductance L' et de résistance r.

Le condensateur est complètement chargé, et est supposé de capacité C = 50 μF .

A l'instant t=0, les interrupteurs K_2 et K_3 sont fermés, K_1 et K_4 sont ouverts.

L'évolution de la tension uc et reportée sur la figure (Fig.4).

 En supposant que la pseudo-période est à peu prés égale à la période propre d'oscillation du circuit LC, calculer la valeur de l'inductance L'.

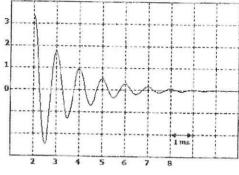


Fig.4

Exercice.

Répondre par Vrai ou Faux

1.	La constante de temps d'un dipôle RL est inversement proportionnelle à la valeur de la résistance.
2.	La constante du temps d'un circuit RL est égale à la durée nécessaire pour que le courant y circulant se stabilise.
3,	La période propre d'oscillation d'un circuit LC augmente lorsque la valeur de la capacité C augmente.
4.	On peut considérer que la résistance interne d'une bobine L n'a aucun effet sur la période d'oscillation d'un circuit LC.
5.	La capacité équivalente de deux condensateurs en série est toujours inférieure à la valeur de la capacité la plus faible.
6.	Dans un circuit LC parfait la tension aux bornes du condensateur tend vers zéro en régime permanent.
7.	L'intensité du courant dans un circuit RC en début de charge est non nulle même si le condensateur est initialement déchargé.
8.	La résistance équivalente de deux conducteurs ohmiques en série est toujours supérieure à la valeur de la résistance la plus grande.
9.	On ne peut pas utiliser un oscilloscope pour mesurer l'intensité du courant dans un circuit RC.
10.	L'impédance d'un condensateur en régime continu est très faible.
11.	La valeur efficace d'une tension sinusoïdale peut être négative.
12.	Quand la fréquence du courant diminue, l'impédance d'une bobine augmente.
13,	Si le courant traversant une bobine est constant, alors forcément la tension à ses bornes est nulle.
14.	La tension aux bornes d'un condensateur est en avance de phase par rapport au courant le traversant.
15.	La capacité équivalente de deux condensateurs en parallèle est toujours de valeur supérieure à la valeur de la capacité la plus grande.
16.	Quand la fréquence du courant diminue, l'impédance du condensateur augmente.
17.	En régime continue, un condensateur est équivalent à un court-circuit.
18.	Quand un condensateur est totalement chargé, le courant qui le traverse est nul.
19.	La tension aux bornes du condensateur, dans un circuit RC, est toujours apériodique.
20.	La tension aux bornes du condensateur, dans un circuit RLC en régime libre, est toujours pseudopériodique.

4/6

Cette feuille ne doit porter **aucun signe indicatif ni signature** Filières Sciences Expérimentales et Techniques

	FICHE DES REPONSES (Physique I): Questions 1 à 15					Note			
1.	Accélération tangentie	lle: $\gamma_i =$	0,8	6 m1	S		and the second s	Sens du	
	Accélération normale :	γ _n = /	1,02 /	m/s		Rayon = Fig.1			
2.									
3.	(Schéma, fig.1)						***************************************	And the state of t	
4.	Vitesse (t=t1): $v_1 = 6$	m/S	t ₂ =	10 s		$t_3 = 22$	S		
5 . P	ositions: $x(t=t_1)=18$	m	x(t=t ₂)	= 15	3 m	x(t=t ₃)=		d= 453m	
6. I	Force de traction : $F = -$	1 PA	CdV&	- 6x	ng + 7	my			
A.N.	$F(v,\gamma) = 0.28 \vee^2 +$	2008	- 14						
7. P	hase 1: $F = 0.28 \sqrt{2}$. 560,	2	Phase	4: F	= 0,28 V	² + 16	0,3	
v ==	23,92 m/s						***************************************		
8. M	oment d'inertie $I_r = \frac{1}{2}$	1 Pm	Rth(R2+ R	(2)	A.N. <i>I</i> ,	= 6,1	14 × 10 -6 Kg·m²	
9. 0	$p_R = \frac{V}{R_1} \omega_m$	Justificati	ion: V _R	= V _m =	=> R1	WR=VWm	à à		
10.1	Force: $F_m = \frac{I_R}{R_A} \dot{w}_R +$	Ie Ra							
11.	Fm = IRWR + WRR	1		A					
12. (Constante $a = I_R$	Constar	nte b =			$\omega_R(t) = 0$	e-6	E	
13. E	13. Energies (1): $E_{p1} = 2.5$ $E_{m1} = 2.5$								
14. Energies (2): $E_{p2} = -mg.h$									
$E_{c2} = \frac{1}{2} m \sqrt{2}$									
15. Vitesse: $v_2 = \sqrt{2gh + \frac{k}{m} (l - l_0)^2}$ A.N. $v_2 = 2.031$									

Physique II Cette feuille est un document à rendre et ne doit porter aucun signe indicatif ou signature du candidat

		Chaque question est notée sur 2 points		
	Problème	Réponse	Note	
1,	L'équation différentielle vérifiée par la tension u_c en fonction de E, R_1 et C.	R1C due + Uc = E		
2.	La valeur de la capacité C.	$c = 2.40^{-5} F = 20 \mu F$		
3.	L'intensité du courant i _s qui parcourt le condensateur.	$i_c = O$		
4.	La valeur de la constante du temps du nouveau circuit.	τ = 100 ms		
5.	La valeur numérique de la constante du temps du dipôle RL.	T = 20 MS		
6.	La valeur de la résistance R ₂ .	$R_2 = 25 \mathcal{N}$		
7.	La valeur de l'inductance L.	L= 0,5 H		
8,	La sensibilité verticale (l'échelle en V/div)?	s= 2 V/div		
9.	La valeur de la résistance R₃.	$R_3 = 80 \Omega$		
10.	La valeur de l'inductance L'.	L' = 1,5mH		

Exercice (bonne réponse +1, mauvaise réponse -0.5)

Question	Réponse (Vrai/Faux)	Note
1.	Vrai	
2.	Four	
3.	Vy cu	
4.	Vrai	
5.	Vrai	

Question	Réponse (Vrai/Faux)	Note	
6.	Faux		
7.	Vrai		
8.	Vrai		
9.	Vrai		
10.	Foux		

Question	Réponse (Vrai/Faux)	Note
11.	Faux	
12.	Faux	
13.	Faux	
14.	Faux	
15.	Faux	

Question	Réponse (Vrai/Faux)	Note
16.	Vrai	
17.	Vrai	
18.	Vrai	
19.	Vrai	
20.	Faux	

8/6

Note

/40

UNIVERSITE MOULAY ISMAIL

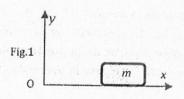
ECOLE NATIONALE SUPERIEURE D'ARTS ET METIERS-MEKNES

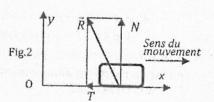
Concours d'entrée en Première année de l'ENSAM de Meknès Filières : Sciences Expérimentales, et Techniques

Meknès, le 09 Aout 2011

Epreuve de Physique Durée : 2h 30

- L'épreuve contient 6 pages

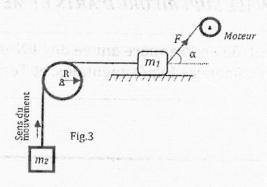

- Répondre dans la feuille : « Fiche de réponses »


- Toute application numérique manquant l'unité ne sera pas comptée

Les pages 5/6 et 6/6 sont des fiches des réponses à rendre.

Exercice 1.

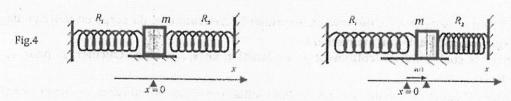
On considère un corps solide, de masse m, qui glisse horizontalement sur le sol suivant l'axe (Ox) du repère galiléen R(Oxyz), Fig. 1. On lui donne une vitesse initiale v_v (sens positif de Ox), soit d la distance parcourue avant de s'arrêter à cause du frottement entre le corps mobile et la surface de glissement. On rappelle qu'en présence du frottement, la force \bar{R} du sol sur le solide est telle que $\bar{R} = N \, \bar{y} + T \, \bar{x}$ avec $|T| = \mu N$ (fig.2), μ est une constante positive, appelée coefficient de frottement; le sens de la composante T est de sens contraire du mouvement du corps par rapport au sol.



- 1. En utilisant la deuxième loi de Newton, exprimer l'accélération γ du corps en fonction de μ et g. En déduire la nature de son mouvement.
- 2. Exprimer le coefficient de frottement μ en fonction de $\nu_{\rm o}$, g et d. Calculer μ pour $\nu_{\rm o}=10\,m/s$, $g=10\,m/s^2$ et $d=50\,m$.
- 3. Déterminer l'équation horaire x(t); A l'instant initial (t=0), on prend l'abscisse de m: x=0.
- 4. Exprimer le temps t_1 mis pour parcourir la distance d, en fonction de v_0 et d. Calculer t_1 .
- 5. On réalise un autre essai dans les mêmes conditions, mais cette fois-ci, le plan est incliné d'un angle α par rapport à l'horizontale, le corps se déplace vers le haut suivant la droite de plus grande pente. En appliquant le théorème de l'énergie cinétique, exprimer le coefficient de frottement μ en fonction de $\nu_{\rm o}$, g, d et α .

Exercice 2.

Soit le système composé de deux masses m_1 et m_2 et d'une poulie de rayon R et de moment d'inertie J_{Λ} par rapport à son axe (fixe). Le câble liant les deux masses et passant par la poulie est inextensible et ne glisse pas sur la poulie. A l'aide d'un moteur, la masse m_1 est tirée par une force de grandeur F dont


la droite d'action fait un angle α par rapport à l'horizontale (Fig.3). Le coefficient de frottement entre m_1 et la surface de glissement est μ . On note par γ l'accélération des deux masses.

- 6. En appliquant la relation fondamentale de la dynamique à la masse m_I , exprimer la force T_i , appliquée par le câble sur m_I , en fonction de F, α , μ , m_D , g et γ .
- 7. En appliquant la même loi à la masse m_Z , exprimer la force T_2 , appliquée par le câble sur m_Z , en fonction de m_Z , g et γ .
- 8. Exprimer l'accélération γ , en fonction de F, α , μ , m_1 , m_2 , g , J_x et R.
- 9. Le moteur qui tire la masse m_1 permet de régler la valeur de F, pour quelle valeur de F, l'accélération γ sera nulle.
- 10. Le moteur cesse d'appliquer la force F (c'est-à-dire : F=0), exprimer l'accélération γ des masses m_1 et m_2 , en fonction de m_1 , m_2 , g, J_{Λ} et R. On néglige les frottements dans cette question.

Exercice 3.

On considère le système composé d'une masse ponctuelle m et deux ressorts R_1 et R_2 de raideurs respectives k_1 et k_2 (Fig.4). Les frottements sont négligés. Le déplacement de la masse m est horizontal et sa position est repérée par l'abscisse x(t), comptée à partir de la position où les deux ressorts sont en état de repos (ni allongement ni raccourcissement). On écarte la masse de sa position d'équilibre (x=0) puis on la lâche.

- 11. Exprimer les énergies potentielles \tilde{E}_{p1} et E_{p2} des deux ressorts en fonction de k_1 , k_2 et x(t).
- 12. Exprimer l'énergie cinétique E_c de la masse m en fonction de m et la vitesse $\dot{x}(t)$.
- 13. Par application du théorème de conservation de l'énergie mécanique, établir l'équation différentielle du mouvement de la masse m. En déduire la période du mouvement du système en fonction de m, k, et k_2 .

Dans ce qui suit, on prend $k = k_1 = k_2$.

- 14. Par un chronomètre, on mesure la durée de 100 périodes et on trouve $\Delta i = 50 \, s$, exprimer puis calculer la raideur k sachant que la masse $m = 0.1 \, Kg$.
- 15. Donner l'équation horaire x(t) (avec application numérique) sachant qu'à l'instant t=0: $x(0)=4 \, cm$ et $\dot{x}(0)=1 \, m/s$.

Exercice 4.

Le montage ci-contre comporte un générateur idéal de force électromotrice constante E =24V, deux condensateurs de capacités respectives : C_1 = 10 μF et C_2 = 150 μF et une bobine d'inductance L.

L'interrupteur k est en position (1).

- 16. Donner l'expression de la capacité équivalente C des deux capacités C₁ et C₂.
- 17. Calculer sa valeur numérique.
- 18. Donner l'expression de la tension aux bornes de la capacité C₂ lorsque les deux condensateurs sont complètement chargés.
- 19. Calculer sa valeur numérique.
- 20. Donner l'expression de la charge électrique Q2 du condensateur C2.

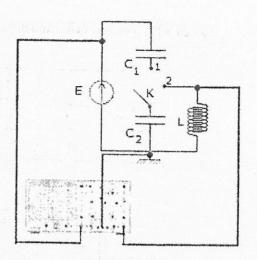


Fig.4

L'interrupteur k est en position (2).

La figure (5) illustre la tension aux bornes de la bobine L.

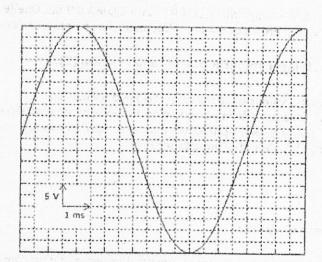
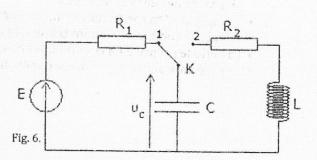



Fig.5

- 21. Donner l'équation différentielle vérifiée par cette tension qu'on note u_L(t).
- 22.Donner l'expression de la tension u_L(t).
- 23. Donner l'expression de la période propre T₀ des oscillations en fonction de L et C₂.
- 24. Calculer sa valeur numérique.
- 25. Déduire la valeur de l'inductance L

Exercice 5.

Le montage ci-contre comporte un générateur idéal de force électromotrice constante E =15V, deux résistances R_1 et R_2 , un condensateur de capacité C = $42~\mu F$ et une bobine d'inductance L.

La figure (7) montre l'évolution de la tension $u_r(t)$ aux bornes du condensateur.

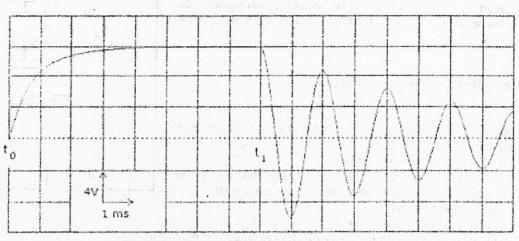


Fig. 7.

A l'instant to, l'interrupteur K est en position (1).

- 26. La constante du temps du circuit RC étant égale à 0.9 ms. Quelle est la valeur de la résistance R1?
- 27. Une fois le condensateur est complètement chargé, calculer l'énergie qui y est emmagasinée.

A l'instant t₁, l'interrupteur K bascule à la position (2).

- 28. Déterminer la valeur de la pseudo-période d'oscillation.
- 29. Donner l'expression de la période d'oscillation propre d'un circuit LC.
- 30. Sachant que la pseudo-pulsation peut être approximée par la pulsation propre d'un circuit LC, déterminer la valeur de l'inductance L.

Exercice 6.

Répondre par vrai ou faux.

- Quand la fréquence du courant augmente, l'impédance d'un condensateur augmente.
- Quand la fréquence du courant augmente, l'impédance d'une bobine augmente.
- La valeur efficace d'une tension sinusoïdale de valeur maximale 5V est égale à 3.53V.
- La valeur maximale du déphasage entre deux tensions sinusoïdales est égale à π rad.
- La capacité équivalente de deux condensateurs en série est toujours de valeur plus faible que la plus faible des deux capacités.
- La résistance équivalente de deux résistances en parallèle est toujours de valeur plus faible que la plus faible des deux résistances.
- La capacité d'un condensateur augment d'autant plus que l'épaisseur de son diélectrique est faible.
- En régime continu, le courant traversant un condensateur est toujours nul.
- La période propre d'un circuit LC est inversement proportionnelle à la capacité.
- La puissance active consommée par un dipôle est toujours supérieure à la puissance apparente.

Cette feuille ne doit porter **aucun signe indicatif ni signature** Filières : Sc. Exp., et Tech

FICHE DES REPONSES : Exe	ercices 1, 2 et 3	Note		
1. Accélération de la masse $m: y = -\frac{\mu N}{m}$	Nature mouvement: rectilique uniformément retardée			
2. Coefficient de frottement : $\mu = \frac{1}{2} \frac{\sqrt{6^2}}{2}$	A.N. $\mu = 0, 1$			
3. Equation horaire: $x(t) = -\frac{1}{2} \text{ Tt}^2 + \text{Vot}$				
~	A.N. $t_1 = 10$ S			
5. Coefficient de frottement : $\mu = \frac{1}{2} \sqrt[4]{2} - gd \sin gd \cos \alpha$	od			
6. Force du câble sur $m_1: T_1 = F \cos \alpha + \mu mg$	+ m 8			
7. Force du câble sur m_2 : $T_2 = m_2 g + m \chi$				
8. Accélération de la masse $m: \gamma = \frac{FR\cos \alpha + \lambda}{m_{\alpha}R - m_{\alpha}}$	1 m 1 g R - m2 g R			
9. Force F pour laquelle $\gamma = 0$: $F = \frac{M_{\aleph}gR - M_{\aleph}gR}{R\cos \alpha}$	иgk			
10. Accélération des masses : $\gamma = \frac{M m_1 g R - m_2 R}{m_2 R}$, g R +(JNR)			
11. Energies $E_{p1} = \frac{1}{2} \left(\mathbf{k}_4 - \mathbf{k}_2 \right) \mathcal{N}^2$ potentielles :	$E_{\mu 2} = \frac{1}{2} \left(K_2 - K_1 \right) X^2$			
12. Energie cinétique : $E_e = \frac{1}{2} \text{ m } \dot{X}^2$				
13. Equation différentielle: $X + \frac{k_{1} + k_{2}}{m} X = 0$ Période: $T = 2\pi \sqrt{\frac{m}{k_{1} + k_{2}}}$				
14. Raideur des ressorts : $k = K_{1+} K_{2}$	A.N. k = 6,8 x 102 N/m			
15. Equation horaire: $x(t) = 4\cos(12,56t)$				

Cette feuille ne doit porter **aucun signe indicatif ni signature** Filières : Sc. Exp., et Tech

A-44	Partie 1	Réponse	- Names of States	Note	
16.	La valeur limite de la tension $u_c(t)$:	$u_c(t \to +\infty) =$			
17.	L'amplitude de la tension E:	$u_c(\iota \rightarrow +\infty) = $			
18.	L'équation différentielle qui lie la tencion y (t) à la				
19.	L'expression de la constante du temps du dipôle :	τ=			
20.	La valeur numérique de la constante de temps :	τ=	1-2-000000		
21.	La valeur de la capacité C :	C	de opticus		
22.	L'énergie emmagasinée dans la capacité une fois complètement chargée :	E _c =			
23.	L'équation différentielle vérifiée par la tension u _c (t) :				
24.	L'expression exacte de la tension : $u_c(t) =$				
25.	La valeur de la constante de temps ?	τ=			
26.	La valeur de la résistance R2 :	R ₂ =			
22.19.00	Partie 2	Réponse		Note	
27.	La valeur efficace de la tension E :	E _{eff} =			
28.	La valeur de la fréquence f :	La valeur de la fréquence f : f=			
29.	Le déphasage entre les deux tensions :	φ =			
30.	La valeur de la capacité C :	C =			
	Exercice 4	Réponse juste : +1 & Réponse fausse : -1	Réponse (V/F)	Note (+1/-1)	
	nd la fréquence du courant augmente, l'impéda	ance d'un condensateur	F		
	nente. nd la fréquence du courant augmente, l'impédance d'u	ine bobine augmente.	V		
La v 3.53	aleur efficace d'une tension sinusoïdale de valeur V.	maximale 5V est égale à	V		
	aleur maximale du déphasage entre deux tensions s	sinusoïdales est égale à π	F		
La ca	V				
faible que la plus faible des deux capacités. La résistance équivalente de deux résistances en parallèle est toujours de valeur plus faible que la plus faible des deux résistances.					
La capacité d'un condensateur augment d'autant plus que l'épaisseur de son diélectrique est faible.					
diéle	En régime continu, le courant traversant un condensateur est toujours nul.				
	égime continu, le courant traversant un condensateur	Cac coujours nur.			
En ro La po	égime continu, le courant traversant un condensateur ériode propre d'un circuit LC est inversement proport puissance active consommée par un dipôle est t	tionnelle à la capacité.	F		

Ecole Nationale Supérieure d'Arts

et Métiers - Meknès

Concours d'entrée en première année de l'Ecole Nationale Supérieure d'Arts et Métiers – Meknès Sciences Expérimentales et Branches Techniques

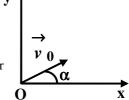
Matière : Physique Durée totale : 3h

Remarque importante : Cette épreuve est composée de deux parties :

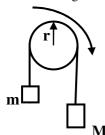

- Une partie rédaction distribuée au début ;
- Une partie QCM distribuée après 1h30mn.

Partie rédaction :

On donne $g = 10 \text{m/s}^2$.

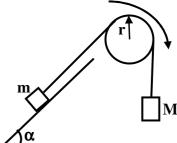

Exercice 1

- A- Une masse ponctuelle m=343g est abandonnée en chute libre, sans vitesse initiale, d'un point O. Dans cet exercice, la hauteur est mesurée à partir du plan horizontal passant par O.
- 1- Quelle sera la vitesse atteinte par cette masse lorsqu'elle aura parcouru une distance de 7,2m?
- **2-** La masse est ramenée au point O, puis lancée verticalement vers le haut. Après deux secondes la masse repasse par le point O.
 - a- Avec quelle vitesse initiale la masse a-t-elle été lancée ?
 - **b-** Jusqu'à quelle hauteur est-elle montée ?
- 3- La masse m est à nouveau ramenée en O, puis lancée à l'instant t=0 vers le haut avec une vitesse initiale v_0 de module 12m/s, faisant avec le plan horizontal passant par O un angle $\alpha = 30^{\circ}$. Le mouvement s'effectue dans le plan (Oxy).



- **b-** Quelle sera la hauteur maximale atteinte par la masse m?
- c- A quel instant la masse repassera-t-elle au niveau du plan horizontal passant par

O ?



B- La masse m=343g est maintenant accrochée à un fil inextensible, de masse négligeable qui passe sur la gorge d'une poulie mobile sans frottements autour d'un axe horizontal. L'autre extrémité du fil est accrochée à une masse M=637g.

- 1- On néglige, seulement dans cette question, la masse de la poulie. Calculer :
 - **a-** L'accélération de la masse m.
 - **b-** Les tensions des deux brins du fil.
- **2-** En réalité la poulie à un moment d'inertie J=1,96.10⁻³Kg.m², son rayon est r=10cm. Calculer :
 - a- La nouvelle valeur de l'accélération de la masse m.
 - **b-** Les tensions des deux brins du fil.

- 3- Maintenant la masse m se déplace, sans frottements, suivant la ligne de plus grande pente d'un plan incliné sur le plan horizontal de $\alpha = 30^{\circ}$. Le système part à l'instant t=0 sans vitesse initiale.
 - a- Calculer l'accélération de la masse m.
 - **b-** Quelle est la longueur parcourue, au bout de deux secondes, par la masse m sur le plan incliné ?
 - **c-** A l'instant **t=2s** le fil est coupé et la masse m n'est plus alors attachée à ce dernier. A quel instant, à partir de l'origine des temps, la masse m repassera par sa position de départ (sa position à t=0)? On suppose que le plan incliné est suffisamment long pour que la masse m ne puisse pas le quitter.

Exercice 2

On associe en série un générateur basse fréquence (GBF), une résistance $R = 10 \text{ k}\Omega$, un condensateur de capacité $C = 10 \mu\text{F}$ et un interrupteur K. Le GBF délivre une tension u(t) rectangulaire périodique de période T telle que :

- si t appartient à l'intervalle [0, T/2], $u(t) = U_0 = 10 \text{ V}$;
- si t appartient à l'intervalle [T/2, T], u(t) = 0.
- 1- Représenter u(t) sur l'intervalle [0, 2T].
- **2-** A l'instant t = 0, on ferme l'interrupteur K et la tension u(t) prend la valeur U_0 .
 - 2.1- Faire un schéma du montage en indiquant le sens du courant et les différentes tensions.
 - **2.2-** Etablir l'équation différentielle caractérisant la tension $u_C(t)$ aux bornes du condensateur pendant l'intervalle [0, T/2].
 - 2.3- On donne comme solution de l'équation différentielle : $\mathbf{u}_{\mathrm{C}}(t) = \mathbf{A}(1-e^{-\alpha t})$. Déterminer littéralement et numériquement A et α . En déduire l'expression numérique de $\mathbf{u}_{\mathrm{C}}(t)$.
 - **2.4-** Donner l'allure de la courbe $u_C(t)$ dans le cas où T/2 est très supérieure au produit RC.
 - **2.5-** Déterminer l'expression de l'énergie stockée à chaque instant par le condensateur. Que vaut cette énergie en fin de charge du condensateur (T/2 >> RC).
 - **2.6-** A quel instant t₁, la charge du condensateur vaut 99,9 % de la charge maximale ?
- **3-** A l'instant t = T/2, la tension u(t) passe de U_0 à 0.
 - 3.1- Faire un schéma du montage en faisant apparaître l'intensité et les différentes tensions.
 - **3.2-** Etablir l'équation différentielle caractérisant la tension $u_C(t)$ aux bornes du condensateur pendant l'intervalle [T/2, T].
 - **3.3-** On réalise un changement de repère temporel : on appelle t' la nouvelle variable pour laquelle l'instant initial t'=0 correspond à t=T/2. On donne comme solution de l'équation différentielle :
 - $\mathbf{u}_{\mathrm{C}}(t') = Be^{-\beta t'}$. Déterminer littéralement et numériquement B et β . En déduire l'expression numérique de $\mathbf{u}_{\mathrm{C}}(t')$.
 - **3.4-** Donner l'allure de la courbe $u_C(t')$ dans le cas où T/2 est très supérieure au produit RC.
 - 3.5- Que vaut l'énergie stockée en fin de charge du condensateur $(T/2 \gg RC)$.
 - **3.6-** A quel instant t'₂, la charge du condensateur vaut 37 % de la charge maximale ?

Exercice 3

On étudie deux circuits type (LC) réalisés avec une même bobine de résistance négligeable et d'inductance L. Le premier circuit utilise un condensateur de capacité $C = 0.1 \mu F$ et le second circuit un condensateur de capacité C'. Dans les deux cas, le condensateur utilisé est chargé puis ses bornes sont déconnectées et reliées à celle de la bobine.

Grace à l'oscilloscope, on visualise la tension U entre les armatures des condensateurs et on trouve les résultats suivants :

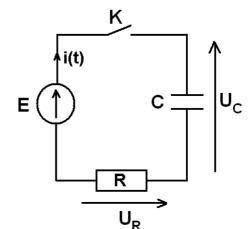
- Pour le circuit 1 (C=0,1 μ F) : la tension U a une période de 0,8 ms et une amplitude U_{max} de 6 V ;
- Pour le circuit 2 (C') : la tension U a une période de 0,4 ms et une amplitude U_{max} de 6 V.
- 1- Déterminer la valeur de L.
- 2- Déterminer la valeur de C'.
- 3- Calculer l'énergie emmagasinée dans chacun des deux circuits oscillants.
- 4- En déduire l'intensité maximale du courant dans chacun des deux circuits.

Matière : Physique Sciences Expérimentales et Branches Techniques

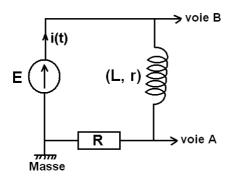
Partie QCM: 1h30mn

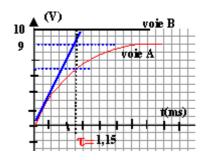
<u>Important</u>: Cette épreuve est un Q.C.M (questions à choix multiples). Veuillez cocher Les réponses exactes dans la fiche de réponse ci-jointe. On prendra $g=10m/s^2$.

On donne g=10m/s ²	2		
1- Un projectile est lanc	é à l'instant t=0 depuis la	surface de la terre avec une vit	esse verticale de50m/s.
		ige les frottements dus à l'air?	
a) 60m	b) 125m	c) 80m	d) 100m
	jectile atteint-t-il cette har		
a) 10s	b)2,5s	c) 15s	d) 5s
qu'il accélère de manière vitesse constante pour la	e constante pendant les 50	un chrono de 10 s au 100 m. Si premiers mètres et maintient e ation au démarrage ? c) 5,15 m/s ²	
	e la première phase du m	ouvement? (Phase du mouvem	ent accéléré).
a) 6,666s	b) 7,777s	c) 4,444s	d) 3,333s
		a deuxième phase? (Phase du m	ouvement uniforme)
a) 20m/s	b) 25m/s	c) 5m/s	d) 15m/s
mesurée par rapport au p 3.1 Quelle est la valeur	olan horizontal passant pa minimale qu'il faut attrib	ne bille ponctuelle de masse m r O. On néglige les frottements ouer à h pour que la	
bille puisse atteindre le p a) D	b) 2D	h) D
c) 1,5D	d) 2,5D	į.	
Dans la suite de cet exer toujours lâchée sans vite 3.2 Quelle est l'expres	cice on suppose que h=21 sse initiale. sion de l'énergie mécar	nique de la bille? On prend	O comme référence de l'énergie
	le plan horizontal passant		D 15 D
a) m.g.D 3.3 Quelle est la vitesse		c) 0,5m.g.D	d) 1,5m.g.D
a) $\sqrt{2gD}$	b) 2 \sqrt{gD}	c) 1,5 \sqrt{gD}	$\mathbf{d)} \ \ \sqrt{gD}$
3.4 Quelle est la vitesse	de la bille en A?		
a) $1.5\sqrt{gD}$	b) 2 \sqrt{gD}	c) $3\sqrt{gD}$	d) $\sqrt{2gD}$
3.5 Quelle est l'expression	on de la réaction F exercé	e sur la bille en O?	


b) 3m.g

a) m.g


c) 6m.g


d) 9m.g

4- Un condensateur de capacité C=1 μF initialement déchargé est placé en série avec un conducteur ohmique R=10 kΩ. L'nesemble est alimenté par une source de tension continue parfaite E=5 V. A l'instant t=0, on ferme l'interrupteur K (figure ci-contre).

- **4.1** Parmi les phrases suivantes, choisir celle qui est correcte :
- a) La tension aux bornes du condensateur est d'autant plus petite que la valeur absolue de la charge portée par ses armatures est grande.
- b) L'équation différentielle de la charge q du condensateur admet cette expression : $RC\frac{dq}{dt}+q=E$.
- c) Le milieu qui se trouve entre les deux armatures d'un condensateur est un isolant.
- d) La capacité d'un condensateur peut être positive ou négative.
- **4.2** Quel est le temps nécessaire pour que la charge du condensateur atteint 63 % de sa valeur maximale ?
- a) 1 ms
- b) 10 ms.
- c) 100 ms.
- d) 1000 ms.
- 4.3 L'énergie maximale emmagasinée par le condensateur est égal à :
- a) 12,5 μJ.
- b) 12,5 J.
- c) 1,25 mJ.
- d) 12,5 mJ.
- **4.4** On cherche à remplacer le condensateur de capacité C=1 μF par un condensateur équivalent constitué de deux condensateurs, de capacités C_1 et C_2 , montés en série. Les valeurs possibles de C_1 et C_2 sont :
- a) $(0.5 \mu F, 0.5 \mu F)$.
- b) (2 μF, 1 μF).
- c) $(1 \mu F, 1 \mu F)$.
- d) $(2 \mu F, 2\mu F)$.
- 5- On branche en série, aux bornes d'un générateur idéal de tension continue E = 10 V, une bobine d'inductance L et de résistance r et un conducteur ohmique $R = 270 \Omega$. Un oscilloscope à mémoire permet d'enregistrer les tensions des voies A et B. La constante du temps τ du circuit a pour valeur 1,15 ms. (voir figures ci-dessous)

- **5.1.**Parmi les phrases suivantes, choisir celle qui est correcte :
- a) Une bobine s'oppose aux variations d'une tension dans un circuit.
- b) L'amplitude de la tension imposée aux bornes du dipôle (R,L) n'a aucune influence sur la constante de temps du circuit.
- c) La tension visualisée voie A sur l'oscilloscope est la tension aux bornes de la bobine.
- d) L'énergie emmagasinée dans une bobine est proportionnelle à la racine carrée de la valeur du courant i qui la traverse.
- **5.2** L'intensité du courant i(t) qui circule dans le circuit en régime permanent $(t \to \infty)$ est égale à :
- a) 0.3 mA.
- b) 3.33 mA.
- c) 33,3 mA.
- d) 333,3 mA.

- **5.3** La résistance r de la bobine vaut :
- a) 10 Ω.
- b) 17 Ω.
- c) 30 Ω.
- d) 47 Ω.

- **5.4** Quelle est la valeur de l'inductance L de la bobine ?
- a) 345 mH.
- b) 435 mH.
- c) 534 mH.
- d) 543 mH.

Fiche de Réponse pour la partie QCM

Matière: Physique

Séries Bac: Sciences Expérimentales et Branches Techniques

Important: La fiche ne doit porter aucun signe indicatif ni signature

Pour chaque question, on vous propose quatre réponses : a), b), c) et d). Cochez la réponse juste par une **croix** dans la case correspondante.

<u>Barème</u>: Une réponse juste : +1, une réponse fausse ou pas de réponse ou plus d'une seule réponse : 0.

Numéro		C	hoix		Note
de					
question					
1.1	$\mathbf{a})\square$	b)□	c)	$\mathbf{d})\square$	
1.2	a) [b)	c)	d)	
2.1	a) [b)	c)	d)	
2.2	a) [b)	c)	\Box (b	
2.3	a)□	b)	c)	d)	
3.1	a)□	b)	c)	d)	
3.2	a)□	b)	c)	d)	
3.3	a) [b)	c)	d)	
3.4	a)□	b)	c)	d)	
3.5	a) [b)	c)	d)	
4.1	a) [b)	c)	d)	
4.2	a) [b)	c)	\Box (b	
4.3	a)□	b)	c)	d)	
4.4	a)□	b)	c)	d)	
5.1	a)□	b)	c)	d)	
5.2	a) 🗌	b)	c)	d)	
5.3	a) 🗌	b)	c)	d)	
5.4	a)□	b)	c)	d)□	•

Université Moulay Ismaïl Ecole Nationale Supérieure d'Arts

et Métiers - Meknès

Concours d'entrée en première année de l'Ecole Nationale Supérieure d'Arts et Métiers – Meknès Séries : Sciences Expérimentales – Electronique – Electrotechnique –Fabrication Mécanique

Matière: Physique Durée totale: 3h

Remarque importante : Cette épreuve est composée de deux parties :

- Une partie rédaction distribuée au début ;

- Une partie QCM qui sera distribuée après 1h30mn.

Partie rédaction :

On donne $g = 10 \text{m/s}^2$.

Exercice 1:

Pour le système ci-contre le fil est inextensible et sans masse. La Poulie, de masse négligeable, peut tourner sans frottement. A l'instant t=0 les deux corps A et B partent sans vitesse initiale. Le corps B de masse M' chute

d'une hauteur h, le corps A de masse M glisse d'une distance d > h avant de s'arrêter. Les frottements

exercés sur le corps A sont équivalents à une force F constante qui s'oppose à son mouvement. Une fois le corps B est bloqué par le sol, la tension du fil est supposée devenue nulle. On appelle \mathbf{t}_1 l'instant où B touche le sol et \mathbf{t}_2 l'instant où A s'arrête ($\mathbf{t}_2 > \mathbf{t}_1$).

Poulie

B

Le sol

On donne M=1 kg; M'=10 kg; h=0,2 m; d=0,5 m.

1- Exprimer le module F de la force de frottement en fonction de M, M', d, h et g.

Indication : Appliquer, le théorème de l'énergie cinétique au système $\{A, fil \ et \ B\}$ entre les instants 0 et t_1 , puis au corps A entre les instants t_1 et t_2 .

- 2- Calculer la valeur de F.
- 3- Calculer la vitesse du corps A au moment où B touche le sol.
- 4- Calculer l'accélération du corps A pour la $1^{\text{ère}}$ phase du mouvement (pour $t \in [0, t_1]$).
- 5- Calculer la tension du fil pour la 1ère phase du mouvement.
- 6- Calculer le module de l'accélération de A pour la $2^{\text{ème}}$ phase du mouvement (pour $t \in [t_1, t_2]$).
- 7- Calculer les instants t₁ et t₂.

Exercice 2:

Un pendule simple, de longueur L=0,5m est écarté de sa position d'équilibre d'un angle α_m = 60° puis libéré sans vitesse initiale. La masse m n'est pas donnée et on suppose que l'énergie potentielle est nulle à la position d'équilibre.

- 1- Exprimer puis calculer la vitesse v de ce pendule quand il passe par la position d'équilibre.
- 2- Exprimer puis calculer, à la position d'équilibre, le rapport de la tension du fil et le poids du pendule.

Partie rédaction 1/4

3-On suppose maintenant que α_m est très petit. Etablir une formule approchée de l'énergie mécanique pour une position α donnée. On rappelle que $\cos \alpha \approx 1 - \frac{\alpha^2}{2}$ pour α petit.

4- En déduire l'équation différentielle des petites oscillations du pendule simple.

Exercice 3:

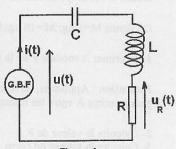
Les deux parties A et B sont indépendantes.

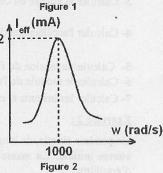
Partie A

Un dipôle AB est constitué de l'association en série d'un condensateur de capacité $C=100~\mu F$ et d'un conducteur ohmique de résistance $R=25~\Omega$. Un générateur basse fréquence (GBF) délivre une tension sinusoïdale $u(t)=U~\sqrt{2}~\sin(2.\pi f.t)$, de valeur efficace U et de fréquence f, aux bornes du dipôle AB.

Pour une valeur particulière f_0 de la fréquence, l'intensité efficace I du courant traversant le dipôle prend la valeur $I_0 = 0.72$ A; la tension efficace aux bornes du condensateur est alors $U_{C0} = 7.2$ V.

- 1. Calculer l'impédance Z_{C0} du condensateur pour $f = f_0$.
- 2. En déduire la fréquence fo de la tension d'alimentation.
- 3. Construire la représentation de Fresnel du circuit (R, C) en précisant bien les tensions représentées.
- L'échelle sera la suivante : 1 cm correspond à 2 V.
- 4. Déduire de cette représentation :
- la valeur efficace U de la tension d'alimentation,
- la valeur de la différence de phase $\phi_{u'i}$ (en grandeur et en signe) entre la tension u(t) délivrée par le GBF et l'intensité i(t) du courant dans le circuit.
- 5. Donner les expressions numériques de u(t) et i(t).
- 6. Une bobine d'inductance L et de résistance négligeable est placée en série avec le dipôle AB. Les réglages en tension et en fréquence du GBF n'étant pas modifiés, la tension u(t) d'alimentation et l'intensité i(t) sont en phase.
 - 6.1. Préciser la nature du phénomène observé.
 - 6.2. Calculer l'inductance L de la bobine.
 - 6.3. Calculer la valeur efficace de l'intensité parcourant le circuit.
 - 6.4. Calculer la puissance moyenne P consommée dans le circuit.


Partie E


On trace la courbe de résonance d'un circuit série (figure 1) comprenant une bobine d'inductance L=1 H et de résistance négligeable, un condensateur de capacité C et une résistance R. Ce circuit est alimenté par un générateur basse fréquence (GBF). En ordonnée, on a représenté la valeur efficace $I_{\rm eff}$ du courant i(t) et en abscisse sa pulsation w. On obtient la courbe représentée dans la figure 2. Le générateur délivre une tension sinusoïdale u(t) de valeur efficace 1 V.

- 1. Donner les valeurs de la capacité C et de la résistance R.
- 2. Compléter la figure 1 en indiquant les liaisons nécessaires avec un oscilloscope à deux voies et à masse unique pour visualiser le déphasage ϕ de u(t) par rapport à i(t).

Que vaut φ à la résonnance ?

- 3. On fixe la pulsation à w=1000 rad/s. On double la capacité du condensateur ($C_1=2C$). Grâce à l'oscilloscope, on visualise les courbes représentant la tension u(t) aux bornes du générateur et la tension $u_R(t)$ aux bornes de la résistance R et on trouve les résultats suivants :
- u_{max} = 1,5 V, u_{Rmax} = 0,9 V et la courbe u(t) est en avance sur la courbe $u_R(t)$ d'environ un huitième la période.
 - **3.1.** Déterminer la sensibilité horizontale de l'oscilloscope en milliseconde par division sachant que l'on observe trois périodes sur l'écran de l'oscilloscope (l'écran compte horizontalement 10 divisions).
 - 3.2. Déterminer la sensibilité verticale de l'oscilloscope en Volt par division, sachant qu'elle est identique pour les deux entrées de l'oscilloscope et que l'amplitude de la tension u(t) est 3 divisions.
 - 3.3. Donner la valeur algébrique du déphasage φ de u(t) par rapport à i(t).
 - 3.4. Donner l'intensité efficace du courant i(t).

Partie QCM:

<u>Important</u>: Cette épreuve est un Q.C.M (questions à choix multiples). Veuillez cocher Les réponses exactes dans la fiche de réponse ci-jointe. On prendra g=10m/s².

Un disque de rayon R =20 cm est en rotation uniforme autour de son axe à la vitesse angulaire de 30 tours par minute. La vitesse linéaire du bord du disque est environ égale à:

a) 10 m/s

b) 0,1 m/s

c) 0,62 m/s

d) 5,3 m/s

C

A l'instant t = 0, on lâche deux masses ponctuelles m_1 et m_2 . La première a un mouvement de chute libre, la seconde glisse sans frottement sur un plan OA incliné à 45° .

2.1 Sachant que la masse m_1 est lâchée d'une hauteur h_1 =1m, de quelle hauteur h_2 doit- on lâcher la masse m_2 pour qu'elles se rencontrent en O?

a) $h_2 = \frac{h_1}{\sqrt{2}}$

b) $h_2 = \frac{h_1}{2}$

c) $h_2 = \frac{h_1}{3}$

d) $h_2 = \frac{h_1}{\sqrt{3}}$

2-2 Quel est l'instant du rencontre?

a) 2 s

b) 0,44 s

c) 1,6 s

d) 2,33 s

2.3 Quelle est la vitesse de m₂ au moment du rencontre?

a) 3.16 m/s

b) 4,25 m/s

c) 1,5 m/s

d) 5,67 m/s

3. Un point matériel S, de masse m=600g glisse sur une piste ABC située dans un plan vertical. La partie AB est un quart de cercle de rayon r=15cm. Sur cette partie AB les frottements sont négligeables. La partie BC est horizontale et BC=25 cm. Le mobile part de A sans vitesse initiale, il descend et s'immobilise en C à cause des frottements sur la piste BC.

3.1 La vitesse en B est environ égale à :

a) 1,22 m/s

b) 2,73 m/s

c) 2,15 m/s

d) 1,73 m/s

3.2 L'expression du carré de la vitesse en M est :

b)
$$2gr(1-\cos\theta)$$

c) $gr(1-\cos\theta)$

d) $2gr\cos\theta$

3.3 Si θ =20°, l'action du support en M sur le point matériel est :

a) 16,9 N

b) 7,33 N

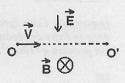
c) 6 N

d) 3 N

3.4 En supposant que la force de frottement sur la partie BC est constante. Sa valeur est :

a) 3,6 N

b) 1,2 N


c) 3,75 N

d) 1,8 N

3.5 Le module de l'accélération du point matériel sur la partie BC est :

- a) 3 m/s^2
- b) 2.5 m/s^2
- c) 6 m/s2
- $d) 2 m/s^2$

4- L'objectif de cet exercice est de calculer le rapport r_m = e/m de la valeur absolue de la charge d'un électron sur sa masse. Les électrons d'un faisceau homocinétique, animés d'un vecteur vitesse v, subissent, à partir d'un point O et sur une distance L = OO' = 10 cm, les actions conjuguées d'un champ électrique E et d'un champ magnétique B orthogonaux au vecteur vitesse v. Les valeurs des champs E et B sont choisies de façon que le faisceau ne soit pas dévié. Cette situation est réalisée pour : $B = 10^{-3} \text{ T et } E = 5.10^4 \text{ V/m}.$

4.1 Les électrons sont animés d'un mouvement (le poids des électrons est négligeable) :

- a) circulaire uniforme. b) parabolique. c) rectiligne uniforme. d) rectiligne uniformément varié.
- 4.2 La vitesse v des électrons est :
- a) 5.10⁷ m/s.
- b) 5.10^2 m/s.
- c) 5.10⁻⁷ m/s.
- d) 107 m/s.

4.3 Dans une seconde expérience, on coupe la source de champ magnétique sans changer les autres valeurs. On mesure la déviation du faisceau le long de l'axe O'y et on trouve D = 1,76 cm (figure ci-contre). Le mouvement des électrons dans le système d'axes xOy est :

- a) circulaire uniforme. b) parabolique. c) rectiligne uniforme.
- d) rectiligne uniformément varié.
- 4.4 Quelle est l'équation de la trajectoire des électrons ?
- a) $y = E.r_m.x^2/v^2$.
- b) $y = \frac{1}{2} \cdot E \cdot r_m \cdot x^2 / v^2$.
- c) $y = E.r_m.v^2/x^2$.

- d) $y = \frac{1}{2} \cdot E \cdot r_m \cdot v^2 / x^2$.
- 4.5 La valeur de la charge massique r_m de l'électron est alors : a) 176.10¹¹ (S.I). b) 17,6.10¹¹ (S.I). c) 1,76.10

- c) 1,76.10¹¹ (S.I).
- d) 0,176.10¹¹ (S.I).

B (mT)

5- Un solénoïde S comprend N = 400 spires réparties sur une longueur L. Pour différentes intensités I du courant dans le solénoïde, les mesures du champ magnétique B(mT) au centre de ce dernier ont permis de tracer le graphe ci-contre.

- **5.1** On pose k = B/I. Quelle est la valeur de k?
- a) 1,25 T.A⁻¹.
- b) 1,25 10⁻⁴ T.A⁻¹.
- c) 12,5 10⁻⁴ T.A⁻¹.

d) 125 10⁻⁴ T.A⁻¹.

5.2 Parmi les phrases suivantes, choisir celle qui est correcte :

- a) la valeur de k est indépendante de la valeur de N;
- b) les valeurs de k et de N sont proportionnelles ;
- c) si la valeur de N est multipliée par 2, la valeur de k est divisée par 2;
- d) la valeur de k est proportionnelle au carrée de la valeur de N.

5.3 Si on effectue la même série de mesures en doublant la longueur L du solénoïde S (en gardant toujours N = 400 spires), que devient la valeur de B?

- a) elle est multipliée par 2.
- b) elle est divisée par 2.
- c) elle est multipliée par 4.

d) elle est divisée par 4.

5.4 Parmi les relations suivantes, quelle est celle qui conviendrait au calcul de B (k' est une constante) ?

- a) B = k'NI.
- b) B = k'IL/N.
- c) B = k'NI/L.
- d) B = k'LN/I.

Fiche de Réponse pour la partie QCM

Matière: Physique

Séries Bac: Sciences Exp - Electronique - Electrotechnique et Fab mécanique.

Important: La fiche ne doit porter aucun signe indicatif ni signature

Pour chaque question, on vous propose quatre réponses : a), b), c) et d). Cochez la réponse juste par une **croix** dans la case correspondante.

<u>Barème</u>: Une réponse juste : +1, une réponse fausse ou pas de réponse ou plus d'une seule réponse : 0.

Numéro de question			Choix		Note
1.	a) 🗌	b)□	c)[_	d)□	
2.1	a) 🗌	b)□	e)□	d) □	
2.2	a) 🗌	b)□	c)	d)□	
2.3	(a) □	b)□	c) 🗌	d)□	
3.1	a) 🗆	b)□	c)	d)□	
3.2	a) 🗌	b)□	c)	d)□	
3.3	a) 🗌	b)□	c) 🗆	d)□	
3.4	a) 🗌	b)□	c)[_	d)□	
3.5	a) 🗌	b)□	c)[d)□	
4.1	a) 🗌	b)□	c)[d)□	
4.2	a) 🗌	b)□	c)	d)□	
4.3	a) 🗌	b)□		d)□	
4.4	a) 🗌	b)□	c)[d)□	
4.5	a) 🗆	b)□	c)[_	d)□	
5.1	a) 🗌	b)□	c)[d)□	
5.2	a) 🗆	b) 🗆	c)	d)□	
5.3	a) 🗌	b)□	c) 🗆	d)□	
5.4	a) 🗌	b)□	c)[_	d)□	

Moutamadris.ma 1990

Uni	Casablanca	Concours d'ent	SERIES : SCIE		HYSIQ	UES	\SVT E	T TEC	CHNIQU.		ea-Meknè	es		Université M Ismail	oulay
	3 5	Nom:	Epreu	ve de ma	athem	any			candidat		Compos	tage			
A	₩ ensam	Prénom :								Ne r	rien écrire da	ns ce cad	Ire	<u>'</u>	
/	cationed	CNE:							-4					ئورانية العليا للفري و المؤور الكارة على عام 1977 أكبرا	
Not	e · /	Epreuve de mathén	matique	MO ME CLM MES		Duré	e : 2h00		the data mass their he			Con	npostag	TO	Appelle annex social in
1101		apreuve de manne	muque				C 1 MAROU				N		rire dans		
	50	<u>Important</u> : Ba fic													
Q1	Pour $a \in \mathbb{R}$, calculer $Le = \lim_{n \to \infty} \frac{1}{n} \left(\left(a + \frac{1}{n} \right) \right)$		Le =	s : (Une rép	NOTES		Soit (u_n) $\frac{1}{2} < u_n < 0$	n une su < 1 . On n	uite converg considère la	ente telle qu suite $(X_n)_n$	ue, pour tout		$\lim_{n\to+\infty} \lambda$	$X_n =$	NOTES ,
	Soit $\alpha \in \mathbb{C}$. Détermine	er, Γ , l'ensemble des exe dont les affixes z) _y				Calculer	$\lim_{n\to+\infty} X_n$	a une solut	tion de l'équ $(\theta) x + 1 =$	ation		Se =		
Q3	vérifient: $ z - \alpha $	$= 2z - \alpha $				Q4	-		calculer : S	$e = a^n + \frac{1}{a^n}$					
Q5	fonction $f(x) = \tan x$	ne de définition, D , de la $(\pi \sin\left(\frac{\pi}{6}x\right))$.				Q6			$\lim_{x \to +\infty} \frac{E(P(x))}{P(E(x))}$		ment positiis		Q6 =		
Q7	Calculer la dérivée d'order $f(x) = e^x \sin(x)$	ordre n de la fonction	4			Q8			frivable telle $f(y)$. Calcu	es que : $\forall (x)$	$(y) \in \mathbb{R}^2$		f' =		5+
Q9	Pour $k \in \mathbb{N}^*$, trouver	érivable en 0 telle que $f(0) = 0$. : $+ f\left(\frac{x}{2}\right) + f\left(\frac{x}{3}\right) + \dots + f\left(\frac{x}{k}\right).$	Q9 =			Q10	Résoudre		ion différent $\tan x = y \ln x$	tielles: y, et y(0	$0)=\pi$		y(x) =		
Q11		$= \lim_{x \to +\infty} 1 - \left(\tan \frac{nx}{2x+1} \right)^{\frac{1}{x}}$	Je =			Q12					sur]1, $+\infty$ [p 2 = $(h^{-1})'$ (0		Q12 =		
Q13	Calculer: Q ₁₃	$= \lim_{x \to \pi} \int_{\frac{\pi}{2}}^{x} \frac{1}{1 + \sin x - \cos x} dx$	Q13 = {			Q14	Calculer		$Lt = \int_{0}^{\frac{\pi}{4}} \frac{\sqrt{t}}{\sin t}$ $= \lim_{n \to +\infty} \frac{1}{n} E\left(\frac{1}{n}\right)$	$\frac{\operatorname{an} x}{\operatorname{an} 2x} dx$			Lt =		
Q15	Trouver S l'ensemble $\ln \sin x + \ln \tan x =$	des solutions de l'équation : $= \ln \cos x $	S = {			Q16	Calculer:	Q ₁₆	$= \lim_{n \to +\infty} \frac{1}{n} E\left(\frac{1}{n}\right)$	$\frac{\ln n}{n - \ln n}$			Q16 =		
Q17	Pour quelles valeurs	PARTIE QCM: Une $m = 1$ of de m la matrice $\begin{pmatrix} 1-m & -1 \\ 4 & -7-6 \\ 6 & -1 \end{pmatrix}$	3 4 \ _	pts, Pas de 1 A -1 et 2	В		, <i>Une répo</i> ment -1	С	usse ou pluu -1 et –3	D	le réponse : nes des trois		S		
Q18	Soit f définie par f ($f(0) = 0 \text{ et } f(x) = e^{x^2 - x + \ln x }$. A		C_f adme		В	Sur [0,1], de la droite				et au point (gente de per	1,1)	D Aucu répo	nes des trois nses	
Q19	Soit $m \in \mathbb{R}^*$. Soit f_m Soit C_{f_m} sa courbe. A	définie par $f(0) = m$ et $f_m(x)$ Alors:	$= \frac{m}{x^2}e^{\frac{1}{x}} + m.$	f_m n'est à gauche	pas dériva en 0	able			ont symétriq e des ordon		Pour $m > \max_{]-\infty,0]} f_m$		4	Aucunes des trois réponses	
Q20	MAROCAIN". Soit I expérience 3 fois en a que tous les tirages	trouvent 14 jetons portant ch 'expérience: « tirer simultanér remettant à chaque tirage les 5 le sont équiprobables. Soit Y le 5 lettres tirées. Quelle est la prob	nent 5 jetons ». ttres tirées dans la nombre de fois d	On répète boîte. On su de former le	cette ippose e nom	A	$\frac{1000}{(1001)^3}$	В	1001 (1001) ³	C	$\frac{1002}{(1001)^3}$	D	. (1003 (1001) ³	
Q21	numérotés : 0, 3, 3, sur le jeton, puis on soit b le numéro du	ent 3 jetons numérotés : 1, 2, 5, 5, 5. On tire au hasard un jeto remet ce jeton tiré dans A . On a jeton tiré de B . A ce couple (a, b)	on dans A, on lit le effectue la même d) on associe le poir	e nombre a opération point $M(a,b)$.	porté our B ,	A		В		С		D	7		
	Dans l'espace muni d'u	ur que $M(a,b)$ soit situé sur l'elli un repère orthonormé, on considère	les deux points	$\frac{x^2}{6} + \frac{y^2}{12} = 1$			1/6 B		<u>2</u> 6		3 6	Au		es trois réponses	
Q22	(Q): x - y + z + 2 =	,0) et les trois plans; (P): $x+$ 0 et (H) le plan passant par A et pe la sphère de centre B et passant H) est:	y+z-1=0, rpendiculaire à		de centre et de ray	,		Le plus g	rand cercle	dans la sphè		ensemble		Aucunes des trois réponses	
Q23		turel non nul et $(I_n)_n$ la suite dé Choisir la bonne réponse :	finie par :	A1(1	$\left(1 - \frac{1}{e^n}\right) \left(1\right)$	_ 1)	B (1,), estr	ninoré par	C (I _n	$_{n})_{n}$ Converge $_{n}$		D Aucui	nes des trois	
Q24		: sin(x) = cos(2x). On cherch	e le nombre de sol			$\frac{\sqrt{e^n}}{e^n}$		В	, par	2 C		D	répor		
Q25	Trouver la fonction de les derniers cercles :	de chaque flèche pour compléter	6 8	11) ? » (7) ← (7) ← (1)	(21) (11)	Une A	solution 18 et 9	В	eux solutio 8 et	C	trois solutio		D	e quatre solutions	
													Lisho		

CONCOURS D'ACCES A L'ENSAM-MEKNES ET A L'ENSAM-CASABLANCA

Epreuve de Mathématiques : Filières Sciences et Techniques Vendredi 24 Juillet 2015 - Durée : 2h

Partie I : Questions à réponses précises

Chaque réponse est notée sur 2pts

	Questions	Réponses
Q1	Soit la proposition P : " $\forall a \in \mathbb{R}_+^*$; $a + \frac{1}{a} \ge 2$ ". Donner la négation et le tableau de	$ar{P}$:
	vérité de P .	P est
Q2	Soit la proposition A: "Il existe un polynôme $P(x) = ax^3 + bx^2 + cx + d$ à	A est
	coefficients a, b, c et d dans \mathbb{Z} tel que $P(1) = 1$ et $P(2015) = 2$ ". En factorisant	
	P(2015) - P(1) dire si A est vraie ou A est fausse.	
Q3	Le code confidentiel d'une carte bancaire est constitué d'un nombre de 4 chiffres	
	non nuls. Combien y-a-t-il de codes contenant une fois, et une seule, le chiffre 1?	
Q4	Soient les nombres complexes suivants :	S =
	$z=e^{\frac{2n}{7}i}$, $a=z+z^2+z^4$ et $b=z^3+z^5+z^6$. Sachant que $a+b=-1$ et $\overline{b}=a$,	
	donner la valeur de la somme $S = cos\left(\frac{2\pi}{7}\right) + cos\left(\frac{4\pi}{7}\right) + cos\left(\frac{8\pi}{7}\right)$.	
Q5	Dans le plan complexe muni d'un repère orthonormé direct $(\mathcal{O}, \vec{u}, \vec{v})$ on considère	
	les points A, B et C d'affixes respectivement $a=2$, $b=-1+i\sqrt{3}$ et $c=-1-i\sqrt{3}$.	z =
	Donner la forme trigonométrique de $z=rac{c-a}{b-a}$ et déduire l'angle $ heta$ de la rotation qui	
	transforme Ben C.	$\theta =$
Q6	Calculer la limite de la suite de terme général $u_n = \frac{1}{1+n^2} + \frac{1}{2+n^2} + \cdots + \frac{1}{n+n^2}$.	$\lim_{n} u_n =$
Q7	$e^{x^2} - \cos(x)$	$\lim_{x \to 0} f(x) =$
	Calculer $\lim_{x\to 0} f(x)$; où $f(x) = \frac{e^{x^2 - \cos(x)}}{2x^2}$	
Q8	Soit $f(x) = \ln(1 + e^{-x})$. Déterminer f^{-1} .	$Df^{-1} = f^{-1}(x) =$
Q9	Déterminer la primitive F de la fonction $x \mapsto \frac{1}{x \ln(x)} \operatorname{sur}]1, +\infty[$ qui vaut 1 en e .	$f^{-1}(x) = F(x) =$
Q10	Soient $f(x) = tan(x)$ et C_f sa courbe représentative dans un repère orthonormé	A =
	$ (\mathcal{O}, \vec{\iota}, \vec{\jmath}) $ tel que : $ \vec{\iota} = \vec{\jmath} = 1$ cm. Calculer l'aire A de la surface délimitée par \mathcal{C}_f et	
	les droites $x = 0$, $x = \frac{\pi}{4}$ et $y = 0$.	
Q11	Soit $I_n = \int_0^1 x^n \ln(1+x) dx$, $\forall n \ge 1$. Calculer $\lim_n I_n$.	$\lim_{n} I_{n} =$
Q12	Soit S la sphère d'équation cartésienne : $x^2 + y^2 + z^2 - 2x - 2y = 0$.	(E):
	Déterminer l'équation (E) du plan tangent $\mathcal P$ à $\mathcal S$ au point $\mathcal O(0,0,0)$.	
Q13	Résoudre dans \mathbb{R} l'équation : $\left(\sqrt{x}\right)^x = x^{\sqrt{x}}$.	S =
Q14	Sachant que $x \mapsto sin^2(x)$ est une solution de l'équation différentielle	$y_0 =$
	(E) : $y'' + 4y - 2 = 0$, déterminer la solution particulière y_0 de (E) telle que sa	
	courbe représentative passe par le point $A(0,\sqrt{2})$ et ayant une tangente en A de	
	coefficient directeur 1.	
Q15	Une usine produit des pièces dont 2% sont défectueuses. Après contrôle, on s'est	P =
	aperçu que 97% des pièces bonnes sont acceptées et 99% des pièces défectueuses	
	sont rejetées. Quelle est la probabilité <i>P</i> d'avoir une pièce bonne et rejetée ?	D
Q16	On considère un rectangle de longueur x . Déterminer la valeur minimale P_m du	$P_m =$
047	périmètre de ce rectangle sachant que sa surface est égale à 100.	S=
Q17	Résoudre dans \mathbb{R} l'équation : $\cos(2x) + \cos(x) - 2 = 0$.	

Partie II: Questions à choix multiples

Une réponse correcte = 2pts, aucune réponse = 0pts, plus d'une réponse ou une réponse fausse = - 1pt

Q18. On considère le disque unité $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ et la proposition $P: \exists A, B \subset \mathbb{R}; \ D = A \times B''.$ Alors aucune des trois $(0,1) \in D$ et P est vraie P est fausse $(1,0) \in D$ et P est vraie réponses Q19. Soient $\begin{cases} u_1 = 1 \\ (u_{n+1})^2 = 4u_n; \ \forall n \ge 1 \end{cases}$ et $v_n = \ln\left(\frac{u_n}{4}\right); \ \forall n \ge 1$. La suite (v_n) est aucune des trois réponses géométrique de raison $\frac{1}{2}$ constante arithmétique **Q20.** Soit $f(x) = x - \ln|2e^x - 1|$. Alors aucune des trois f est bornée au f n'est pas bornée au f est bornée au réponses voisinage de $+\infty$. voisinage de +∞. voisinage de $-\infty$. **Q21.** Pour quelle valeur de a la fonction f définie sur $[0, +\infty[$ par $f(x) = ln\left(\frac{x}{x+1}\right) - \frac{\ln(x)}{x+1} + 1$ si $x \in]0, +\infty[$ et f(0) = aest continue? a = 0 $a = \ln(2)$ a = -1**Q22.** La courbe représentative de la fonction P définie sur [0,1] par $P(x)=x^5+3x^3+4x-5$ coupe l'axe des abscisses en: aucune des trois réponses aucun point deux points un unique point **Q23.** Soit f la fonction définie par $f(x) = e^x - 2\sqrt{e^x - 1}$ et soit \mathcal{C} sa courbe représentative. Alors f admet une demi f admet une demif est f est tangente verticale au tangente verticale au dérivable à dérivable à point A(0,1) dirigée point A(0,1) dirigée droite de 0 gauche de 0 vers le bas vers le haut **Q24.** Soit $f(x) = \frac{e^{x}-1}{x} + \ln(x)$. La courbe représentative \mathcal{C}_f de faucune des trois est au-dessus admet une admet en +∞ une réponses de la droite asymptote branche parabolique de y = 0oblique en direction asymptotique la $+\infty$ droite y = 0**Q25.** Soit f la fonction définie sur $\mathbb R$ par $f(x)=(x-1)e^x$. Sa courbe représentative $\mathcal C_f$ admet un point admet un maximum local en 0 est concave est convexe d'inflexion en $A\left(-1, -\frac{2}{e}\right)$

2

CONCOURS D'ACCES A L'ENSAM-MEKNES ET A L'ENSAM-CASABLANCA

Epreuve de Mathématiques : Filières Sciences et Techniques Vendredi 24 Juillet 2015 - Durée : 2h

Partie I : Questions à réponses précises

Chaque réponse est notée sur 2pts

	Chaque reponse est notee sur 2pis	
	Questions	Réponses
Q1	Soit la proposition P : " $\forall a \in \mathbb{R}_+^*$; $a + \frac{1}{a} \ge 2$ ". Donner la négation et le tableau de vérité de P .	P: Ja EIK+, a+ 1/a (2"" Pest Vraie
Q2	Soit la proposition A : "Il existe un polynôme $P(x) = ax^3 + bx^2 + cx + d$ à coefficients a, b, c et d dans \mathbb{Z} tel que $P(1) = 1$ et $P(2015) = 2$ ". En factorisant $P(2015) - P(1)$ dire si A est vraie ou A est fausse.	A est foursse
Q3	Le code confidentiel d'une carte bancaire est constitué d'un nombre de 4 chiffres non nuls. Combien y-a-t-il de codes contenant une fois, et une seule, le chiffre 1?	4 x 83 = 2048
Q4	Soient les nombres complexes suivants : $z=e^{\frac{2\pi}{7}l}$, $a=z+z^2+z^4$ et $b=z^3+z^5+z^6$. Sachant que $a+b=-1$ et $\overline{b}=a$, donner la valeur de la somme $S=cos\left(\frac{2\pi}{7}\right)+cos\left(\frac{4\pi}{7}\right)+cos\left(\frac{8\pi}{7}\right)$.	s = - ^/2
Q5	Dans le plan complexe muni d'un repère orthonormé direct $(\mathcal{O}, \vec{u}, \vec{v})$ on considère les points A , B et C d'affixes respectivement $a=2$, $b=-1+i\sqrt{3}$ et $c=-1-i\sqrt{3}$. Donner la forme trigonométrique de $z=\frac{c-a}{b-a}$ et déduire l'angle θ de la rotation qui	$z = \begin{bmatrix} \Lambda, & \pi/3 \end{bmatrix}$ $\theta = & \pi/3$
Q6	transforme Ben C. Calculer la limite de la suite de terme général $u_n = \frac{1}{1+n^2} + \frac{1}{2+n^2} + \cdots + \frac{1}{n+n^2}$.	$\lim_{n} u_{n} = \bigcirc$
Q7	Calculer $\lim_{x\to 0} f(x)$; où $f(x) = \frac{e^{x^2 - \cos(x)}}{2x^2}$	$\lim_{x \to 0} f(x) = 3/4$
Q8	Soit $f(x) = \ln(1 + e^{-x})$. Déterminer f^{-1} .	$Df^{-1} = \int 0, + \infty L$ $f^{-1}(x) = -\ln(\ell^3 - \Lambda)$
Q9	Déterminer la primitive F de la fonction $x \mapsto \frac{1}{x \ln(x)} \operatorname{sur}]1, +\infty[$ qui vaut 1 en e .	$F(x) = l_m(l_m(n)) + \Lambda$
Q10	Soient $f(x) = tan(x)$ et C_f sa courbe représentative dans un repère orthonormé $(\mathcal{O}, \vec{t}, \vec{j})$ tel que : $ \vec{t} = \vec{j} = 1cm$. Calculer l'aire A de la surface délimitée par C_f et les droites $x = 0$, $x = \frac{\pi}{4}$ et $y = 0$.	$A = 2 \frac{2}{2}$
Q11	Soit $I_n = \int_0^1 x^n \ln(1+x) dx$, $\forall n \ge 1$. Calculer $\lim_n I_n$.	$\lim_{n} I_n = \bigcirc$
Q12	Soit S la sphère d'équation cartésienne : $x^2 + y^2 + z^2 - 2x - 2y = 0$. Déterminer l'équation (E) du plan tangent P à S au point $O(0,0,0)$.	(E): × + / = 0
Q13	Résoudre dans \mathbb{R} l'équation : $(\sqrt{x})^x = x^{\sqrt{x}}$.	S= {1,4}
Q14	Sachant que $x \mapsto \sin^2(x)$ est une solution de l'équation différentielle $(E): y'' + 4y - 2 = 0$, déterminer la solution particulière y_0 de (E) telle que sa courbe représentative passe par le point $A(0, \sqrt{2})$ et ayant une tangente en A de coefficient directeur 1 .	$y_0 = \sin^2(x) + (2\cos(2x)) + \frac{1}{2} \sin(2x)$
Q15	Une usine produit des pièces dont 2% sont défectueuses. Après contrôle, on s'est aperçu que 97% des pièces bonnes sont acceptées et 99% des pièces défectueuses sont rejetées. Quelle est la probabilité P d'avoir une pièce bonne et rejetée ?	$P = \frac{98}{100} \times \frac{3}{1000} = \frac{294}{10000}$
Q16	On considère un rectangle de longueur x . Déterminer la valeur minimale P_m du périmètre de ce rectangle sachant que sa surface est égale à 100 .	$P_m = 40$
Q17	Résoudre dans \mathbb{R} l'équation : $\cos(2x) + \cos(x) - 2 = 0$.	S= \$2kt; KE Z}

Partie II : Questions à choix multiples

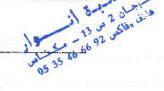
Une réponse correcte = 2pts, aucune réponse = 0pts, plus d'une réponse ou une réponse fausse = - 1pt

Q18. On considère le disque	unité $D = \{(x, y) \in \mathbb{R}^2 : x\}$		$P: "\exists A, B \subset \mathbb{R}; \ D = A \times B". \text{ Alors}$
$(1,0) \in D \text{ et } P \text{ est vr}$	aie $(0,1) \in D$ e	t P est vraie	aucune des trois réponses
Q19. Soient $\begin{cases} u_1 = 1 \\ (u_{n+1})^2 = 4u_n \end{cases}$	$\begin{cases} 1 & \text{et } v_n = \ln\left(\frac{u}{4}\right) \end{cases}$	(v_n) ; $\forall n \geq 1$. La suite (v_n) est	
arithmétique	géométrique de raison	constante	aucune des trois réponses
Q20. Soit $f(x) = x - \ln 2e $	x − 1 . Alors		
f est bornée au voisinage de $-\infty$.	f n'est pas bornée voisinage de +∝		
Q21. Pour quelle valeur de a est continue ?	la fonction f définie sur [$0, +\infty[$ par $f(x) = ln\left(\frac{x}{x+1}\right) -$	$\frac{\ln(x)}{x+1} + 1 \text{ si } x \in]0, +\infty[\text{ et } f(0) =$
a = -1	<i>α</i> =	ln (2)	a=1 $a=0$
en : un unique point	deux points	aucun point	3 + 4x - 5 coupe l'axe des abscisse aucune des trois réponses entative. Alors
f est dérivable à gauche de 0	f est dérivable à droite de 0	f admet une demitangente verticale au point $A(0,1)$ dirigée vers le haut	f admet une demi tangente verticale au point A(0,1) dirigée vers le bas
Q24. Soit $f(x) = \frac{e^x - 1}{x} + \ln x$	(x). La courbe représenta	tive \mathcal{C}_f de f	
admet en $+\infty$ u branche parabolique direction asymptoti droite $y = 0$	ue de asympto	te de la droite	aucune des trois réponses
Q25. Soit f la fonction défi	nie sur \mathbb{R} par $f(x) = (x - x)$	1)e ^x . Sa courbe représentativ	
est convexe	est concave a	dmet un maximum local en 0	admet un point d'inflexion en $A\left(-1, -\frac{2}{e}\right)$

2

ENSAM-Casablanca - ENSAM-Meknès

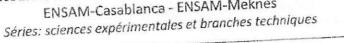
Séries: sciences expérimentales et branches techniques



Épreuve de Mathématique

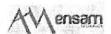
Samedi 02 Août 2014- Durée 2h00

I - QUESTIONS À RÉPONSES PRÉCISES


Une réponse correcte = 2pt, pas de réponse ou une réponse fausse = 0pt

	Questions	Réponses	Notes
Q1 / / 2pt	Calculer la limite de la suite $(u_n)_n$ définie par: $u_n = \sum_{n=0}^{\infty} e^{\left(\frac{k}{n^2}\right)} \ln\left(1 + \frac{1}{k}\right)$	$\lim_{n} u_n =$	
Q2 / /2pt	Résoudre, dans $[0,2\pi]^2$, le système: $ \begin{cases} \sqrt{2}\cos x - \cos x \cos y = \frac{1}{2} \\ \sin x + \cos y = \sqrt{2} \end{cases} $	S =	
Q3 /	Déterminer la forme algébrique de: $z = \left(\sqrt{2 - \sqrt{3}} - i\sqrt{2 + \sqrt{3}}\right)^{42}$	z =	
Q4 / /2pt	Déterminer, Γ , l'ensemble des points du plan complexe dont les affixes z vérifient: $(iz+1)(z+i-1) \in i\mathbb{R}$	Γ est	
QS / /2pt	Solt $a \in]0, \pi[$. Calculer $D = \prod_{k=1}^{n} \cos\left(\frac{a}{2^k}\right)$	D =	
Q6 / /2pt	Calculer: $A_n = \sum_{k=1}^n \frac{k}{(k+1)!}$	$A_n =$	
Q7 / / /2pt	Soit f une fonction positive sur son domaine de définition et dérivable en $a>0$. Déterminer $\ell=\lim_{x\to a}\left(\frac{f(x)}{f(a)}\right)^{\frac{1}{\ln x-\ln a}}$	l =	
Q8 / /2pt	Calculer la limite $ \dot{j} = \lim_{x \to 0} \frac{\cos\left(\frac{\pi}{2}\cos x\right)}{x\sin(\sin x)} $	j =	
Q9 / /2pt	Trouver toutes les applications $f: \mathbb{R}^* \to \mathbb{R}$ telles que: $\forall x \in \mathbb{R}^*, \ f(x) + 3f\left(\frac{1}{x}\right) = x^2$	f(x) =	
Q10/ /2pt	Soit g is fonction définie par $\forall x \in \]0, \pi[g(x) = \cos x \sqrt{1 - \cos x}$ Calculer $g'(x)$ en fonction $g(x)$, $\forall x \in \]0, \pi[\setminus \left\{ \frac{n}{2} \right\}$	$g'(x) = \dots$	
Q11/ 2pt	Soit h définie sur \mathbb{R}^+_* par $h(x) = \ln e^x - e^{2x} $ Déterminer h^{-1} .	$\forall x \in D_{h^{-1}} = \dots,$ $h^{-1}(x) = \dots$	
Q12/ 2pt	Calculer: $I = \lim_{x \to +\infty} \int_1^x \frac{x \ln x}{(1+x^2)^2} dx$	I =	
Q13/ 2pt	Calculer $J = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$] =	
Q14/ 2pt	Résoudre l'équation différentielle $y'' + 2y' + 10y = \sin 3x, \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} y(t)dt = 0, y'(\pi) = \frac{6}{37}$	y(x) =	
Q15 2pt	Résoudre, dans \mathbb{R} , l'équation $3^x + 4^x = 5^x$	S=	

Concours d'accès en 1ère année des années préparatoires


ENSAM-Casablanca - ENSAM-Meknès

	u - OUES	STIONS À CHOIX MULTIPLES			
	n de réno	onse = Opt , plus d'une répons	e au une répans	e fausse = -1pt.	
Une réponse c	orrecte = 2pt, pus de repo		and the same of th		Notes
The state of the s		(-2mZ = 1 -m)Y + Z = 2 admet une se	olution unique:		
.6: Pour quelles valeurs c	de m le système $X + (1)$	-m)Y + Z = Z addition of $Z = 3$		The state of the s	
.v. r our quant	(2X + 3)	, ,		0	
	В	-1 -1 et un nombr		-1 et 1/2	; !
-1 et un nombre néga	atif uniquement	-1 -1 et un nomoi	e positi)
-1 50 013 110 110	E(-1) -	$ v + \ln(v + 1)$ est:			1
17: Sur $[0,+\infty[$, la fonct	f définie par f(x) =	[A] 1 MAZ			i
I	В	C	nositiv	e puis négative	
touloure positive	toujours négative	négative puis positive	J L I POSITI		1
toujours positive	f(x) = 0 et $f(x)$	negative puls positive $= e^{\left(\frac{1+\ln x}{1-\ln x}\right)}. \text{ Alors sa courbe}$	Cf admet:		
18: Soit f définie par f ($(0) = \frac{1}{e}, f(e) = 0$			D	1
	В	C		aucunes des	
une asymptote	en x = e une demi	en x = e une dem	erticale	trois réponses	İ
	and a delicate	tangente a cronc	/Citicale		
	+ 14 latons por	rant chacun une lettre du i	om "SAHARA	MAROCAIN", OF THE	i
119: Dans une boite se	trouvent 14 Jeturs port	tant chacun une lettre du r est la probabilité pour que l'é	on tire les lettr	as an uour Sinivior	1
uccessivement et sans i	ettiise a lecottor				1
dans un ordre quelconqu		T	D		
A	6	50	aucunes d	es trois réponses	1
	10	145			l
6006	1001	14-		Acro 2 Une boite B	2 1
	1	to test D contient 7	TOTAL BUILDING	C3. 64 1 fa.	
t to W3 mmmhi	ant 2 letons numeroles; 1	., 3. Une poite by contient a	jetoria nomete	on c de Ba. Quelle es	t i
Q20: Une boite B ₁ conti	ent 2 jetons numerotes: 1 otés : 1 - 0. On tire au hasa	, 3. Une boite B_2 contient 2 and un jeton α de B_1 , un jetor	$b ext{ de } \mathbf{B}_2$, un je	ton c de $\mathbf{B_3}$. Quelle es	t i
Q20: Une boite B ₁ conti contient 2 jetons numér	ent 2 jetons numerotes: 1 otés :1, 0. On tire au hasa l'équation $ax^2 + bx + c =$. , 3. Une boite $oldsymbol{B_2}$ contient $oldsymbol{2}$ ard un jeton $oldsymbol{a}$ de $oldsymbol{B_1}$, un jetor = $oldsymbol{0}$ admet des racines réelles	$b ext{ de } \mathbf{B}_2$, un je	ton c de ${f B_3}$. Quelle es	t
Q20: Une boite B_1 conti contient 2 jetons numér la probabilité pour que l	ent 2 jetons numerotes: 1 otés :1, 0. On tire au hasa l'équation $ax^2 + bx + c =$	0 admet des racines réelles	b de B_2 , un je		
Q20: Une boite B ₁ conti contient 2 jetons numér la probabilité pour que l	equation $ax^2 + bx + c =$	ard un jeton α de B_1 , un jetor α de admet des racines réelles C	?	ton c de $\mathbf{B_3}$. Quelle es 1]
contient 2 jetons numer la probabilité pour que l A	Oles 17.0. Out of the second	0 admet des racines réelles 0,75)] [D]	1]
contient 2 jetons numer la probabilité pour que l A 0,5	Péquation $ax^2 + bx + c =$ $0,25$	© admet des racines réelles © 0,75	D D S A(-1.1,1) et	1 B(7, -5,5), Solt S la]
contient 2 jetons numer la probabilité pour que l A 0,5	Péquation $ax^2 + bx + c =$ $0,25$	© 0 admet des racines réelles © 0,75	D D S A(-1.1,1) et	1 B(7, -5,5), Solt S la	1
contient 2 jetons numer la probabilité pour que l A 0,5	Péquation $ax^2 + bx + c = 0$ B 0,25 Ai d'un repère orthonormé amètre est le segment [AE	0 admet des racines réelles 0,75 0,00 considère les deux point 3]. Le plan tangent à S au poi	A(-1,1,1) et at $C(1,1-1)$ e	1 B(7, -5,5). Soit S la st:]
contient 2 jetons numer la probabilité pour que l A 0,5 Q21: Dans l'espace mur sphère dont l'un des dia	Péquation $ax^2 + bx + c = \frac{B}{0,25}$ ai d'un repère orthonormé amètre est le segment [AB]	0 admet des racines réelles 0,75 on considère les deux point Le plan tangent à S au poi	B $S A(-1,1,1) et $ $C (1,1-1) et$	1 B(7, -5,5), Solt S la]
contient 2 jetons numer la probabilité pour que l A 0,5 Q21: Dans l'espace mur sphère dont l'un des dia	Oles 17,0. On $ax^2 + bx + c =$ B 0,25 of d'un repère orthonormé amètre est le segment [AE	0 admet des racines réelles 0,75 0,75 0, on considère les deux point 1, Le plan tangent à S au poi C C C C	B $S A(-1,1,1) et $ $C (1,1-1) et$	1 B(7, -5,5). Soit S la st:]
la probabilité pour que l A 0,5 Q21: Dans l'espace mur sphère dont l'un des dia	Oles 17,0. On $ax^2 + bx + c =$ B 0,25 of d'un repère orthonormé amètre est le segment [AE	0 admet des racines réelles 0,75 0,75 0, on considère les deux point 1, Le plan tangent à S au poi C C C C	B $S A(-1,1,1) et $ $C (1,1-1) et$	1 B(7, -5,5). Soit S la st:]
a probabilité pour que l A 0,5 Q21: Dans l'espace mur sphère dont l'un des dia	Péquation $ax^2 + bx + c = \frac{B}{0,25}$ ai d'un repère orthonormé amètre est le segment [AB]	0 admet des racines réelles $\begin{bmatrix} \mathbf{C} & \\ & \\ & \\ & \end{bmatrix}$, $\begin{bmatrix} \mathbf{C} & \\ & \\ & \end{bmatrix}$, on considère les deux point $\begin{bmatrix} \mathbf{C} & \\ & \end{bmatrix}$. Le plan tangent à S au poi $\begin{bmatrix} \mathbf{C} & \\ & \end{bmatrix}$ $\begin{bmatrix} \mathbf{C}$	B $S A(-1,1,1) et $ $C (1,1-1) et$	$\frac{1}{B(7, -5, 5)}. \text{ Soit } S \text{ la st:}$ $4x + 2y + 2z - 5 = 0$]
contient 2 jetons numer la probabilité pour que le A 0,5 C 21: Dans l'espace mur sphère dont l'un des dia C 4 C 6 C 7 C 8 C 8 C 9	Péquation $ax^2 + bx + c = \frac{B}{a}$ 0,25 Ni d'un repère orthonormé amètre est le segment [AB] $5 = 0$ $4x + 3y + 2z$ e de terme général $u_n = \frac{B}{a}$	0 admet des racines réelles 0,75 0,75 0, on considère les deux point 1, Le plan tangent à S au poi C S S S S S S S	$\begin{array}{c c} & & & \\ \hline & & \\ & & \\ SA(-1,1,1) \text{ et } \\ \text{nt } C(1,1-1) \text{ et } \\ \hline & & \\ \hline -5=0 & & \\ \end{array}$	$\frac{1}{B(7, -5, 5)}. \text{ Soit } S \text{ la st:}$ $4x + 2y + 2z - 5 = 0$]
contient 2 jetons numer la probabilité pour que le A 0,5 Q21: Dans l'espace mur sphère dont l'un des dia A $2x-3y+4z+5$ Q22: Soit $(u_n)_n$ la suit A	Péquation $ax^2 + bx + c = \frac{B}{a}$ 0,25 In d'un repère orthonormé amètre est le segment [AB] $5 = 0$ $4x + 3y + 2z$ e de terme général $u_n = \frac{B}{a}$	0 admet des racines réelles C 0,75 a, on considère les deux point B]. Le plan tangent à S au poi C C C C C C C C	$\begin{array}{c c} & & & \\ \hline & & \\ & & \\ SA(-1,1,1) \text{ et } \\ \text{nt } C(1,1-1) \text{ et } \\ \hline & & \\ \hline -5=0 & & \\ \end{array}$	1 B(7, -5,5). Soit S la st:]
contient 2 jetons numer la probabilité pour que le A 0,5 Q21: Dans l'espace mur sphère dont l'un des dia A $2x-3y+4z+5$ Q22: Soit $(u_n)_n$ la suit A	Péquation $ax^2 + bx + c = \frac{B}{a}$ 0,25 In d'un repère orthonormé amètre est le segment [AB] $5 = 0$ $4x + 3y + 2z$ e de terme général $u_n = \frac{B}{a}$	0 admet des racines réelles C 0,75 a, on considère les deux point B]. Le plan tangent à S au poi C C C C C C C C	$\begin{array}{c c} & & & \\ \hline & & \\ & & \\ SA(-1,1,1) \text{ et } \\ \text{nt } C(1,1-1) \text{ et } \\ \hline & & \\ \hline -5=0 & & \\ \end{array}$	$\frac{1}{B(7, -5, 5)}. \text{ Soit } S \text{ la st:}$ $4x + 2y + 2z - 5 = 0$]
contient 2 jetons numer la probabilité pour que le A 0,5 Q21: Dans l'espace mur sphère dont l'un des dia A $2x-3y+4z+5$ Q22: Soit $(u_n)_n$ la suit A	Péquation $ax^2 + bx + c = \frac{B}{a}$ 0,25 Ni d'un repère orthonormé amètre est le segment [AB] $5 = 0$ $4x + 3y + 2z$ e de terme général $u_n = \frac{B}{a}$	0 admet des racines réelles 0,75 0,75 0, on considère les deux point 1, Le plan tangent à S au poi $S = 0$ $S $	$ \begin{array}{c c} \hline D \\ \hline S A(-1,1,1) \text{ et } \\ \text{ot } C(1,1-1) \text{ ot } \\ \hline D \\ \hline D \end{array} $	1 $B(7, -5, 5). \text{ Soit } S \text{ la st:}$ $4x + 2y + 2z - 5 = 0$ $\lim_{n \to +\infty} u_n = e$]
contient 2 jetons numer la probabilité pour que le A 0,5 Q21: Dans l'espace mur sphère dont l'un des dia A $2x-3y+4z+5$ Q22: Soit $(u_n)_n$ la suit A $\lim_{n\to+\infty}u_n=+\infty$ Q23: Sur \mathbb{R}^* , La fonction	Péquation $ax^2 + bx + c = \frac{B}{a}$ O,25 In d'un repère orthonormé amètre est le segment [AB] $5 = 0$ $4x + 3y + 2z$ The determe général $u_n = 0$ $ax = 0$ a	0 admet des racines réelles 0,75 0,75 c, on considère les deux point 1, Le plan tangent à S au poi C	$\begin{array}{c c} & D & \\ \hline & S & A(-1,1,1) \text{ et } \\ \text{nt } & C(1,1-1) \text{ et } \\ \hline & D & \\ \hline & D & \\ \hline & D & \\ \hline \end{array}$	$\frac{1}{B(7, -5, 5)}. \text{ Soit } S \text{ la st:}$ $4x + 2y + 2z - 5 = 0$]
contient 2 jetons numer la probabilité pour que le A 0,5 Q21: Dans l'espace mur sphère dont l'un des dia $2x-3y+4z+5$ Q22: Soit $(u_n)_n$ la suit A $\lim_{n\to+\infty}u_n=+\infty$ Q23: Sur \mathbb{R}^* , La fonctio	Péquation $ax^2 + bx + c = \frac{B}{a}$ O,25 In d'un repère orthonormé amètre est le segment [AB] $5 = 0$ $4x + 3y + 2z$ The de terme général $u_n = 0$ $an f(x) = \ln \left(x^2 + \frac{1}{x^2}\right)$ ad $an f(x) = \ln \left(x^2 + \frac{1}{x^2}\right)$	0 admet des racines réelles 0,75 1, on considère les deux point 1, Le plan tangent à S au poi C	B $A(-1,1,1)$ et at $C(1,1-1)$ e $C(1,1-1)$ e $C(1,1-1)$ e $C(1,1-1)$ e $C(1,1-1)$ e $C(1,1-1)$ e	$\frac{1}{B(7,-5,5)}. \text{ Soit } S \text{ la}$ st: $4x + 2y + 2z - 5 = 0$ $\lim_{n \to +\infty} u_n = e$ eux minimums locaux]
contient 2 jetons numer la probabilité pour que le A 0,5 Q21: Dans l'espace mur sphère dont l'un des dia $2x-3y+4z+5$ Q22: Soit $(u_n)_n$ la suit A $\lim_{n\to+\infty}u_n=+\infty$ Q23: Sur \mathbb{R}^* , La fonctio	Péquation $ax^2 + bx + c = \frac{B}{a}$ O,25 In d'un repère orthonormé amètre est le segment [AB] $5 = 0$ $4x + 3y + 2z$ The de terme général $u_n = 0$ $an f(x) = \ln \left(x^2 + \frac{1}{x^2}\right)$ ad $an f(x) = \ln \left(x^2 + \frac{1}{x^2}\right)$	0 admet des racines réelles 0,75 1, on considère les deux point 1, Le plan tangent à S au poi C	B $A(-1,1,1)$ et at $C(1,1-1)$ e $C(1,1-1)$ e $C(1,1-1)$ e $C(1,1-1)$ e $C(1,1-1)$ e $C(1,1-1)$ e	$\frac{1}{B(7,-5,5)}. \text{ Soit } S \text{ la}$ st: $4x + 2y + 2z - 5 = 0$ $\lim_{n \to +\infty} u_n = e$ eux minimums locaux]
contient 2 jetons numer la probabilité pour que le A 0,5 Q21: Dans l'espace mur sphère dont l'un des dia A $2x-3y+4z+5$ Q22: Soit $(u_n)_n$ la suit A $\lim_{n\to+\infty}u_n=+\infty$ Q23: Sur \mathbb{R}^* , La fonctio A	Péquation $ax^2 + bx + c = \frac{B}{a}$ O,25 In d'un repère orthonormé amètre est le segment [AB] $5 = 0$ $4x + 3y + 2z$ The de terme général $u_n = 0$ $an f(x) = \ln \left(x^2 + \frac{1}{x^2}\right)$ ad $an f(x) = \ln \left(x^2 + \frac{1}{x^2}\right)$	0 admet des racines réelles 0,75 1, on considère les deux point 1, Le plan tangent à S au poi C	B $A(-1,1,1)$ et at $C(1,1-1)$ e $C(1,1-1)$ e $C(1,1-1)$ e $C(1,1-1)$ e $C(1,1-1)$ e $C(1,1-1)$ e	$\frac{1}{B(7,-5,5)}. \text{ Soit } S \text{ la}$ st: $4x + 2y + 2z - 5 = 0$ $\lim_{n \to +\infty} u_n = e$ eux minimums locaux]
contient 2 jetons numer la probabilité pour que le A 0,5 Q21: Dans l'espace mur sphère dont l'un des dia A $2x-3y+4z+5$ Q22: Soit $(u_n)_n$ la suit A $\lim_{n\to+\infty}u_n=+\infty$ Q23: Sur \mathbb{R}^* , La fonctio A	Péquation $ax^2 + bx + c = \frac{B}{a}$ O,25 In d'un repère orthonormé amètre est le segment [AB] $5 = 0$ $4x + 3y + 2z$ The de terme général $u_n = 0$ $an f(x) = \ln \left(x^2 + \frac{1}{x^2}\right)$ ad $an f(x) = \ln \left(x^2 + \frac{1}{x^2}\right)$	0 admet des racines réelles 0,75 0,75 c, on considère les deux point 1, Le plan tangent à S au poi C	B S $A(-1,1,1)$ et ent $C(1,1-1)$ et D A A A B A B A B A B A B	$\frac{1}{B(7, -5, 5)}. \text{ Soit } S \text{ la st:}$ $4x + 2y + 2z - 5 = 0$ $\lim_{n \to +\infty} u_n = e$ eux minimums locaux s dans $\left[0, \frac{2\pi}{3}\right]$?]
contient 2 jetons numer la probabilité pour que le A 0,5 Q21: Dans l'espace mur sphère dont l'un des dia A $2x-3y+4z+5$ Q22: Soit $(u_n)_n$ la suit A $\lim_{n\to+\infty}u_n=+\infty$ Q23: Sur \mathbb{R}^* , La fonctio A Un maximum local Q24: Combien l'équat	Deux maximums locaux ion $\tan x + \tan 2x	e, on considère les deux point S , te plan tangent à S au poi S , Le plan tangent à S au poi S , S au poi S	B S $A(-1,1,1)$ et ent $C(1,1-1)$ et D A A A B A B A B A B A B	$\frac{1}{B(7,-5,5)}. \text{ Soit } S \text{ la}$ st: $4x + 2y + 2z - 5 = 0$ $\lim_{n \to +\infty} u_n = e$ eux minimums locaux]
contient 2 jetons numer la probabilité pour que le A 0,5 Q21: Dans l'espace mur sphère dont l'un des dia A 2 $x-3y+4z+1$ Q22: Soit $(u_n)_n$ la suit A $\lim_{n\to+\infty}u_n=+\infty$ Q23: Sur \mathbb{R}^* , La fonctio A Un maximum local Q24: Combien l'équat	Péquation $ax^2 + bx + c = \frac{B}{a}$ O,25 In d'un repère orthonormé amètre est le segment [AB] $5 = 0$ $4x + 3y + 2z$ The de terme général $u_n = 0$ $an f(x) = \ln \left(x^2 + \frac{1}{x^2}\right)$ ad $an f(x) = \ln \left(x^2 + \frac{1}{x^2}\right)$	0 admet des racines réelles 0,75 1, on considère les deux point 1, Le plan tangent à S au poi C	B S $A(-1,1,1)$ et ent $C(1,1-1)$ et D A A A B A B A B A B A B	$\frac{1}{B(7, -5, 5)}. \text{ Soit } S \text{ la st:}$ $4x + 2y + 2z - 5 = 0$ $\lim_{n \to +\infty} u_n = e$ eux minimums locaux s dans $\left[0, \frac{2\pi}{3}\right]$?]
contient 2 jetons numer la probabilité pour que le A 0,5 Q21: Dans l'espace mur sphère dont l'un des dia A 2 x - 3 y + 4 z + 5 Q22: Soit (u_n) $_n$ la suit A lim $u_n = +\infty$ Q23: Sur \mathbb{R}^* , La fonctio A Un maximum local Q24: Combien l'équat	Deux maximums locaux ion $\tan x + \tan 2x	0 admet des racines réelles 0,75 0,00 considère les deux point 1, Le plan tangent à S au poi C	B S $A(-1,1,1)$ et ent $C(1,1-1)$ et D A A A B A B A B A B A B	$\frac{1}{B(7, -5, 5)}. \text{ Soit } S \text{ la st:}$ $4x + 2y + 2z - 5 = 0$ $\lim_{n \to +\infty} u_n = e$ eux minimums locaux s dans $\left[0, \frac{2\pi}{3}\right]$?]
contient 2 jetons numer la probabilité pour que le A 0,5 Q21: Dans l'espace mur sphère dont l'un des dia A $2x-3y+4z+5$ Q22: Soit $(u_n)_n$ la suit A $\lim_{n\to+\infty}u_n=+\infty$ Q23: Sur \mathbb{R}^* , La fonctio A Un maximum local Q24: Combien l'équat A Cinq solutions	Deux maximums locaux ion $\tan x + \tan 2x	0 admet des racines réelles 0,75 0,00 considère les deux point 1, Le plan tangent à S au poi C	B S $A(-1,1,1)$ et ent $C(1,1-1)$ et D A A A B A B A B A B A B	$\frac{1}{B(7, -5, 5)}. \text{ Soit } S \text{ la st:}$ $4x + 2y + 2z - 5 = 0$ $\lim_{n \to +\infty} u_n = e$ eux minimums locaux s dans $\left[0, \frac{2\pi}{3}\right]$?]
contient 2 jetons numer la probabilité pour que le A 0,5 Q21: Dans l'espace mur sphère dont l'un des dia A $2x-3y+4z+5$ Q22: Soit $(u_n)_n$ la suit A $\lim_{n\to+\infty}u_n=+\infty$ Q23: Sur \mathbb{R}^* , La fonctio A Un maximum local Q24: Combien l'équat A Cinq solutions	Deux maximums locaux ion $\tan x + \tan 2x	e, on considère les deux point S , te plan tangent à S au poi S , Le plan tangent à S au poi S , S au poi S	B S $A(-1,1,1)$ et ent $C(1,1-1)$ et D A A A B A B A B A B A B	$\frac{1}{B(7, -5, 5)}. \text{ Soit } S \text{ la st:}$ $4x + 2y + 2z - 5 = 0$ $\lim_{n \to +\infty} u_n = e$ eux minimums locaux s dans $\left[0, \frac{2\pi}{3}\right]$?]
contient 2 jetons numer la probabilité pour que le A 0,5 Q21: Dans l'espace mur sphère dont l'un des dia A $2x-3y+4z+5$ Q22: Soit $(u_n)_n$ la suit A $\lim_{n\to+\infty}u_n=+\infty$ Q23: Sur \mathbb{R}^* , La fonctio A Un maximum local Q24: Combien l'équat A Cinq solutions	Deux maximums locaux ion $\tan x + \tan 2x	0 admet des racines réelles 0,75 0,00 considère les deux point 1, Le plan tangent à S au poi C	B S $A(-1,1,1)$ et ent $C(1,1-1)$ e C	$\frac{1}{B(7, -5, 5)}. \text{ Soit } S \text{ la st:}$ $4x + 2y + 2z - 5 = 0$ $\lim_{n \to +\infty} u_n = e$ eux minimums locaux s dans $\left[0, \frac{2\pi}{3}\right]$?]

Université Hassan II-Mohammedia-Casablanca / Université Moulay Ismaîl Concours d'accès en 1ère année des années préparatoires

ENSAM-Casablanca - ENSAM-Meknès

Séries: sciences expérimentales et branches techniques

Épreuve de Mathématique

Samedi 02 Août 2014- Durée 2h00

I - QUESTIONS À RÉPONSES PRÉCISES

Une réponse correcte = 2pt, pas de réponse ou une réponse fausse = 0pt

ĺ	Questions	Réponses	Notes
QI /	Calculer la limite de la suite $(u_n)_n$ définie par:	$\lim_{n} u_n =$	
2pt	$u_n = \sum_{k=1}^{\infty} e^{\left(\frac{k}{n^2}\right)} \ln\left(1 + \frac{1}{k}\right)$	R R	
Q2 /	Résoudre, dans $[0,2\pi]^2$, le système:	$s = \left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ et $s = \left(\frac{\pi}{4}, \frac{\pi}{4}\right)$	
/2pt	$\begin{cases} \sqrt{2}\cos x - \cos x \cos y = \frac{1}{2} \\ \sin x + \cos y = \sqrt{2} \end{cases}$	(4,4)	
Q3 /	Déterminer la forme algébrique de:	z = 1	
2pt	$z = \left(\sqrt{2 - \sqrt{3}} - i\sqrt{2 + \sqrt{3}}\right)^{+2}$	4	
Q4 /	Déterminer, Γ, l'ensemble des points du plan complexe dont les affixes z vérifient:	1-2u	
2pt Q5	$(iz+1)(z+i-1) \in i\mathbb{R}$ Soit $a \in]0, \pi[$. Calculer	Cina	
/2pt	$D = \prod_{k=1}^{n} \cos\left(\frac{a}{2^k}\right)$	$D = \frac{\sin \alpha}{2^n \sin(\frac{\alpha}{2n})}$	
Q6 /	Calculer: $A_n = \sum_{k=1}^n \frac{k}{(k+1)!}$	$A_n = 1 - \frac{1}{(n+1)!}$	
Q7 /	Soit f une fonction positive sur son domaine de définition et dérivable en $a>0$. Déterminer $\ell=\lim_{x\to a}\left(\frac{f(x)}{f(a)}\right)^{\frac{1}{\ln x-\ln a}}$	$\ell = \frac{\Lambda}{2}$	
Q8 /	Calculer la limite $ \phi = \lim_{x \to 0} \frac{\cos\left(\frac{\pi}{2}\cos x\right)}{x\sin(\sin x)} $	$ \beta = \frac{1}{12} $	
Q9 / /2pt	Trouver toutes les applications $f: \mathbb{R}^* \to \mathbb{R}$ telles que: $\forall x \in \mathbb{R}^*, \ f(x) + 3f\left(\frac{1}{x}\right) = x^2$	f(x) =	
Q10/	Soit g la fonction définie par $\forall x \in]0, \pi[g(x) = \cos x \sqrt{1 - \cos x}$ Calculer $g'(x)$ en fonction $g(x)$, $\forall x \in]0, \pi[\setminus \left\{\frac{\pi}{2}\right\}]$	$g'(x) = \dots$	
Q11/ /2pt	Soit h définie sur \mathbb{R}^+_* par $h(x) = \ln e^x - e^{2x} $ Déterminer h^{-1} .	$\forall x \in D_{h^{-1}} = \dots,$ $h^{-1}(x) = \dots$	
Q13/ /2pt	Calculer: $I = \lim_{x \to +\infty} \int_{1}^{x} \frac{x \ln x}{(1+x^2)^2} dx$		
Q13/ /2pt	Calculer $J = \int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$	J =	
Q14/	Résoudre l'équation différentielle	$y(x) = (K_1 \cos 3x + K_2 \sin 3x)e^{-x}$	
/2pt	$y'' + 2y' + 10y = \sin 3x$, $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} y(t)dt = 0$, $y'(\pi) = \frac{6}{37}$	$+\frac{4}{6}\sin 3x + \frac{1}{36}\cos 3x$	
Q15 2pt	Résoudre, dans \mathbb{R} , l'équation $3^x + 4^x = 5^x$	S= / ':	

Concours d'accès en 1ère année des années préparatoires

ENSAM-Casablanca - ENSAM-Meknès

Séries: sciences expérimentales et branches techniques

	II - QUESTIONS	À	CHOIX	MULTIPLES
--	----------------	---	-------	-----------

	1		e = Opt, plus d'une rép		One reponde contra	
	que:	solution uni	2mZ = 1 $x_1)Y + Z = 2$ admet u	$\left(-X-Y-X\right) = \left(-X-Y-X\right) = 0$		
1			mZ = 3	teme $\begin{cases} x + (1-\pi) \\ 2x + 3y + \end{cases}$	Pour quelles valeurs de m	L6: Po
i E	D			-1		
 	-1 et ¹ / ₂	bre positif	-1 et un no	uniquement -1	1 416	1
1					-1 et un nombre négatif	
1	a d'The and and a		$+\ln(x+1)$ est:	ie par $f(x) = x $	Sur $[0, +\infty[$, la fonction f	17: SI
		D		С	В	
 	sitive puis négative	e p	négative puis posit	urs négative		ho.
		e C_f admet:	$\frac{(1+\ln x)}{(1-\ln x)}$. Alors sa coul	a) = 0 at $f(x) = x$	toujours positive Soit f définie par $f(0) = \frac{1}{2}$	7 101
1	[5]		pre-	e) - 0 et j (v) · ·	Soit f definite par $f(0) = \frac{1}{2}$	18: Sc
1	D aucunes des		C		В	4
1	trois réponses	TII orbicalo	en x = e une d	= e une demi		and the local division in the local division
1			tangente à dro	ente à gauche	oblique en +∞	0
	RA MAROCAIN". On tire	nom "SAHA	chacun une lettre d	14 jetons portant	: Dans une boite se trouv	10. 0
	ettres du nom " SIVIARA	l'on tire les	probabilité pour qui	ons. Quelle est la	: Dans une boite se trouvessivement et sans remise	Ta: n
					un ordre quelconque?	ans u
1		D		[c]	1 [0]	
1	es des trois réponses	aucun	50	10		A
			145	001	6006	
	érotés: 2 , 2. Une boite B ₃	2 jetons num	Une boite Ba contien	numárntás: 1 3		
i i	jeton c de ${f B_3}$. Quelle est	in b de \mathbf{B}_2 , \mathbf{u}	n jeton a de B ₁ , un je	numeroles, 1, 5.	: Une boite B_1 contient 2 J tient 2 jetons numérotés :1	120: U
		s?	dmet des racines réel	$v^2 + bv + c = 0$ as	tient 2 jetons numerotes :1 robabilité pour que l'équati	ontie
		р			robabilité pour que requau	a prot
	1	7 1	0.75		В	A
				0,25	0,5	
1			- data les deux no	a arthonormá on i		024.5
-	et B(7, -5,5), 30113 1d	ts A(-1,1,1)	considere les deux po	e orthonorme, on	E Dans l'espace muni d'un	1/1:1
1 1 1 1	et B(7, -5,5). Solt 3 ld) est:	ts $A(-1,1,1)$ int $C(1,1-1)$	plan tangent à S au p	e segment $[AB]$. Le	i: Dans l'espace muni d'un ère dont l'un des diamètre	gzi: L sphère
1 1 1 1 1 2 1	in the second se	D	C	e segment [AB]. Le	i: Dans l'espace muni d'un l ère dont l'un des diamètre	sphère
	et $B(7, -5, 5)$. Soit S is est: $4x + 2y + 2z - 5 = 0$	D	C	segment [AD]. Le	ère dont l'un des diamètre	phère A
	in the second se	D	$\begin{array}{c c} c \\ \hline c \\ c \\ \hline c \\ c \\ \hline $	segment [AD]. Le $4x + 3y + 2z - 5 =$	ère dont l'un des diamètre $2x - 3y + 4z + 5 = 0$	phère
	in the second se	D	$\begin{array}{c c} c \\ \hline c \\ c \\ \hline c \\ c \\ \hline $	segment [AD]. Le $4x + 3y + 2z - 5 =$	ère dont l'un des diamètre	sphère A
	4x + 2y + 2z - 5 = 0	D	plantangent as $ax = 0$ $= 0 \qquad 2x + 2y - e^{\left(\frac{x}{n}\right)}dx. \text{ Alors}$	4x + 3y + 2z - 5 = $4n + 3y + 2z - 5 =$	ère dont l'un des diamètre $2x - 3y + 4z + 5 = 0$ 2: Soit $(u_n)_n$ la suite de ter	A Q22: S
	in the second se	- 5 = 0	prantangent as $ax = 0$ $= 0 \qquad 2x + 2y - e^{\left(\frac{x}{n}\right)} dx. \text{ Alors}$	e segment [AB]. Le $4x + 3y + 2z - 5 =$ énéral $u_n = \int_n^{n+1}$	ere dont l'un des diamètre $2x - 3y + 4z + 5 = 0$ 2: Soit $(u_n)_n$ la suite de ter	phère A
	4x + 2y + 2z - 5 = 0	- 5 = 0	plantangent as $a = \frac{ C }{ C }$ $= 0 \qquad 2x + 2y - \frac{x}{(n)} dx. \text{ Alors}$ $C \qquad \qquad \lim_{n \to +\infty} u_n = 1$	e segment [AB]. Le $4x + 3y + 2z - 5 =$ énéral $u_n = \int_n^{n+1} [u_n = 0]$	ere dont l'un des diamètre $2x - 3y + 4z + 5 = 0$ 2: Soit $(u_n)_n$ la suite de ter $\lim_{n \to \infty} u_n = +\infty$	A Q22: S
	4x + 2y + 2z - 5 = 0	- 5 = 0	plantangent as $a = \frac{ C }{ C }$ $= 0 \qquad 2x + 2y - \frac{x}{(n)} dx. \text{ Alors}$ $C \qquad \qquad \lim_{n \to +\infty} u_n = 1$	e segment [AB]. Le $4x + 3y + 2z - 5 =$ énéral $u_n = \int_n^{n+1} [u_n = 0]$	ere dont l'un des diamètre $2x - 3y + 4z + 5 = 0$ 2: Soit $(u_n)_n$ la suite de ter	A Q22: S
	$4x + 2y + 2z - 5 = 0$ $\lim_{n \to +\infty} u_n = e$	$-5 = 0$ \boxed{D}	prantangent as $a = \frac{ C }{ C }$ $= 0 \qquad Zx + 2y - y $ $= e^{\left(\frac{x}{n}\right)} dx. \text{ Alors}$ $= \lim_{n \to +\infty} u_n = 1$	e segment [AB]. Le $4x + 3y + 2z - 5 =$ énéral $u_n = \int_n^{n+1} [u_n = 0]$	ere dont l'un des diamètre $2x - 3y + 4z + 5 = 0$ 2: Soit $(u_n)_n$ la suite de ter $\lim_{n \to +\infty} u_n = +\infty$ 3: Sur \mathbb{R}^* , La fonction $f(x)$	A Q22: S
	4x + 2y + 2z - 5 = 0	$-5 = 0$ \boxed{D}	prantangent as $u_n = 0$ $= 0$ $= 0$ $2x + 2y - e^{\left(\frac{x}{n}\right)} dx. \text{ Alors}$ C $\lim_{n \to +\infty} u_n = 1$	e segment [AB]. Le $4x + 3y + 2z - 5 =$ énéral $u_n = \int_n^{n+1} [u_n = 0]$	ere dont l'un des diamètre $2x - 3y + 4z + 5 = 0$ 2: Soit $(u_n)_n$ la suite de ter $\lim_{n \to +\infty} u_n = +\infty$ 3: Sur \mathbb{R}^* , La fonction $f(x)$	A Q22: S
	$\lim_{n\to \pm\infty}u_n=e$	-5 = 0 D	plantangent as $u_n = 0$ $= 0 \qquad 2x + 2y - e^{\left(\frac{x}{n}\right)} dx. \text{ Alors}$ $C \qquad \lim_{n \to +\infty} u_n = 1$ $C \qquad \text{Un minimum log}$	e segment [AB]. Le $4x + 3y + 2z - 5 = 4x + 3y + 2x + 3y $	ère dont l'un des diamètre $2x - 3y + 4z + 5 = 0$ 2: Soit $(u_n)_n$ la suite de ter $\lim_{n \to +\infty} u_n = +\infty$ 3: Sur \mathbb{R}^* , La fonction $f(x)$	A Q22; S A Q23; S
	$\lim_{n\to \pm\infty}u_n=e$	-5 = 0 D	plantangent as $u_n = 0$ $= 0 \qquad 2x + 2y - e^{\left(\frac{x}{n}\right)} dx. \text{ Alors}$ $C \qquad \lim_{n \to +\infty} u_n = 1$ $C \qquad \text{Un minimum log}$	e segment [AB]. Le $4x + 3y + 2z - 5 = 4x + 3y + 2x + 3y $	ère dont l'un des diamètre $2x - 3y + 4z + 5 = 0$ 2: Soit $(u_n)_n$ la suite de ter $\lim_{n \to +\infty} u_n = +\infty$ 3: Sur \mathbb{R}^* , La fonction $f(x)$	A Q22; S
	$\lim_{n\to \pm\infty}u_n=e$	-5 = 0 D	plantangent as a up- $\begin{bmatrix} \mathbf{C} \\ = 0 \end{bmatrix} = 2x + 2y - e^{\left(\frac{x}{n}\right)} dx$. Alors $\begin{bmatrix} \mathbf{C} \\ n \rightarrow + \infty \end{bmatrix}$ $\begin{bmatrix} \mathbf{C} \\ \text{Un minimum loop} \end{bmatrix}$ $\begin{bmatrix} \mathbf{C} \\ \text{Un minimum loop} \end{bmatrix}$	e segment [AB]. Le $4x + 3y + 2z - 5 = 4x + 3y + 2x + 3y $	ere dont l'un des diamètre $2x - 3y + 4z + 5 = 0$ 2: Soit $(u_n)_n$ la suite de ter $\lim_{n \to +\infty} u_n = +\infty$ 3: Sur \mathbb{R}^* , La fonction $f(x)$ Un maximum local 4: Combien l'équation tan	A Q22; S
	$\lim_{n\to \pm\infty}u_n=e$	D al D alle de solution	plan tangent as dx possède-c	e segment [AB]. Le $4x + 3y + 2z - 5 = \frac{4x + 3y + 2z - 5}{4x + 6x}$ énéral $u_n = \int_n^{n+1} \frac{1}{n} $	ère dont l'un des diamètre $2x - 3y + 4z + 5 = 0$ 2: Soit $(u_n)_n$ la suite de ter $\lim_{n \to +\infty} u_n = +\infty$ 3: Sur \mathbb{R}^* , La fonction $f(x)$ Un maximum local 4: Combien l'équation $f(x)$	A Q22; S
	$\lim_{n\to+\infty} u_n = e$ Deux minimums locaux ans dans $\left[0, \frac{2\pi}{3}\right]$?	D al D alle de solution	plantangent as a up- $\begin{bmatrix} \mathbf{C} \\ = 0 \end{bmatrix} = 2x + 2y - e^{\left(\frac{x}{n}\right)} dx$. Alors $\begin{bmatrix} \mathbf{C} \\ n \rightarrow + \infty \end{bmatrix}$ $\begin{bmatrix} \mathbf{C} \\ \text{Un minimum loop} \end{bmatrix}$ $\begin{bmatrix} \mathbf{C} \\ \text{Un minimum loop} \end{bmatrix}$	e segment [AB]. Le $4x + 3y + 2z - 5 = 4x + 3y + 2x + 3y $	ère dont l'un des diamètre $2x - 3y + 4z + 5 = 0$ 2: Soit $(u_n)_n$ la suite de ter $\lim_{n \to +\infty} u_n = +\infty$ 3: Sur \mathbb{R}^* , La fonction $f(x)$ Un maximum local 4: Combien l'équation $f(x)$	Q22: S A Q23: S Q24:
	$\lim_{n\to+\infty} u_n = e$ Deux minimums locaux ans dans $\left[0, \frac{2\pi}{3}\right]$?	D al D alle de solution	plan tangent as dx possède-c	e segment [AB]. Le $4x + 3y + 2z - 5 = \frac{4x + 3y + 2z - 5}{4x + 6x}$ énéral $u_n = \int_n^{n+1} \frac{1}{n} $	ère dont l'un des diamètre $2x - 3y + 4z + 5 = 0$ 2: Soit $(u_n)_n$ la suite de ter $\lim_{n \to +\infty} u_n = +\infty$ 3: Sur \mathbb{R}^* , La fonction $f(x)$ Un maximum local 4: Combien l'équation $f(x)$	Q22: S A Q23: S A Q24:
	$\lim_{n\to+\infty} u_n = e$ Deux minimums locaux ans dans $\left[0, \frac{2\pi}{3}\right]$?	D al D alle de solution	prantangent as a up- $\begin{bmatrix} \mathbf{C} \\ = 0 \end{bmatrix} = 2x + 2y - e^{\left(\frac{x}{n}\right)} dx$. Alors $\begin{bmatrix} \mathbf{C} \\ \lim_{n \to +\infty} u_n = 1 \end{bmatrix}$ $\begin{bmatrix} \mathbf{C} \\ \text{Un minimum loop} \\ \tan 4x = 0 \text{ possède-} \\ \end{bmatrix}$ $\begin{bmatrix} \mathbf{C} \\ \text{Sept solutions} \end{bmatrix}$	e segment [AB]. Le $4x + 3y + 2z - 5 = 4x + 3x + 4x + 4x + 4x + 4x + 4x + 4x +$	ère dont l'un des diamètre $2x - 3y + 4z + 5 = 0$ 2: Soit $(u_n)_n$ la suite de ter $\lim_{n \to +\infty} u_n = +\infty$ 3: Sur \mathbb{R}^* , La fonction $f(x)$ Un maximum local 4: Combien l'équation $f(x)$	Q22: S A Q23: S Q24:
	$\lim_{n\to+\infty} u_n = e$ Deux minimums locaux ans dans $\left[0, \frac{2\pi}{3}\right]$?	D al D alle de solution	prantangent as a up- $\begin{bmatrix} \mathbf{C} \\ = 0 \end{bmatrix} = 2x + 2y - e^{\left(\frac{x}{n}\right)} dx$. Alors $\begin{bmatrix} \mathbf{C} \\ \lim_{n \to +\infty} u_n = 1 \end{bmatrix}$ $\begin{bmatrix} \mathbf{C} \\ \text{Un minimum loop} \\ \tan 4x = 0 \text{ possède-} \\ \end{bmatrix}$ $\begin{bmatrix} \mathbf{C} \\ \text{Sept solutions} \end{bmatrix}$	e segment [AB]. Le $4x + 3y + 2z - 5 = \frac{4x + 3y + 2z - 5}{4x + 6x}$ énéral $u_n = \int_n^{n+1} \frac{1}{n} $	ère dont l'un des diamètre $2x - 3y + 4z + 5 = 0$ 2: Soit $(u_n)_n$ la suite de ter $\lim_{n \to +\infty} u_n = +\infty$ 3: Sur \mathbb{R}^* , La fonction $f(x)$ Un maximum local 4: Combien l'équation $f(x)$	Q22: S A Q23: S Q24:
	$\lim_{n\to+\infty} u_n = e$ Deux minimums locaux ans dans $\left[0, \frac{2\pi}{3}\right]$?	D D Plus	prantangent as a up- $\begin{bmatrix} \mathbf{C} \\ = 0 \end{bmatrix} = 2x + 2y - e^{\left(\frac{x}{n}\right)} dx$. Alors $\begin{bmatrix} \mathbf{C} \\ \lim_{n \to +\infty} u_n = 1 \end{bmatrix}$ $\begin{bmatrix} \mathbf{C} \\ \text{Un minimum loop} \\ \tan 4x = 0 \text{ possède-} \\ \end{bmatrix}$ $\begin{bmatrix} \mathbf{C} \\ \text{Sept solutions} \end{bmatrix}$	e segment [AB]. Le $4x + 3y + 2z - 5 = 4x + 3x + 4x + 4x + 4x + 4x + 4x + 4x +$	ère dont l'un des diamètre $2x - 3y + 4z + 5 = 0$ 2: Soit $(u_n)_n$ la suite de ter $\lim_{n \to +\infty} u_n = +\infty$ 3: Sur \mathbb{R}^* , La fonction $f(x)$ Un maximum local 4: Combien l'équation tan Cinq solutions B	Q22: S A Q23: S Q24:

Ecole Nationale Supérieure d'Arts et Métiers , Meknès — Casablanca

CONCOURS COMMUN D'ACCÈS EN PREMIÈRE ANNÉE

Filières: Sciences Expérimentales et Techniques

Epreuve de Mathématiques

Lundi 29 Juillet 2013 - Durée : 2h 02mn

- Les questions sont à réponse PRÉCISE
- Les questions sont INDÉPENDANTES
- Chaque question est NOTÉE sur (2Pts)

Questions	Réponses
Répondre par Vrai ou Faux : si la proposition q est la	
négation de la proposition p 1. $(p): n \in \mathbb{N}$ est pair. $(q): n \in \mathbb{N}$ est impair. 2. $(p): f$ est paire. $(q): f$ est impaire.	1. : ···································
 3. (p): Ali est Meknassi. (q): Ali est Casablancais. 4. (p): Mohammed ne voyage jamais sans bagages. (q): Mohammed voyage toujours avec des bagages. 	4. :
Résoudre le système : $ \begin{cases} x^2 - y^2 &= 12 \\ \ln x - \ln y &= \ln 2 \end{cases} $	$S = \cdots $
Déterminer trois réels a , b et c en progression arithmétique tels que $\begin{cases} a+b+c &= 9 \\ a^3+b^3+c^3 &= 153 \end{cases}$	$S = \cdots$
Déterminer l'ensemble des $x \in IR$ tels que : $\sin{(\sin{x})} = 1$	S =
Trouver un polynôme P de degré minimum tel que $P(-1) = -2$, $P(0) = 1$, $P(1) = 0$ et $P(2) = 4$	$P(x) = \cdots$
Déterminer l'ensemble des réels x vérifiant : $\frac{2x+1}{x+1} \leq \frac{2-3x}{2-x}$	$S = \cdots$
Pour $n \in \mathbb{N}$, calculer $A_n = \sum_{i=0}^n \sum_{j=0}^n \max(i, j)$ sachant que $\sum_{k=0}^n k = \frac{n(n+1)}{2} \text{ et } \sum_{k=0}^n k^2 = \frac{n(n+1)(2n+1)}{6}$	$A_n = \cdots$
Soit $n \in \mathbb{N}$ tel que $n \geq 3$, calculer $B_n = \prod_{k=3}^n \frac{k^2 - 1}{k^2 + k - 6}$.	$B_n = \cdots$
Déterminer le domaine de définition de la fonction $f(x) = \sqrt{10 - x - 6\sqrt{x - 1}} - \sqrt{5 - x - 4\sqrt{x - 1}}$	$D_f = \cdots$
Quelles sont les fonctions de $I\!\!R$ dans $I\!\!R$ qui sont à la fois croissantes et périodiques ?	

Questions	Réponses
Calculer $L = \lim_{x \to 0} \frac{\sin(x) + \tan(x)}{\sqrt{x^2}}$.	$L = \cdots \cdots$
Calculer $g \circ f$ telle que $f(x) = \begin{cases} x+3 & \text{si } 0 \le x \\ x^2 & \text{si } 0 > x \end{cases}$ $\text{et } g(x) = \begin{cases} 2x+1 & \text{si } x \le 3 \\ x & \text{si } x > 3 \end{cases}$	$g\circ f(x)=$
Déssiner l'allure d'une fonction f vérifiant les conditions suivantes : (a) f est continue sur $[0, 1]$. (b) $f(0) = 0$ et $f(1) = 1$. (c) $\forall x \in [0, 1], f(x) \leq x$. (d) f n'est pas bijective	
Soit f la fonction de variable réelle telle que $f(x) = \frac{3x+2}{x^2+3x+2}$. Déterminer $f(D_f)$ où D_f est le domaine de définition de f	$f(D_f) = \cdots$
Soit a un paramètre réel et f_a la fonction définie par $f_a(x) = e^{-x} + ax$. On désigne par C_a la représentation graphique de f_a dans un plan rapporté au repère (O, i, j) . Déterminer le point d'intersection $M(x_0, y_0)$ de la tangente de f_a au point d'abscisse x_0 avec l'axe (O, j) .	$M(x_0, y_0) = \cdots$
On considère une fonction h dérivable sur \mathbb{R}^* telle que $h'(x) = \frac{1}{x}$. On pose $F(x) = h\left(x + \sqrt{1 + x^2}\right)$. Calculer $F'(x)$	$F'(x) = \cdots$
$\forall x \in]0, +\infty[f(x) = \int_{1}^{x} \frac{\ln t}{1+t^{2}} dt.$ Soit $g(x) = f(x) - f\left(\frac{1}{x}\right)$ avec $x > 0$. Calculer $g'(x)$	$g'\left(x ight) = \cdots$
Calculer $I = \int_0^x (t-1) \exp(-t) dt$ avec $x \in \mathbb{R}$	<i>I</i> = · · · · · · · · · · · · · · · · · ·
Calculer $J = \int_0^{11} x^2 - 5x + 6 dx$	$J = \cdots$
Déterminer le minimum de l'expression $x^2 + y^2$ dans le cas suivant $x + 2y = 5$	S =
Le prof de Maths est enrhumé. Il utilise des mouchoirs carrés de 25cm de côté. En huit jours, il a utilisé 6 mètres carré de tissu. Combien en moyenne, a t-il utilisé de mouchoires par jour?	Moy/j =
Une boite de bonbons pèse 1kg. La boite vide pèse $900g$ de moins que les bonbons. Quelle est le poids P de la boite?	$P = \cdots$
De quelle façon peut-on obtenir 100 en utilisant un seul chiffre $(0,1,\dots,9)$ 6 fois et 2 opérations $(+,-,\times,\div)$?	100 =

Ecole Nationale Supérieure d'Arts et Métiers , Meknès — Casablanca

CONCOURS COMMUN D'ACCÈS EN PREMIÈRE ANNÉE

Filières: Sciences Expérimentales et Techniques

Epreuve de Mathématiques

Lundi 29 Juillet 2013 - Durée : 2h 02mn

- Les questions sont à réponse PRÉCISE
- Les questions sont INDÉPENDANTES
- Chaque question est NOTÉE sur (2Pts)

Questions	Réponses	
 Répondre par Vrai ou Faux : si la proposition q est la négation de la proposition p 1. (p) : n ∈ IN est pair. (q) : n ∈ IN est impair. 2. (p) : f est paire. (q) : f est impaire. 3. (p) : Ali est Meknassi. (q) : Ali est Casablancais. 4. (p) : Mohammed ne voyage jamais sans bagages. (q) : Mohammed voyage toujours avec des bagages. 	1. :	
Résoudre le système : $ \begin{cases} x^2 - y^2 &= 12 \\ \ln x - \ln y &= \ln 2 \end{cases} $	S =	
Déterminer trois réels a , b et c en progression arithmétique tels que $\begin{cases} a+b+c &= 9 \\ a^3+b^3+c^3 &= 153 \end{cases}$	$S = \{ (0.1, 3.5) \}$	
Déterminer l'ensemble des $x \in IR$ tels que : $\sin (\sin x) = 1$	$S = -\sqrt{2}$	
Trouver un polynôme P de degré minimum tel que $P(-1) = -2$, $P(0) = 1$, $P(1) = 0$ et $P(2) = 4$	$P(x) = \left(x+1\right) \left(\frac{(x+1)(x-2)}{2} - \frac{x(x-2)}{3} + \frac{2x(x-2)}{3}\right)$	3
Déterminer l'ensemble des réels x vérifiant : $\frac{2x+1}{x+1} \leq \frac{2-3x}{2-x}$	$S = \dots $	
Pour $n \in \mathbb{N}$, calculer $A_n = \sum_{i=0}^n \sum_{j=0}^n \max(i, j)$ sachant que $\sum_{k=0}^n k = \frac{n(n+1)}{2} \text{ et } \sum_{k=0}^n k^2 = \frac{n(n+1)(2n+1)}{6}$	$A_n = \frac{n(n+1)(4n-1)}{6}$	
Soit $n \in \mathbb{N}$ tel que $n \geq 3$, calculer $B_n = \prod_{k=3}^n \frac{k^2 - 1}{k^2 + k - 6}$.	$B_n = \frac{20(n-1)}{(n+2)(n+3)}$	
Déterminer le domaine de définition de la fonction $f(x) = \sqrt{10 - x - 6\sqrt{x - 1}} - \sqrt{5 - x - 4\sqrt{x - 1}}$	$D_f = \sqrt{143}$	
Quelles sont les fonctions de $I\!\!R$ dans $I\!\!R$ qui sont à la fois croissantes et périodiques ?	Ses fon J:ons constantes	

Questions	Réponses
Calculer $L = \lim_{x \to 0} \frac{\sin(x) + \tan(x)}{\sqrt{x^2}}$.	L =2.
Calculer $g \circ f$ telle que $f(x) = \begin{cases} x+3 & \text{si } 0 \le x \\ x^2 & \text{si } 0 > x \end{cases}$ $\text{et } g(x) = \begin{cases} 2x+1 & \text{si } x \le 3 \\ x & \text{si } x > 3 \end{cases}$	$g \circ f(x) = \begin{cases} 2x + 7 & x < 0 \\ 2x^2 + 1 & o < x < 3 \\ x^2 & x > 3 \end{cases}$
Déssiner l'allure d'une fonction f vérifiant les conditions suivantes : (a) f est continue sur $[0, 1]$. (b) $f(0) = 0$ et $f(1) = 1$. (c) $\forall x \in [0, 1], f(x) \le x$. (d) f n'est pas bijective	-> y=x
Soit f la fonction de variable réelle telle que $f(x) = \frac{3x+2}{x^2+3x+2}$. Déterminer $f(D_f)$ où D_f est le domaine de définition de f	$f(D_f) = \dots] \dots \infty, \wedge] \dots \cup [9, \dots] \dots$
Soit a un paramètre réel et f_a la fonction définie par $f_a(x) = e^{-x} + ax$. On désigne par C_a la représentation graphique de f_a dans un plan rapporté au repère (O, i, j) . Déterminer le point d'intersection $M(x_0, y_0)$ de la tangente de f_a au point d'abscisse x_0 avec l'axe (O, j) .	$M(x_0, y_0) = \left(x_0 - \frac{e^{-x_0}}{a - e^{-x_0}} \dots \right) \dots$
On considère une fonction h dérivable sur \mathbb{R}^* telle que $h'(x) = \frac{1}{x}$. On pose $F(x) = h\left(x + \sqrt{1 + x^2}\right)$. Calculer $F'(x)$	$F'(x) = \frac{1}{x + \sqrt{1 + x^2}} \cdot \cdot + \frac{x}{x \sqrt{x^2 + 1}} \cdot \frac{x}{4 (x^2 + 1)}$
$\forall x \in]0, +\infty[f(x) = \int_1^x \frac{\ln t}{1+t^2} dt.$ Soit $g(x) = f(x) - f\left(\frac{1}{x}\right)$ avec $x > 0$. Calculer $g'(x)$	$g'\left(x ight)=\cdots$ 0
Calculer $I = \int_0^x (t-1) \exp(-t) dt$ avec $x \in \mathbb{R}$	$I = \cdots \times \mathcal{K} \cdot \mathcal{C}^{-\mathcal{K}}$
Calculer $J = \int_0^{11} x^2 - 5x + 6 dx$	J= (x2.5x. +6)dx.+5(x2-5x.+6)dx.+5.(x2.5x+6
Déterminer le minimum de l'expression x^2+y^2 dans le cas suivant $x+2y=5$	s =5
Le prof de Maths est enrhumé. Il utilise des mouchoirs carrés de 25cm de côté. En huit jours, il a utilisé 6 mètres carré de tissu. Combien en moyenne, a t-il utilisé de mouchoires par jour ?	Moy/j = la. mouchois. / Jour
Une boite de bonbons pèse 1kg. La boite vide pèse $900g$ de moins que les bonbons. Quelle est le poids P de la boite ?	P =50.g
De quelle façon peut-on obtenir 100 en utilisant un seul chiffre $(0,1,\dots,9)$ 6 fois et 2 opérations $(+,-,\times,\div)$?	100 = 29 + 29 29

$oldsymbol{U}$ niversité $oldsymbol{M}$ oulay $oldsymbol{I}$ smaïl

$m{E}$ cole $m{N}$ ationale $m{S}$ upérieure d' $m{A}$ rts et $m{M}$ étiers — $m{M}$ eknès

CONCOURS D'ENTREE en 1ère Année

Filières : Sciences Expérimentales et Techniques

Epreuve de Mathématiques

Jeudi 26 Juillet 2012 - Durée : 2h 00mn

Ouestions à réponse présise Partie A

Questions à réponse précise, Partie A	
NB : Chaque question est notée sur (1Pt)	
Questions	Réponses
Trouver la prériode T de la fonction suivante : $f(x) = \sin\left(\frac{x}{2}\right) + \cos\left(x\right)$	
Résoudre dans IR l'équation : $\cos^4(x) - \sin^4(x) = 1$	
Déterminer $a, b \in \mathbb{R}$ tels que $(1+i)^9 = a+ib$	
Déterminer le réel a pour que le nombre complexe $z = \frac{1+ai}{2a+(a^2-1)i} \text{ soit imaginaire pur}$	
Donner un exemple de fonction non nulle $f: \mathbb{R} \longrightarrow \mathbb{R}$ telle que $f(x+y) = f(x) f(y) \forall (x,y) \in \mathbb{R}^2$	
Soit f une fonction dérivable sur IR , calculer la dérivée de $g(x) = \exp\left(\left(f\left(x^2\right)\right)^2\right)$	
Soit $E = \mathbb{R} \setminus \{-2\}$ et soit $f : E \longrightarrow \mathbb{R}$ telle que $f(x) = \frac{x+1}{x+2}$, déterminer $f(E)$	
Trouver les maximums et les minimums de la fonction $f:[-1, 1] \longrightarrow \mathbb{R}$ définie par $f(x) = \left x^2 - x\right + \left x\right $	
On donne les points $A(1,2)$, $B(-2,1)$ et $C(0,4)$. Déterminer l'angle \widehat{BAC} en radian	
Soit x un réel positif. Combien y-a-t-il d'entiers naturels pairs entre 0 et x ?	

	Pánanga
Questions	Réponses
Soit E un ensemble, et A , B deux sous ensembles de E . On appelle différence symétrique de A et B , notée $A\Delta B$, le sous-ensemble de E : $A\Delta B = \{x \in A \cup B \mid x \notin A \cap B\}$. Calculer $A\Delta E$ et $A\Delta C_E^A$	
Le périmètre d'un triangle isocèle vaut 1. Déterminer les dimensions de ce triangle pour que son aire soit la plus grande possible.	
Calculer $I = \int_{-1}^{1} \frac{1}{x^2 - 2} dx$	
Calculer $J = \int_{n\pi}^{(n+1)\pi} e^{-x} \sin x dx$	
Pour les deux fonctions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ définies	
Pour les deux fonctions $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ définies respectivement par $f(x) = \begin{cases} x+3 & \text{si } x \geq 0 \\ x^2 & \text{si } x < 0 \end{cases}$ et $g(x) = \begin{cases} 2x+1 & \text{si } x \geq 3 \\ x & \text{si } x < 3 \end{cases}$. Calculer $g \circ f$	
$g(x) = \begin{cases} 2x+1 & \text{si } x \ge 3 \\ x & \text{si } x < 3 \end{cases} . \text{ Calculer } g \circ f$	
Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ la fonction définie par $f(x) = \begin{cases} \sqrt{x^4 + 1} - \left(ax^2 + b\right) + \frac{1 - \cos\left(cx\right)}{x^2} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$ Déterminer $a, b, c \in \mathbb{R}$ de sorte que f est continue en 0 et $\lim_{x \to +\infty} f(x) = -3$	
Résoudre dans IR l'équation	
$\sqrt{x+2\sqrt{x-1}} + \sqrt{x-2\sqrt{x-1}} = 1$	
Calculer $A = \lim_{n \to +\infty} n \ln \sqrt{\frac{n+1}{n-1}}$	
De combien de façon peut-on payer 10 DHS avec des pièces de 10 et 20 centimes ? (1 DH = 100 centimes)	
Soient x_1 , x_2 et x_3 les racines de $x^3 + 2x - 1 = 0$, calculer $X = x_1^3 + x_2^3 + x_3^3$	
Représenter graphiquement la partie de $\mathscr C$ définie par $ \pi - \arg{(z)} < \frac{\pi}{4}$	
Déterminer la projection orthogonale du point $M(x_0, y_0)$ sur la droite (D) d'équations : $x+3y-5=0$	
Déterminer le quotient et le reste de la division euli- dienne de $X^5-7X^4-X^2-9X+9$ par X^2-5X+4	

$oldsymbol{U}$ niversité $oldsymbol{M}$ oulay $oldsymbol{I}$ smaïl

Ecole Nationale Supérieure d'Arts et Métiers — Meknès

CONCOURS D'ENTREE en 1ère Année

Filières : Sciences Expérimentales et Techniques

Epreuve de Mathématiques

Jeudi 26 Juillet 2012 - Durée : 2h 00mn

Questions à réponse précise, Partie A

NB : Chaque question est notée sur (1Pt)	
Questions	Réponses
Trouver la prériode T de la fonction suivante : $f(x) = \sin\left(\frac{x}{2}\right) + \cos\left(x\right)$	$f(n+4\pi) = \sin(2\pi + \frac{n}{2}) + \cos(n+4\pi)$ = $f(n)$ =) $T = 4\pi$
Résoudre dans $I\!\!R$ l'équation : $\cos^4(x) - \sin^4(x) = 1$	S= {KT /KEZZ
Déterminer $a, b \in IR$ tels que $(1+i)^9 = a+ib$	a=b=16
Déterminer le réel a pour que le nombre complexe $z=\frac{1+ai}{2a+(a^2-1)i}$ soit imaginaire pur	
Donner un exemple de fonction non nulle $f: \mathbb{R} \longrightarrow \mathbb{R}$ telle que $f(x+y) = f(x) f(y) \forall (x,y) \in \mathbb{R}^2$	
Soit f une fonction dérivable sur IR , calculer la dérivée de $g(x) = \exp\left(\left(f\left(x^2\right)\right)^2\right)$	g'(n)= 4n f(n2) f'(n1)g(n)
Soit $E = \mathbb{R} \setminus \{-2\}$ et soit $f : E \longrightarrow \mathbb{R}$ telle que $f(x) = \frac{x+1}{x+2}$, déterminer $f(E)$	f(E) = R\{1}
Trouver les maximums et les minimums de la fonction $f: [-1, 1] \longrightarrow \mathbb{R}$ définie par $f(x) = x^2 - x + x $	Max $f(u) = 3$ $u \in [-1,1]$ $f(u) = 0$ $u \in [-1,1]$ $f(u) = 0$
On donne les points $A(1,2)$, $B(-2,1)$ et $C(0,4)$. Déterminer l'angle \widehat{BAC} en radian	$\cos B\widehat{A}C = \frac{AB^2 + AC^2 - BC^2}{2AB - AC} = 0.02$ $= \sum_{A} \widehat{A}C = 1.55 \text{ rad}$
Soit x un réel positif. Combien y-a-t-il d'entiers naturels pairs entre 0 et x ?	

NB : Chaque question est notée sur (2Pts)	
Questions	Réponses
Soit E un ensemble, et A , B deux sous ensembles de E . On appelle différence symétrique de A et B , notée $A\Delta B$, le sous-ensemble de E : $A\Delta B = \{x \in A \cup B \mid x \not\in A \cap B\}$. Calculer $A\Delta E$ et $A\Delta C_E^A$	Par definition $A\Delta E = (AUE)(ANE) = E A = \overline{A}$ $A\Delta \overline{A} = (AU\overline{A})(AN\overline{A}) = E \phi = E$
Le périmètre d'un triangle isocèle vaut 1. Déterminer les dimensions de ce triangle pour que son aire soit la plus grande possible.	$AB = AC = BC = \frac{1}{3}$
Calculer $I = \int_{-1}^{1} \frac{1}{x^2 - 2} dx$	I= 1/2 ln (1/2-1)
Calculer $J = \int_{n\pi}^{(n+1)\pi} e^{-x} \sin x \ dx$	$J = \frac{(-1)^n e^{-n\pi} (e^{-\pi} + 1)}{2}$
Pour les deux fonctions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ définies respectivement par $f(x) = \left\{ \begin{array}{ll} x+3 & \text{si } x \geq 0 \\ x^2 & \text{si } x < 0 \end{array} \right.$ et $g(x) = \left\{ \begin{array}{ll} 2x+1 & \text{si } x \geq 3 \\ x & \text{si } x < 3 \end{array} \right.$ Calculer $g \circ f$	$gof = \frac{2n+7}{2} \text{ si } n \in [0,+\infty[$ $gof = \frac{2n^2+3}{2n^2+3} n \in [-\sqrt{3},0[$
Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = \begin{cases} \sqrt{x^4+1} - \left(ax^2+b\right) + \frac{1-\cos\left(cx\right)}{x^2} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$ Déterminer $a, b, c \in \mathbb{R}$ de sorte que f est continue en 0 et $\lim_{x \to +\infty} f(x) = -3$	
Résoudre dans $I\!\!R$ l'équation $\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=1$ Calculer $A=\lim_{n\to+\infty}n\ln\sqrt{\frac{n+1}{n-1}}$	
De combien de façon peut-on payer 10 DHS avec des pièces de 10 et 20 centimes ? (1 DH = 100 centimes)	
Soient x_1 , x_2 et x_3 les racines de $x^3 + 2x - 1 = 0$, calculer $X = x_1^3 + x_2^3 + x_3^3$	
Représenter graphiquement la partie de ${\cal C}$ définie par $ \pi - { m arg}(z) < rac{\pi}{4}$	
Déterminer la projection orthogonale du point $M(x_0, y_0)$ sur la droite (D) d'équations : $x+3y-5=0$	
Déterminer le quotient et le reste de la division euli- dienne de $X^5 - 7X^4 - X^2 - 9X + 9$ par $X^2 - 5X + 4$	

$oldsymbol{U}$ niversité $oldsymbol{M}$ oulay $oldsymbol{I}$ smaïl Ecole Nationale Supérieure d'Arts et Métiers — Meknès

CONCOURS D'ENTREE en 1ère Année

Filières : Sciences Expérimentales et Techniques

Epreuve de Mathématiques

Mardi 09/08/11 - Durée : 2h 10mn

Questions à réponse précise, Partie I

\parallel Questions à réponse précise, $\operatorname{Partie} I \parallel$ Répondre dans la colonne Réponses (NB : Chaque question est notée sur (1Pt))	
Repolitine danie to	Réponses
Questions	
Les propositions suivantes sont-elles vraies ou fausses?	
(a) La somme de deux fonctions monotones est monotone	
(b) $\forall x > 1$, $\frac{x-1}{\ln(x-1)} \in \mathbb{R}$	
(c) Soit A, B et C trois ensembles, on a $(A \cup B) \cap C = A \cup (B \cap C)$	
(d) $\forall x \in \mathbb{R}, x^2 < 0 \Longrightarrow x < 0$	
(e) La somme de deux irrationnels est un irra- tionnel	
Traduire à l'aide des quantificateurs les propositions suivantes :	
(a) La fonction f est constante sur $[0, 5]$	
(b) La fonction ψ est strictement décroissante et positive	
(c) La fonction g n'est pas injective su l'ensemble E	
(d) La fonction h , définie sur IR , atteint toute les valeurs de IN	os
(e) Tout réel possède une racine carré dans II	3

Questions à réponse précise, Partie II

Répondre dans la colonne Réponses	(Chaque question est notée sur (2Pts))
Questions	Réponses
Soit le segment $P_1(-8,5)$ et $P_2(6,11)$. Déterminer les coordonnées du point $P(x,y)$ situé aux deux tiers de ce segment à partir du point P_1	
Trouver les entiers relatifs a , b et c de sorte que pour tout $x \in \mathbb{R}$, $(x-a)(x-10)+1=(x+b)(x+c)$	
E, F et G étant trois ensembles finis, exprimer $card(E \cup F \cup G)$ en fonction des cardinaux des ensembles $E, F, G, E \cap F, E \cap G, F \cap G$ et $E \cap F \cap G$	
Exprimer à l'aide d'intervalles de $I\!\!R$ l'ensemble suivant : $A = \{x \in I\!\!R \ / \ 2 \le x < 4\}$	
Représenter graphiquement le domaine limité par : $x^2 + y^2 + 2y \le 3$, $x + y \le 0$ et $x > -1$	
Comment faire 21 avec les chiffres 1 5 6 et 7 utilisés qu'une fois chacun, et en utilisant à sor gré les opérateurs simples +, -, * et /	
Calculer le nombre complexe $B = \left(\frac{1+i\sqrt{3}}{1-i}\right)^{2i}$	0
Calculer $\alpha = \sum_{k=1}^{n} \frac{2^k + 3^{k+2}}{5^{k+1}}$	
Calculer $\beta = \sum_{k=1}^{n} (2k+7)$	
Diviser $20xy + 5y^2 - 10y - 12x + 6$ par $5y - 4$ avec $x \in \mathbb{R}$ est un paramètre fixé	3

Questions à réponse précise, Partie C

Répondre dans la colonne Réponses (NB	3 : Chaque question est notée sur (2Pts))
Questions	Réponses
our quelles valeurs de $\beta \in \mathbb{R}$, l'équation $2^2 + \sqrt{x} - \beta = 0$ admet une unique racine dans intervalle $[0, 1]$?	
Déterminer la fonction f telle que $gof(x) = 2 x $ achant que g est la fonction définie par $g(x) = \begin{cases} e^x & \text{si } x < 0 \\ \sqrt{x+1} & \text{si } x \ge 0 \end{cases}$	
Calculer $\int t^3 \cos t^2 dt$	
Soit la fonction f définie sur $I = [0, 3]$ par $f(x) = \begin{cases} -1 & \text{si } x = 0 \\ xe^{x^2} & \text{si } x \in]0, 2[\\ 1 & \text{si } x = 2 \\ \frac{2x}{1+x^2} & \text{si } x \in]2, 3] \end{cases}$ Calculer $F(x) = \int_0^x f(x) dx$ avec $x \in I$	
On considère, pour tout $n \in I\!N^*$, l'intégrale $I_n = \int_0^1 x^n e^{2x} dx$. Trouver une relation entre I_n et I_{n-1} avec $n > 1$	
Calculer la dérivée, lorsqu'elle existe, de la fonction suivante : $f(x) = x \ln x+1 $	
Déterminer l'équation de la droite qui est asymptote à la courbe C_f en $+\infty$ de la fonction f , définie sur \mathbb{R}^* par $f(x) = \frac{2e^x + 1}{1 - e^x}$	
Calculer $\lim_{x \to +\infty} \frac{2x+1}{\sqrt[3]{x^3+3x}}$	
Résoudre dans \mathbb{R} l'équation $ E(x) = 3$ avec $E(x)$ est la partie entière de x	
Donner l'ensemble S des réels appartenant à l'intervalle $[0, 2\pi[$ vérifiant l'équation : $(\sin x)^2 + \frac{\sqrt{3}}{2}\sin x = 0$	i.

$oldsymbol{U}$ niversité $oldsymbol{M}$ oulay $oldsymbol{I}$ sma $\ddot{ ext{il}}$ Ecole Nationale Supérieure d'Arts et Métiers — Meknès

CONCOURS D'ENTREE en 1ère Année

Filières : Sciences Expérimentales et Techniques

Epreuve de Mathématiques

Mardi 09/08/11 - Durée : 2h 10mn

Questions à répor	NB : Chaque question est notée sur (1Pt))
Repolitire dans la control	Réponses
Questions	
 Les propositions suivantes sont-elles vraies ou fausses? (a) La somme de deux fonctions monotones est monotone (b) ∀x > 1, x-1/ln(x-1) ∈ IR (c) Soit A, B et C trois ensembles, on a (A∪B) ∩ C = A∪(B∩C) (d) ∀x ∈ IR, x² < 0 ⇒ x < 0 (e) La somme de deux irrationnels est un irrationnel 	(b) Fourse. Df =]1,2[U]2,+10[(c) Fourse. pour A=B=Ret C=RT (AUB) n C=Rt et AU(Bnc) = R (d) Vrai, (e) Fourse, V2,-V2 sont irrationnels mais feur somme qui est nulle n'est pas irrational
 Traduire à l'aide des quantificateurs les propositions suivantes : (a) La fonction f est constante sur [0, 5] (b) La fonction ψ est strictement décroissante et positive (c) La fonction g n'est pas injective su l'ensemble E (d) La fonction h, définie sur IR, atteint toute les valeurs de IN (e) Tout réel possède une racine carré dans II 	$(a)(\exists k \in \mathbb{R}) (\forall u \in [0.5]) \ f(u) = k$ $(a)(\exists a \in \mathbb{R}) \ b = a^2$

Questions à réponse précise, Partie II

Répondre dans la colonne Réponses	(Chaque question est notée sur (2Pts))
Questions	Réponses
Soit le segment $P_1(-8,5)$ et $P_2(6,11)$. Déterminer les coordonnées du point $P(x,y)$ situé aux deux tiers de ce segment à partir du point P_1	
Trouver les entiers relatifs a , b et c de sorte que pour tout $x \in \mathbb{R}$, $(x-a)(x-10)+1=(x+b)(x+c)$	
$E, F \text{ et } G \text{ étant trois ensembles finis, exprimer } $ $card\left(E \cup F \cup G\right)$ en fonction des cardinaux des ensembles $E, F, G, E \cap F, E \cap G, F \cap G$ et $E \cap F \cap G$	Card (EUFUG) = Card (E) + Card (F) + Card (G) - Card (ENF) - Card (ENG) - Card (FNG) + Card (ENFNG)
Exprimer à l'aide d'intervalles de $I\!\!R$ l'ensemble suivant : $A = \{x \in I\!\!R \ / \ 2 \le x < 4\}$	A = [2,4] U[-4,-2]
Représenter graphiquement le domaine limité par : $x^2+y^2+2y\leq 3$, $x+y\leq 0$ et $x>-1$	
Comment faire 21 avec les chiffres 1 5 6 et 7 utilisés qu'une fois chacun, et en utilisant à son gré les opérateurs simples +, -, * et /	6: (1-5=7)=6==================================
Calculer le nombre complexe $B = \left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$	$B = \left[\sqrt{2}, \frac{7\pi}{12}\right]^{24} = \left[2^{12}, 14\pi\right] = 2^{12} + 40^{\circ}$
Calculer $\alpha = \sum_{k=1}^{n} \frac{2^k + 3^{k+2}}{5^{k+1}}$	$a = \frac{2}{15} \left(1 - \left(\frac{2}{5} \right)^n \right) + \frac{27}{10} \left(1 - \left(\frac{3}{5} \right)^n \right)$
Calculer $\beta = \sum_{k=1}^{n} (2k+7)$	$\beta = \sum_{k=1}^{n} (2k+7) = h(n+8)$
Diviser $20xy + 5y^2 - 10y - 12x + 6$ par $5y - 3$ avec $x \in \mathbb{R}$ est un paramètre fixé	

Questions à réponse précise, Partie C

Répondre dans la colonne Réponses (NI	3 : Chaque question est notée sur (2Pts))
Repollure della la	Réponses
Questions our quelles valeurs de $\beta \in IR$, l'équation $2^2 + \sqrt{x} - \beta = 0$ admet une unique racine dans intervalle $[0, 1]$?	
Déterminer la fonction f telle que $g \circ f(x) = 2 x $ achant que g est la fonction définie par $g(x) = \begin{cases} e^x & \text{si } x < 0 \\ \sqrt{x+1} & \text{si } x \geq 0 \end{cases}$	
Calculer $\int t^3 \cos t^2 dt$	- coset + t4.cost + 1/4
Soit la fonction f définie sur $I = [0, 3]$ par $f(x) = \begin{cases} -1 & \text{si } x = 0 \\ xe^{x^2} & \text{si } x \in]0, 2[\\ 1 & \text{si } x = 2 \\ \frac{2x}{1+x^2} & \text{si } x \in]2, 3] \end{cases}$ Calculer $F(x) = \int_0^x f(x) dx$ avec $x \in I$ On considère, pour tout $n \in IN^*$, l'intégrale $I_n = \int_0^1 x^n e^{2x} dx$. Trouver une relation entre I_n et I_{n-1} avec $n > 1$	
Calculer la dérivée, lorsqu'elle existe, de la fonction suivante : $f(x) = x \ln x+1 $	
Déterminer l'équation de la droite qui est asymptote à la courbe C_f en $+\infty$ de la fonction f , définie sur \mathbb{R}^* par $f(x) = \frac{2e^x + 1}{1 - e^x}$	
Calculer $\lim_{x \to +\infty} \frac{2x+1}{\sqrt[3]{x^3+3x}}$	
Résoudre dans IR l'équation $ E(x) = 3$ avec $E(x)$ est la partie entière de x	
Donner l'ensemble S des réels appartenant à l'intervalle $[0, 2\pi[$ vérifiant l'équation : $(\sin x)^2 + \frac{\sqrt{3}}{2}\sin x = 0$	à.

$oldsymbol{U}$ niversité $oldsymbol{M}$ oulay $oldsymbol{I}$ sma $\ddot{ extsf{I}}$

$oldsymbol{E}$ cole $oldsymbol{N}$ ationale $oldsymbol{S}$ upérieure d' $oldsymbol{A}$ rts et $oldsymbol{M}$ étiers — $oldsymbol{M}$ eknès

CONCOURS D'ENTREE en 1ère Année

Filière: Sciences Expérimentales et Techniques

Epreuve de Mathématiques

Mardi 22/07/08 - Durée : 3h 03mn

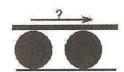
N.B. * La rédaction peut être en français ou en arabe

* La rigueur du raisonnement, la clarté de la rédaction et la qualité de la présentation seront des éléments importants d'appréciation de la copie.

|| Exercice I, Barème: 10 Pts (chaque question est notée sur 2Pts) ||

Q1.1 Calculer $(1 + q + q^2 + \dots + q^n) (1 - q)$

Q1.2 Soit la fonction numérique f de la variable réelle x définie sur $\mathbb{R}\setminus\{-1,1\}$ par


$$f(x) = (x^2 - 1) \ln \left(\left| \frac{1+x}{1-x} \right| \right)$$

Etudier la parité de la fonction f

Q1.3 Soit $x \in \mathbb{R}$, on note (E): $e^{2x} - 2me^x + 1 = 0$. Déterminer l'ensemble des valeurs de m pour lesquelles l'équation (E) n'admet pas de racine réelle

 $\underline{\mathbf{Q1.4}}$ Soit $u_n = \int_1^2 \frac{(\ln t)^n}{t} dt$, avec $n \in \mathbb{N}$, la suite (u_n) est-elle monotone?

 $\overline{\text{Q1.5}}$ Une planche est posée sur deux rondins de bois de 31,83 cm de haut. De combien aura avancé la planche quand les rondins auront fait un tour ?

Exercice II , Barème : 10 Pts (chaque question est notée sur 2Pts)

Q2.2 On considère la fonction $f: x \longmapsto x^3$, montrer que

$$\forall x \in [-2, 3], \forall y \in [-2, 3] \text{ on a } |f(x) - f(y)| \le 27|x - y|$$

Q2.3 Etudier la limite quand x tend vers 1 de la fonction $f: x \mapsto x + E(x)$ (E(x) désignant la partie entière $\frac{d}{d}(x)$

Q2.4 Résoudre dans \mathbb{R} l'inéquation suivante : $\sqrt{2(x+1)} > x$

Q2.5 On définit une suite par la donnée de la relation : $\forall n \in \mathbb{N}, u_{n+1} - u_n - 802 = 0$ et par son premier terme $u_0 = 2$. Calculer u_{19}

Les réponses doivent figurer sur cette feuille de l'épreuve

|| Exercice III : QCM , Barème : 14Pts ||

<u>Attention</u>: Afin de pénaliser les réponses basées sur le hasard, l'exercice est noté en entier de la manière suivante : Notons par n et m respectivement le nombre de réponses justes et fausses. La note attribuée à l'exercice sera :

 $\begin{array}{c|c} n+2 & \text{si } n \ge 10 \\ \hline n & \text{si } m < 5 \\ \hline 0 & \text{si } m \ge 5 \end{array}$

"La vie est complexe car nous avons tous une partie réelle et une partie imaginaire"

Part BY Land Part Ball Land Land	
Les propositions suivantes sont-elles vraies ou fausses ?	V ou F
$\mathbf{Q3.01}: \forall x \in \mathbb{N}, \forall y \in \mathbb{N}, \exists z \in \mathbb{N}, x = yz$	
$\mathbf{Q3.02}: \forall x \in \mathbb{N}, \exists y \in \mathbb{N}, \forall z \in \mathbb{N}, x = yz$	
Q3.03 : Sept cars (identiques) pleins aux deux tiers partent de Meknès à Fès, un quart des touristes descend de chaque car. Les trois quarts des touristes restants sont rassemblés dans trois cars.	
Q3.04 : Le produit de deux fonctions négatives décroissantes est une fonction croissante	
Q3.05 : Si a est un nombre réel quelconque et f une fonction définie et strictement décroissante sur $]a, +\infty[$, alors $\lim_{x\longrightarrow +\infty} f(x)=-\infty$	
Q3.06 : Une fonction ni continue ni monotone peut être bijective	
Q3.07: Soient les fonctions $u(x) = \ln x$ et $v(x) = \frac{x+1}{x-1}$, on note par $\mathcal{D}_{u\circ v}$ et $\mathcal{D}_{v\circ u}$ les ensembles de définition respectifs de $u\circ v$ et $v\circ u$. On a $\mathcal{D}_{u\circ v} = \mathcal{D}_{v\circ u}$	
${\bf Q3.08}$: On note F l'ensemble des applications f continues de $I\!\!R$ dans $I\!\!R$ vérifiant	
$\begin{cases} \forall (x, y) \in \mathbb{R}^2 \ f(x+y) f(x-y) = (f(x) f(y))^2 \\ f(0) \ge 0 \end{cases}$	
La fonction $x \longmapsto 2^{-x^2}$ appartient F	
Q3.09: La fonction $f: x \longmapsto x-1+\frac{\sqrt{(x-1)^2}}{x-1}$ si $x \neq 1$ et telle que $f(1)=1$ admet une tangente en tout point de \mathbb{R}	
Q3.10: On considère $I_1 = \int_{\pi/6}^{\pi/3} \frac{\cos x}{\sin x} dx$ et $I_2 = \int_{\pi/6}^{\pi/3} \frac{\sin x}{\cos x} dx$, on a $I_1 = I_2$	
Q3.11: L'équation $10x^3 + x - 1 = 0$ admet au moins une solution dans l'intervalle $]0,1[$	
Q3.12 : La fonction f définie sur \mathbb{R} par $f(x) = -(x^2 + 3x + 1)e^x$ est une solution sur \mathbb{R} de l'équation différentielle $y' - y = (2x + 3)e^x$	

Exercice IV : Questions à réponse précise, Barème : 12Pts

	Répondre dans la colonne réponse	
Barème	Question	Réponse
2Pts		
1Pt		
1Pt	$\underline{\mathbf{Q4.03}}$: Calculer $\lim_{n \longrightarrow +\infty} \sqrt{x^2 + x + 1} - x$	
2Pts	 Q4.04: On considère l'ensemble E = {a, b, c, d, e, f, g}. a) Déterminer le cardinal de l'ensemble P(E) des parties de E. b) Soient A = {a, b, d, f} un des sous ensembles de E, calculer le nombre d'applications de E dans A. 	
0Pt	Q4.05 : Soit g la fonction définie sur l'intervalle]1, $+\infty$ [$g(x) = (x+1)\ln(x+1) - (x-1)\ln(x-1)$ Calculer $g'(x)$	
1Pt	$\underline{\mathbf{Q4.06}}$: Calculer l'intégrale $\int_2^3 \ln\left(\frac{x+1}{x-1}\right) dx$	
2Pts	Q4.07 : Déterminer l'ensemble $f(I)$ dans les cas suivants : a) $f(x) = \frac{1}{x^2 - 1}$ et $I =]0, 1[$ b) $f(x) = \sin x$ et $I =]0, \pi]$	
1Pt	Q4.08 : Soit A le point de coordonnées $(1, -2)$ et \mathcal{D} la droite d'équation $3x + 4y - 1 = 0$. Calculer la distance de A à \mathcal{D} .	
1Pt	$\frac{\mathbf{Q4.09:}}{\left(1+i\sqrt{3}\right)^9}$ Calculer la partie réelle et imaginaire du complexe	e e
1Pt	$Q4.10$: Au fond d'un puits de $12\ m$ se trouve un escargot. Pendant la journée, il grimpe de $3\ m$. Mais chaque nuit, il glisse de $2\ m$. Il commence son ascension le 1er juin à 8 heures. Quel jour et quelle heure sortira-t-il du puits?	

Concours d'accès en Première année Epreuve de Mathématiques

Séries Sciences Expérimentales et Techniques

Exercice 1 (10 pts):

Pour chacune des questions qui suivent, dire, sans justification, si elle est vraie ou fausse. Pour chacune des questions, il est compté un point si la réponse est exacte et zéro sinon.

1. Soient les expressions logiques

(*)
$$p \Rightarrow (q \Rightarrow (non(r)))$$
.
 $(non(q))$ ou $(non(r))$ ou $(non(p))$.

1.1. On a: (*) ⇔ (**).

1.2. L'expression (*) est vraie dans le cas où l'on a l'expression : $(p \ ou \ r)$ est fausse.

2. Soient les quantificateurs Q_1, Q_2 et $Q_3 \in \{\exists; \forall\}$ et l'expression

$$(***) Q_1x \in \mathbb{N}, Q_2y \in \mathbb{N}, Q_3z \in \mathbb{N}, x = yz$$

(***) n'est vraie que dans un seul cas.

3. Soient A, B et C trois ensembles quelconques.

3.1. On a toujours $(A \cup B) \setminus (A \cup C) \subset A \cup (B \setminus C)$.

3.2. On n'a jamais $(A \cup B) \setminus (A \cup C) = A \cup (B \setminus C)$.

4. Soit $P(x) = x^3 - 6x^2 + 13x - 10$

4.1. (2-x) divise P(x).

4.2. (2-i) et (2013-i) sont des racines de P(x).

5. Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0 et en 1 et telle que $f(x^2) = f(x)$, alors f est constante.

6. Soit $f: \mathbb{R} \to \mathbb{R}$ continue et périodique alors f n'est pas bornée.

7. Soit $f: [0, +\infty[\to \mathbb{R} \text{ continue et telle qu'il existe } k \in \mathbb{R} \text{ t.q.} : 0 \le f(x) \le k \int_0^x f(t) dt \text{ alors } f \equiv 0.$

Exercice 2 (5 pts):

Soient $a_1, a_2, ..., a_n$ des nombres réels positifs non nuls distincts deux à deux, l'objectif est de montrer l'inégalité $(\prod_{i=1}^n a_i) < \left(\frac{\sum_{i=1}^n a_i}{n}\right)^n$.

1. Montrer que $a_1 a_2 < \left(\frac{a_1 + a_2}{2}\right)^2$.

2. Montrer que $a_1 a_2 a_3 a_4 < \left(\frac{a_1 + a_2 + a_3 + a_4}{4}\right)^4$.

 Montrer que a₁a₂ ... a₂k < (a₁+a₂+···+a₂k)²k ∀k ∈ N.
 On suppose n < 2k pour un certain k ∈ N et que a₁, a₂, ..., an sont donnés. On pose c₁ = a₁, c₂ = $a_2,\ldots,c_n=a_n$ puis $c_{n+1}=c_{n+2}=\cdots=c_{2^k}=\frac{\sum_{i=1}^n a_i}{n}=u$. Déduire de la question 3 que $a_1 a_2 \dots a_n u^{2^k - n} < u^{2^k}.$

Conclure.

Page 1 sur 3

Exercice 3 (9 pts):

Notations: Soient a et b deux entiers dans \mathbb{N}^* , on note b|a si b est un diviseur de a et on définit $D_a =$ $\{d\in\mathbb{N}^*:d|a\,\}$ l'ensemble des diviseurs de a. On note, enfin, $a\land b$ le plus grand commun diviseur de a et bqui vaut le plus grand élément de l'ensemble $D_a \cap D_b$.

- 1. Montrer que $D_{a \wedge b} = D_a \cap D_b$. 2. Montrer que $\forall a, b, c \in \mathbb{N}^*$ ($(a \wedge b) \wedge c = (a \wedge b) \wedge (b \wedge c)$.
- 3. Soit $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=1}^n k^3$. Montrer que $S_n = (\sum_{k=1}^n k)^2 = \left(\frac{n(n+1)}{2}\right)^2$.
- 4. Soit un entier $p \in \mathbb{N}^*$ quelconque.
 - 4.1. Calculer $S_{2p} \wedge S_{2p+1}$.
 - 4.2. Calculer $S_{2p+1} \wedge S_{2p+2}$.
 - 4.3. Calculer $S_{2p} \wedge S_{2p+1} \wedge S_{2p+2}$.
 - 4.4. Calculer $S_{2p+1} \wedge S_{2p+2} \wedge S_{2p+3}$.
- 5. Calculer $(S_n \wedge S_{n+1}) \wedge S_{n+2} \quad \forall n \in \mathbb{N}^*$.

Problème 1 (22 pts):

Partie A: Questions préliminaires (7 pts)

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite dans \mathbb{Z} supposée convergente vers $l\in\mathbb{R}$.
 - $|u_n-l|<1/_{\Delta}$ 1.1 Montrer qu'il existe $m \in \mathbb{N}$ t.q. $\forall n \geq m$
 - 1.2 Montrer que $\forall n \geq m \qquad |u_n u_{n+1}| < 1/2$.
 - 1.3 En déduire que $(u_n)_{n\geq m}$ est constante.
 - « On a montré que si $(u_n)_{n\in\mathbb{N}}$ est une suite dans $\mathbb Z$ convergente alors elle est stationnaire. »
- 2. Soient f une fonction continue et positive et F sa primitive sur [a,b] c.à.d: $\int_a^x f(t)dt = F(x)$.
 - 2.1 Montrer que F est croissante.
 - 2.2 Supposons qu' $\exists x_0 \in [a, b]$ t.q. $f(x_0) > 0$, montrer alors qu'il existe un intervalle $I \subset [a, b]$ tel que $x_0 \in I$ et vérifiant f(x) > 0
 - 2.3 Déduire de 2.1 et 2.2 que si $f \ge 0$ telle que $\int_a^b f(t)dt = 0$ alors $f \equiv 0$.
 - 2.4 Soit $M \in \mathbb{R}^+$ t.q. $f \leq M$ et g une autre fonction continue et positive sur [a, b]. Montrer que $\int_{a}^{b} f(t)g(t)dt \le M \int_{a}^{b} g(t)dt.$

Soient $p, q \text{ et } n \in \mathbb{N}^*$. On définit $P_n(X) = \frac{1}{n!} (qX - p)^n X^n$ et $I_n = \int_0^\pi P_n(x) \sin(x) dx$.

- 1. Montrer que $P_n(0)$ et $P_n\left(\frac{p}{a}\right)$ sont dans \mathbb{Z} .
- 2. Montrer que

$$(X^n)^{(i)}(0) = \begin{cases} 0 & \text{si } i \neq n \\ n! & \text{si } i = n, \end{cases}$$

et que

$$((qX-p)^n)^{(i)} \left(\frac{p}{q}\right) = \begin{cases} 0 & \text{si } i \neq n \\ n! \, q^n & \text{si } i = n. \end{cases}$$

- 3. En déduire que $(P_n)^{(k)}(0)$ et $(P_n)^{(k)}(\frac{p}{a}) \in \mathbb{Z}$ $\forall k \in \mathbb{N}^*$.
- 4. Vérifier qu' $\exists M \in \mathbb{R}^+$ $\sup_{[0,\pi]} |X(qX p)| \leq \pi M$.
- 5. Montrer que $\forall p, q \in \mathbb{N}^*$ $I_n \xrightarrow[n \to \infty]{} 0$.

Université My Ismail

ENSAM-Meknès

Partie C (8 pts):

Supposons qu' $\exists p, q \in \mathbb{N}^*$ tels que $\pi = \frac{p}{q}$.

1. Montrer que $\forall n \in \mathbb{N}^*$ $I_n \in \mathbb{Z}$

- 2. Montrer qu'il existe $N \in \mathbb{N}$ $\forall n \ge N$ $I_{2n} = 0$.
- 3. En déduire que $P_{2n}(\pi/2) = 0 \quad \forall n \geq N$.
- 4. Savez-vous ce que vous avez démontré?

Problème 2 (9 pts):

1. Dans un stand de tir, un tireur effectue des tirs successifs pour atteindre un ballon afin de le crever. A chacun de ces tirs, il a la probabilité 0,2 de crever le ballon. Le tireur s'arrête quand le ballon est crevé. Les tirs successifs sont supposés indépendants.

1.1. Quelle est la probabilité qu'au bout de deux tirs le ballon soit intact?

1.2.Quelle est la probabilité que deux tirs suffisent pour crever le ballon?

1.3. Quelle est la probabilité p_n que n tirs suffisent pour crever le ballon?

1.4. Pour quelles valeurs de n a-t-on $p_n > 0.99$?

2. Ce tireur participe au jeu suivant :

Dans un premier temps il lance un dé tétraédrique régulier dont les faces sont numérotées de 1 à 4 (la face obtenue avec un tel dé est la face cachée); soit k le numéro de la face obtenue. Le tireur se rend alors au stand de tir et il a droit à k tirs pour crever le ballon.

Démontrer que, si le dé est bien équilibré, la probabilité de crever le ballon est égale à 0,4096 (on

pourra utiliser un arbre pondéré).

3. Le tireur décide de tester le dé tétraédrique afin de savoir s'il est bien équilibré ou s'il est pipé. Pour cela il lance 200 fois ce dé et il obtient le tableau suivant :

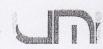
Face k	1	2	3	4
Nombre de sorties de la face k	58	49	52	41

3.1. Calculer les fréquences de sorties f_k observées pour chacune des faces.

3.2. On pose $d^2 = \sum_{k=1}^{4} (f_k - \frac{1}{4})^2$. Calculer d^2 .

3.3. On effectue maintenant 1000 simulations des 200 lancers d'un dé tétraédrique bien équilibré et on calcule pour chaque simulation le nombre d^2 . On obtient pour la série statistique des 1000 valeurs de d^2 les résultats suivants :

Minimum	D_1	Q_1	Médiane	Q_3	D_9	Maximum
0,00124	0,00192	0,00235	0,00281	0,00345	0,00452	0,01015


Au risque de 10% peut-on considérer que ce dé est pipé?

Concours d'entrée en 1ère année des années préparatoires de l'ENSAM Casablanca-Meknès

SERIES: SCIENCES MATHEMATIQUE A/B

		STITIES	
1	ooût	2016	

Durée: 2h00

Université Moulay Ismail

Epreuve de physique / 1 août 2016 Nom:

Prénom:

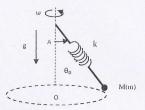
CNE:

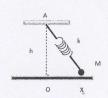
Signature du candidat

- · La fiche ne doit porter aucun signe indicatif ni signature
- L'épreuve contient 2 pages. Elle est composée de quatre parties indépendantes : deux parties rédaction et deux parties QCM.
- L'usage de la calculatrice programmable est strictement interdit.

Physique I (Mécanique) :

On se propose d'étudier deux possibilités du mouvement d'une masselotte de masse m coulissant sans frottement sur une tige. La masselotte est attachée au point fixe A par un ressort de raideur ket de longueur à vide lo.

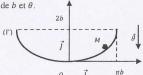

Partie 1:


L'extrémité fixe A est située à une distance h de la tige horizontale (Ox). On désigne par x l'abscisse de M par rapport à O la projection de A. En fonction k, x, l_0 et h, déterminer :

- 1.1. L'expression de la force de rappel.
- 1.2. L'expression de l'énergie potentielle sachant que $E_P(x=0)=0$.
- 1.3. Les positions d'équilibres.
- 1.4. Les pulsations des petites oscillations autour des positions d'équilibres stables.

La tige fait un angle de θ_0 par rapport à (OA) et tourne uniformément (ω) autour de cet axe.

- 1.5. Déterminer l'équation différentielle de M le long de la tige.
- 1.6. Déterminer la position d'équilibre et la période d'oscillation.
- 1.7. Déterminer la vitesse angulaire maximale (ω_{max}) de la tige pour que le mouvement de la masselotte soit stable (Borné).


Exercice 2:

Un point matériel M peut glisser sans frottement dans un plan vertical (xoy) sur un support d'équation (Γ):

 $(x = b[\theta + \sin(\theta)]$ b est une constante et θ est un paramètre entre 0 et 2π . Déterminer : $y = b[1 - \cos(\theta)]$

- 2.1. L'abscisse curviligne S = arc(OM) en fonction de b et θ .
- 2.2. L'énergie potentielle en fonction de *S*. 2.3. L'équation différentielle vérifiée par *S*

ainsi que la période d'oscillation du point M

QCM Physique I (Mécanique) :

1. Un point matériel se déplaçant dans le plan (xoy) est repéré

par $\begin{cases} x = 2t \\ y = t^2 \end{cases}$. Le rayon de courbure de sa trajectoire est :

a. $R_c=2\sqrt{1+t^2}$ b. $R_c=2/\sqrt{1+t^2}$ c. $R_c=2(1+t^2)^{3/2}$ 2. Un disque (D) de centre C et de rayon R se met enmouvement d. $R_c = 2(1+t^2)^{-3/2}$

dans la plan (xoy). Il est parfaitement attaché par

un ressort de raideur (k) et de masse négligeable.

Le moment d'inertie de (D) par rapport à son axe est $J = \frac{1}{2} mR^2$

L'équation différentielle que satisfait l'abscisse du centre est :

a.
$$\ddot{x} + \frac{k}{m}x = 0$$
 b. $\ddot{x} + \frac{2k}{3m}x = 0$ c. $\ddot{x} + \frac{3k}{2m}x = 0$ d. $\ddot{x} + \frac{2k}{m}x = 0$

3. Un point matériel M de masse m est lâché sans vitesse initiale d'une hauteur h. On suppose que les frottements sont négligeables. Le champ de pesanteur se met sous la forme suivante g(z) = $g_0 \frac{R^2}{(R+z)^2}$. R : rayon de la terre et z l'altitude du point M. La durée suffisante pour que M arrive au

a.
$$(1 + \frac{z}{R})\sqrt{\frac{2h}{g_0}}$$
 b. $\sqrt{\frac{2h}{g_0}}$ c. $\int_0^h \frac{(1 + \frac{z}{R})dz}{\sqrt{2g_0(h-z)}}$ d. $\int_0^h \frac{dz}{\sqrt{2g_0(h-z)}}$

4. La figure ci-dessous représente l'association de trois ressorts de raideurs k_1, k_2 et k_3 . M est un point matériel de masse m. La raideur du ressort équivalent est :

$$k_1 + k_2 + k_3$$
 b. $k_1 + \frac{k_2 k_3}{k_2 + k_3}$ c. $k_2 + \frac{k_1 k_3}{k_1 + k_3}$ d. $k_3 + \frac{k_2 k_1}{k_2 + k_1}$

5. Un neutron de masse m et animé d'une vitesse v_0 (E_{c0}) entre en collision frontale (choc direct) avec un noyau au repos de masse αm (α est un coefficient). Le choc est supposé parfaitement élastique (Conservation de l'énergie cinétique et de quantité de mouvement). En supposant qu'un neutron subit plusieurs chocs successifs dans les mêmes conditions. Au bout de n chocs, l'énergie cinétique du neutron est :

$$\text{a. } E_{cn} = \left[\frac{1+k}{1-k}\right]^{2n} E_{c0} \qquad \text{b. } E_{cn} = n \frac{1-k}{1+k} E_{c0} \qquad \text{c. } E_{cn} = \left[\frac{1-k}{1+k}\right]^{n} E_{c0} \qquad \text{d. } E_{cn} = \left[\frac{1-k}{1+k}\right]^{2n} E_{c0}$$

6. En mars 1979, la sonde Voyager 1 s'approchant de Jupiter à une altitude z mesure le champ gravitationnel G crée par cette planète. ($G_1=G(z_1)$ et $G_2=G(z_2)$). Le rayon de Jupiter est :

a.
$$\frac{z_2-z_1}{\frac{G_1}{G_2}-1}-z_1$$
 b. $\frac{z_1-z_2}{\frac{G_2}{G_1}-1}-z_2$ c. $\frac{z_2-z_1}{\sqrt{\frac{G_1}{G_2}-1}}-z_1$ d. $\frac{z_1-z_2}{\sqrt{\frac{G_2}{G_1}-1}}-z_2$

Fiche de répon	se : Physique I (N	lécanique)	: Une réponse jus	ste : 2pts, une réponse fausse ou pas de réponse : 0
N° question	Réponse	Note	N° questio n	Réponse Note
1.1	$\vec{T} =$		1.6.	
1.2.	$E_p(x)$ =		1.7.	
1.3.			2.1.	S=
1.4.	\$		2.2.	$E_P(s)=$
1.5.			2.3.	

TOTAL/20pts

N° question		Ré	ponse		Note	N° question			Réponse		Note
1.	a. 🗆	b. □	с. 🗆	<i>d</i> . □		4.	a. 🗆	<i>b</i> . □	<i>c</i> . □	<i>d</i> . □	
2.	a. 🗆	<i>b</i> . □	<i>c</i> . □	<i>d</i> . □		5.	a. 🗆	<i>b</i> . □	c. 🗆	<i>d</i> . □	
3.	a. 🗆	b. 🗆	<i>c</i> . □	<i>d</i> . □		6.	a. 🗆	<i>b</i> . □	<i>c</i> . □	<i>d</i> . □	

Université Hassan II

Concours d'entrée en 1ère année des années préparatoires de l'ENSAM Casablanca-Meknès

SERIES: SCIENCES MATHEMATIQUE A/B

Epreuve de physique / 1 août 2016

Durée: 2h00

Université Moulay Ismaii

C1

TINV

C2

2.5uf

Note

✓ La fiche ne doit porter aucun signe indicatif ni signature

🗸 L'épreuve contient 2 pages. Elle est composée de quatre parties indépendantes : deux parties rédaction et deux parties QCM.

√ L'usage de la calculatrice programmable est strictement interdit.

Physique II (Electricité) :

Exercice 1 : On considère le montage électrique représenté sur la figure ci-dessous, il comporte :

- Un générateur de tension continue E
- Deux condensateurs C₁=C₂=C
- Deux conducteurs ohmiques $R_1 = R_2 = R$.
- Trois interrupteurs K1, K2 et K3.

N.B.

- ✓ Dans toutes les parties on note t=0 le temps où les interrupteurs basculent vers leurs positions respectives.
- \checkmark $i_{cl}(t)$ le courant dans le condensateur C_l
- $\checkmark q_1(t)$ la charge de C_1 et $q_2(t)$ la charge de C_2

Partie A: K1, K2 et K3 sont en positions (1).

- À l'instant t=0 le condensateur C₁ possède la charge q₀ et le condensateur C₂ est déchargé.
- 1.1. Déterminer l'équation différentielle à laquelle obéit $q_1(t)$ en fonction de q_0 , R et C.
- 1.2. En déduire la loi d'évolution ici(t).
- 1.3. Calculer l'intensité du courant ic1 en régime permanant.
- 1.4. Déterminer l'expression de w l'énergie calorifique dissipée dans le circuit en fonction de q₀ et C

Partie B: K1 en position (1), K2 et K3 sont en positions (2).

À l'instant t=0 le condensateur C₁ possède la charge q₀ et le condensateur C₂ est déchargé. On

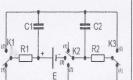
$$2\alpha = \frac{R_1C_1 + R_2(C_1 + C_2)}{R_1R_2C_1C_2} = \frac{3}{RC} \text{ et } \beta^2 = \alpha^2 - \frac{1}{R_1R_2C_1C_2} = \alpha^2 - \frac{1}{(RC)^2}$$

1.5. En déduire la loi d'évolution $q_2(t)$ en fonction de α, β, q_0 et le produit R.C.

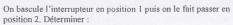
Partie C: K1 et K3 sont en positions (2), K2 en position (3).

À l'instant t=0 les deux condensateurs sont déchargés.

- 1.6. Calculer l'intensité du courant i débité par le générateur en régime permanant.
- 1.7. Déterminer l'équation différentielle à laquelle obéit q₁(t) en fonction de E, R et C.
- 1.8. En déduire la loi d'évolution q1(t).


Exercice 2 : On considère le montage électrique représenté sur la figure ci-dessous.

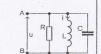
Le condensateur est déchargé à l'instant t=0 où on ferme


l'interrupteur K. la résistance du générateur de tension est négligeable. Déterminer :

- 2.1. l'équation différentielle en i2(t).
- 2.2. la loi d'évolution du courant $i_2(t)$ dans la résistance R. pour les valeurs L=1H, C=10 $\mu F,$ r=100 $\Omega,$ R=1000 Ω et E=200V.
- 2.3. Le courant minimal (i₂)_{min}
- 2.4. la tension maximale U_{max} aux bornes du condensateur.

 $i(\infty) =$

1. On réalise le montage représenté sur la figure suivante



1.1. la charge Q_I du condensateur C_I :

- a. 2,86 μ C; b. 7,15 μ C; c. 10 μ C; d. 0.5mC:

 - 1.2. l'énergie totale des deux condensateurs : $14,3 \mu J$ b. 10 μJ c. 50 μJ. d. 54,3 μJ
- 2. Dans un circuit RLC parallèle l'équation différentielle vérifiée par i en fonction de :

$$\omega_0 = \frac{1}{\sqrt{LC}} \text{ et } \lambda = \frac{1}{2RC\omega_0} \text{ est donnée par } : \frac{d^2t}{dt^2} + 2\lambda\omega_0 \frac{dt}{dt} + \omega_0^2 \dot{t} = 0.$$

- 2.1. l'impédance équivalente du dipôle AB pour $\omega = \omega_0$: b. $1/\sqrt{LC}$; a. R: c. 0; d. 00:
 - 2.2. la valeur de R pour avoir le régime critique (régime qui correspond au retour le plus rapide de i vers zéro sans oscillations) sachant que i(t=0)=i₀≠0 et u(t=0)=0.

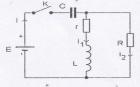
c. 5R

- Quelle est la résistance équivalente du dipôle AB du montage suivant:
- 4. Un voltmètre se comporte comme : c. une résistance de faible valeur

Réponse

b. Un interrupteur ouvert (résistance infinie)

b. 3R


a. Un fil (résistance 0Ω)

question

.7.

a. R

d. une résistance de forte valeur (> $1M\Omega$)

Physique II (Electricité): Une réponse juste : 2pts, une réponse fausse ou pas de réponse : 0

N° question	Réponse	Note N
1.1.		1
1.2.	$i_{C1}(t) =$	1
1.3.	$i_{C1}(\infty) =$	2
1.4.	W =	2
1.5.	$q_2(t) =$	2

- .8. $q_1(t) =$ 2.1.
- 2.2. $i_{2}(t) =$
- 2.3. $i_{2min} =$
- 2.4. $U_{max} =$

TOTAL/24pts

1.6.

QCM Physique I	I (Electricité) (Une réponse juste :	+ 2, Pas de réponse :	0, Une réponse	fausse ou p	olus d'une seule rép	oonse :-1				
N° question		Ré	ponse		Note	N° question		R	éponse		Note
1.1.	a. 🗆	b. 🗆	c. 🗆	d. 🗆		2.2.	a. 🗆	<i>b</i> . □	<i>c</i> . □	d. 🗆	
1.2.	a. 🗆	b. 🗆	c. 🗆	d. 🗆		3.	a. 🗆	<i>b</i> . □	<i>c</i> . □	d. □	
2.1.	a. 🗆	b. 🗆	c. 🗆	d. 🗆		4.	a. 🗆	b. 🗆	c. 🗆	d. 🗆	

TOTAL/12pts

TOTAL de l'épreuve de physique /68pts

Corrige physique 2016 SHAZB

Physique II (Elec	ctricité) : Une rén	ponse juste: 2nts un	Physique II (Electricité): Une réponve juste : 2nts une réponve fansse on nas de réponse : 0	TV do rénouve	0.						
N° question		Réponse	nse nse		Note	N° question		Répu	Réponse		Note
I.I.	570	1(H) + 4 9,(391(H) + 1 9, (H) =0 =>9, (H) = 9, e-1/RC	9. ETRC		1.7.	J	9, + RC 39h = CE	9h = CE		
1.2.	$i_{C1}(t) = -$	9,(r) =	- 90 c-4RC	RC		1.8.	$q_1(t) =$	$q_1(t) = CE(A - e^{-t/Rc})$	e-5/RC)		
I.3.	$i_{C1}(\infty) =$	8 0 =				2.1.	4 775	(T+ 4c)	22 + (F+ Ac) 242 + Atr 42=0	0 " 5	
Mor	W ==	4002				2.2.	$i_2(t) = A = cs^{re}$	A Sinult 6	$i_2(t) = A \text{ sun with } e^{-\alpha \omega_0 t} / \alpha = \frac{\lambda}{\lambda} \cdot (R_{1C+L})$	(R1C+L)	
itam.	$q_2(t) =$					2.3.	i2min	٥ 4 0	7 XLC		
$\frac{9}{1}$	$i(\infty) =$	17 18 R	27			2.4.	$U_{max} =$	E = 200V	∧ C		
TOTAL/24pts									¥	-	
2CM Physique	II (Electricité) Ur	ne réponse juste : + .	🚬 2CM Physique II (Electricité) Une réponse juste : + 2, Pas de réponse : 0, Une réponse fausse ou plus d'une scule réponse :-1	Une réponse,	fausse on t	olus d'une seule rép	ponse:-1				
N° question		Réponse	n.se		Note	N° question		Rép	Réponse		Note
[].I.	a. \Box	6.	C	d.		2.2.	a.	b. \Box	0.0	d. \Box	
1.2.	a. \Box	b. \Box	C,	d. [3,	a. s.	р. П	C. [d. \Box	
2.1.	a.	b. \Box	C. []	d. \Box		4.	a. [6.	C. [d. \Box	
TOTAL/12pts		PRITTED TO CONTRACT THE PRINT THE PR	ери (силемира распия по при	Acquiricular and an acquiricular acquiricula		AND	STONE STREET, SWEET, SW	анстительствинет урмалствий учений у			
TOTAL de	: l'épreuve	TOTAL de l'épreuve de physique 168pts	168pts			er-cureo Crat Donner entre reseaux entre transporte de rec	Activity and a local management of the local managemen	Construction of the control of the c			

7 1

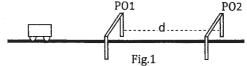
								encere encountry of the control of t	сь вые винарубуму виня состуду достусски	8,	TOTAL/12pts
	d. 🗆	c. 📰	b. 🗆	a. 🗆	6.		d. 🗆	c. 0	b. •	a. 🗆	3.
	d. 0	c. B	<i>b</i> . \Box	a. 🗆	S.		d. 🗆	c. D	b. 🗆	a.	2.
	d.	c. 0	<i>b</i> . D	a. 🗆	4.	* *	<i>d</i> . □	<u>\$</u>	<i>b.</i> \Box	a. 🗆	I.
Note		Réponse			N° question	Note		Réponse	Rép		Nº question
	2, Pas de réponse : 0, Une réponse fausse ou plus d'une seule réponse :-1.	réponse fausse ou pl	de réponse : 0, Une	ıste : + 2, Pas	QCM Physique I (Mécanique) Une réponse juste : +	(Mécaniq	CM Physique I	υÕ		se:	Fiche de réponse :
	,		8							8	TOTAL/20pts
					2.3.						1.5.
				$E_P(s)=$	2.2.		SIL S				1.4.
			â	S=	2.1.				To provide the state of the sta		1.3.
			·		1.7.					$E_p(x)=$	1.2.
					1.6.			٠		$\overrightarrow{T}=$	1.1
Note		Réponse			N° questio n	Note		Réponse	Ré _I		N° question
		de réponse : 0	une réponse fausse ou pas de réponse : 0		Physique I (Mécanique): Une réponse juste : 2pts,	écanique)	Physique I (M			e:	Fiche de réponse :

UNIVERSITE MOULAY ISMAIL MEKNES/UNIVERSITE HASSAN II CASABLANCA ECOLES NATIONALES SUPERIEURES D'ARTS ET METIERS-MEKNES/CASABLANCA

Concours d'entrée en Première année de l'ENSAM - Meknès et de l'ENSAM - Casablanca Filières : Sciences Mathématiques A et B

Epreuve de Physique Durée : 2h 30 min

24 Juillet 2015

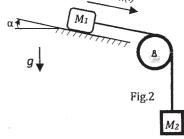

- L'épreuve contient 6 pages

- Répondre dans la feuille « Fiche des réponses » à rendre seule avec la feuille d'examen

Physique I : Mécanique (cette partie de l'épreuve contient 4 parties indépendantes : I, II, III et IV) N.B : Chaque question est sur 2 points, la partie IV est un QCM. On donne : $g=10 \text{ m/s}^2$.

I. Un mobile se déplace le long d'un rail rectiligne avec une accélération constante γ . Pour mesurer sa vitesse, on utilise deux portes optiques PO1 et PO2 (permettant de capter la valeur de la vitesse quand un objet passe devant elle) distantes d'une distance d. Le mobile est lâché (sans vitesse initiale) à une distance d_0 à gauche de la première porte optique. Il franchît la distance d en un temps T, sa vitesse devant la deuxième porte est v_2 .

1. Exprimer la vitesse v_1 du mobile devant la première porte, et son accélération γ en fonction de T, d et v_2 .

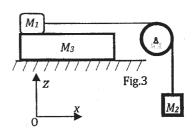


2. Calculer la distance D entre le point de départ et la première porte pour $T=0.5s,\,v_2=1.5$ m/s et d=0.5 m.

II. Soit le système composé de deux blocs de masses respectives M_1 et M_2 , attachés par une corde de masse négligeable et qui passe, sans glissement, à travers une poulie de rayon R et de moment d'inertie J par rapport à son axe de rotation (Oy). Le bloc M_1 repose sur son support (plan incliné) faisant un angle α par rapport à l'horizontale (Fig.2). Le système est abandonné sans vitesse initiale.

Cas d'étude I - Absence du frottement

- 3. Déterminer l'accélération γ des deux blocs en fonction de $M_1,\,M_2,\,$ $J,\,R,\,\alpha$ et g,
- 4. Déterminez les tensions T_1 et T_2 dans la corde en fonction de M_1 , M_2 , $J,\,R,\,\alpha$ et g.

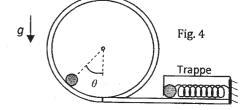

Cas d'étude II -Présence du frottement : le bloc M_1 repose sur son support en présence du frottement. On note \vec{R} la force de réaction du support sur la masse M_1 , avec $\vec{R} = \vec{N} + \vec{T}$ (N étant normale au plan de contact et T est parallèle à celui-ci) telle que : si le bloc M_1 est au repos, on a : $|T| \le \mu N$, si le bloc est en mouvement, on a : $|T| = \mu N$, où μ est un coefficient (positif) appelé coefficient de frottement. On rappelle que le sens de la composante T est dans le sens contraire du mouvement du solide par rapport à son support.

Dans ce cas d'étude II, on considère la simplification suivante : $M_1=M_2=M$ et $J=MR^2/2$.

- 5. Exprimer l'inégalité à vérifier par α et μ pour que le système reste immobile (équilibre statique), en déduire l'équation traduisant l'angle α maximal pour que le système reste en équilibre statique.
- 6. Lors de son mouvement, déterminer l'équation horaire de M_1 en fonction de g, α , μ et t.

<u>Cas d'étude III</u>: on considère le montage de la figure 3, le bloc M_1 est posé sur un bloc de masse M_3 avec frottement de coefficient μ . Le contact du bloc M_3 sur son support (plan horizontal) se fait sans frottement. Le système se met en mouvement après avoir lâché le bloc M_2 .

7. Dessiner sur des schémas séparés les deux bilans des forces appliquées sur les blocs M_1 et M_3 .



- 8. En considérant : $M_1=M_2=M$, $M_3=4M$, J=0, déterminer les accélérations γ_1 et γ_3 des blocs M_1 et M_3 en fonction de g et µ.
- 9. Sous les mêmes conditions (question 8), si le bloc M_1 parcourt une distance d, calculer la distance xparcourue par le bloc M_3 en fonction de d et μ . Pour quelle valeur de μ , les deux blocs M_1 et M_3 parcourent la même distance.

III. Une masse ponctuelle m est *poussée* contre un ressort de raideur k au moyen d'une trappe puis lâchée du repos, la masse n'est pas liée au ressort, mais, elle est juste en contact avec celui-ci avant le départ. Son chemin est composé d'un rail horizontal et d'un rail de forme circulaire de rayon intérieur R situé dans un plan vertical (Fig.4). Une fois la particule entre dans le chemin circulaire, elle y sera tout le temps. Les frottements sont négligés sauf indication. Soit $\theta(t)$ l'angle qui décrit la position angulaire de la particule quand elle est sur son chemin circulaire.

- 10. Exprimer la composante normale R_N de la force de réaction du rail sur la masse m en fonction de m, g, v, R et θ , où v est la vitesse instantanée de m. Déterminer l'accélération tangentielle γ_t de m en fonction de g et θ .
- 11. Déterminer la plus petite vitesse possible v_0 de la masse m au point le plus haut de la trajectoire pour qu'elle puisse traverser son chemin en fonction de R et g.

- 12. Déterminer le raccourcissement minimal x_0 du ressort correspondant en fonction de m, g, R et k.
- 13. Pour une position quelconque, exprimer l'énergie mécanique E_m de la particule en fonction de m, g, R, θ .
- 14. Déterminer l'équation du mouvement de la particule, exprimer la période du mouvement pour les petites oscillations en fonction de g et R.
- 15. Dans cette question, le chemin de la particule est graissé et a donné lieu à une force de frottement, ayant la forme $\vec{f}=-2\lambda m\vec{v}$ (où \vec{v} est la vitesse instantanée de m, λ est une constante donnée), appliquée sur la particule de la part du rail, exprimer l'équation du mouvement de cette particule. En admettant que l'équation horaire du mouvement de la particule est de la forme : $\theta(t) = e^{-\lambda t} \left[A e^{\omega_t t} + B e^{-\omega_t t} \right]$, où $\omega_1 = \sqrt{\lambda^2 - \omega_0^2}$, déterminer les constantes A et B telles que : $\theta(0) = \theta_0$ et une vitesse initiale nulle.

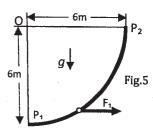
IV. Répondre aux questions suivantes en cochant la bonne réponse (attention : 2 points pour une réponse juste, (-1 pt) pour une réponse fausse et (0 pt) pour le cas sans réponse) :

- 16.0n fait tourner une bille au bout d'une corde selon une trajectoire circulaire dans le plan vertical, la corde se brise (coupure de la corde) lorsqu'elle est horizontale, la trajectoire de la bille sera :
 - a. Parabolique
- **b.** circulaire
- **c.** droite
- d. quelconque (imprévisible)
- 17. Un système de levage soulève au moyen d'un câble une masse verticalement. La masse subit deux forces lors de son mouvement vers le haut: son poids P et la tension T du câble. Ces deux forces effectuent respectivement les travaux WP et WT, lequel des énoncés suivants est vrai :

- **b.** $W_P < 0$ et $W_T < 0$ **c.** $W_P < 0$ et $W_T > 0$ **d.** $W_P > 0$ et $W_T < 0$
- 18. Une particule se déplace dans le plan (Oxy) selon ses coordonnées : $(x(t)=2-4t \text{ et } y(t)=-3t+t^3)$, le temps (t) est en (s) et la position est en cm. A l'instant t=2 s, le module de sa vitesse vaut :
- **b.** $|\vec{V}| = \sqrt{97} \text{ cm/s}$
- $\vec{V} = 3 \, \text{cm/s}$
- **d.** $|\vec{V}| = \sqrt{13} \text{ cm/s}$

L'orientation de sa vitesse par rapport à l'axe ($O\vec{x}$) est à (en radian):

- **a.** $\pi/2 + \arctan(4/9)$ **b.** $\arctan(4/9)$
- **d.** $\pi/2 \arctan(4/9)$

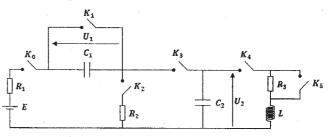

Soit une piste lisse en forme de quart de cercle (P1, P2), de rayon égal à 6 m, située dans un plan vertical (Fig.5). Une masse ponctuelle qui pèse 4 N se déplace de P_1 à P_2 sous l'action de la force F1 qui est toujours orientée selon l'horizontale et sa grandeur est constante et vaut (47/6)N.

19. La somme des travaux des forces appliquées sur la particule est :

- **b.** 71 J
- 47√2 J
- d. -23 J

20. Sachant que la vitesse en P_1 était de 4 m/s sa vitesse en P_2 est :

- **a.** $\sqrt{131}$ m/s
- \mathbf{b} . 0 m/s
- c. $3\sqrt{7}$ m/s
- **d.** $2\sqrt{10}$ m/s


Physique II : Electricité (cette partie de l'épreuve contient un problème et un QCM)

N.B. Chaque question est notée sur deux points.

Problème: Le circuit, schématisé sur la figure ci-contre, comporte:

- Un générateur de tension continue : E = 10V;
- Une bobine idéale : L
- Deux condensateurs : C₁ et C₂;
- Trois résistances : R_1 , R_2 et R_3 ;
- Six interrupteurs : K_0 , K_1 , K_2 , K_3 , K_4 et K_5 .

Première expérience: A l'instant $t_0 = 0$, on ferme l'interrupteur K_0 et K_2 . Tous les autres interrupteurs sont ouverts.

- 1. Donner l'équation différentielle qui caractérise la tension $U_1(t)$.
- 2. Quelle est la constante du temps (τ) du circuit?
- 3. Etant donné que $U_1(0) = 0$, quelle est la durée nécessaire, en fonction de τ , pour que la tension U_1 soit égale à 9.5 V?

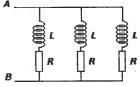
Au bout d'un certain temps t_1 , la tension U_1 atteint une valeur permanente.

- 4. Quelle est la valeur permanente du courant traversant la résistance R_1 ?
- 5. Quelle est la valeur de la tension $U_1(t_1)$?
- 6. Quelle est l'énergie emmagasinée par le condensateur à l'instant t_1 en fonction de la tension $U_1(t_1)$?

Deuxième expérience: A l'instant $t_0 = 0$, on ferme les interrupteurs K_0 et K_3 . Tous les autres interrupteurs sont ouverts. Les tensions $U_1(t)$ et $U_2(t)$ atteignent leurs valeurs permanentes.

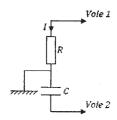
- 7. Quelle sera la valeur permanente de la tension U_1 , si l'on suppose que $U_1(t_0) = dU_2(t_0) = 0 V$?
- 8. Quelle sera la valeur permanente de la tension U_2 , si l'on suppose que $U_2(t_0) = U_{20} \neq 0$ V et que $U_1(t_0) = 0$ V?

Troisième expérience : On suppose que tous les interrupteurs sont ouverts, et que $U_2 = 10V$. On ferme l'interrupteur K_4 . L'interrupteur K_5 étant toujours ouvert.


- 9. Donner l'équation différentielle qui caractérise le courant I_3 traversant la résistance R_3 .
- 10. Quelle sera la valeur permanente de la tension U_2 ?

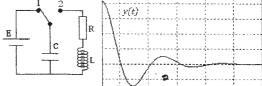
Partie QCM: Questions à choix multiples

1. Trois bobines identiques, d'inductances L et de résistances internes R, sont mises en parallèle entre les points A et B.


Le dipôle AB est alors équivalent à :

- a. Une bobine d'inductance L et de résistance interne R.
- b. Une bobine d'inductance 3L et de résistance interne R/3.
- c. Une bobine d'inductance L/3 et de résistance interne 3R.
- d. Une bobine d'inductance 3L et de résistance interne 3R.

- 2. La capacité équivalente de 5 condensateurs, de capacité C, mises en série est :
 - a. Toujours supérieure à C.
 - b. Egale à C.
 - c. Toujours inférieure à C.
 - d. Egale à 5 C.
- 3. On essaie de déduire la valeur du courant I à l'aide d'un oscilloscope à deux voies. Cette valeur :

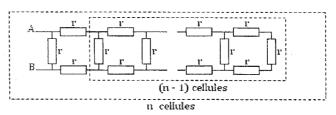

- a. Ne peut jamais être déduite à l'aide d'un oscilloscope.
- b. Est proportionnelle à la mesure sur la voie 1.
- c. Est proportionnelle à la mesure sur la voie 2.
- d. Est proportionnelle à la mesure sur la voie 1 et la voie 2.

- 4. Un condensateur de capacité *C*, initialement déchargé, se charge à travers une résistance *R*. La tension permanente à ses bornes est égale à **20V**. L'instant ou la tension aux bornes de la résistance a égalé **7.4V** est :
 - a. RC
- b. 3 RC/2.
- c. 3 RC
- d. 0.5 RC
- 5. Une résistance R et une bobine d'inductance L sont en parallèle. La tension à leurs bornes est sinusoïdale de pulsation ω . Pour quelle valeur de R, le courant efficace traversant la résistance est le double du courant efficace traversant la bobine ?
 - a. $L\omega/2$
- b. $L\omega/4$
- $c.\ 2L\omega$
- d. 4Lω
- 6. Pour mesurer expérimentalement la capacité C d'un condensateur initialement déchargé, on le charge à courant constant d'intensité I=2mA. Au bout de t=5s, on mesure aux bornes du condensateur une tension U=10V. Il est à déduire alors que la capacité est égale à :
 - a. 5 mF
- b. 1 *mF*
- c. 0.5 mF
- d. 0.1 mF
- 7. On observe, à l'aide d'un oscilloscope, l'évolution temporelle d'une grandeur y(t) dès lors qu'on bascule le commutateur en position 2.

La grandeur y(t) doit être :

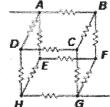
- a. Le courant traversant le circuit RLC.
- b. La tension aux bornes de la résistance.
- c. La tension aux bornes du condensateur.
- d. L'énergie emmagasinée par la bobine.

8. La résistance équivalente entre les points : A et B obéit à la relation de récurrence :


a.
$$R_n = r(3r + 3R_{n-1})/(3r + R_{n-1})$$

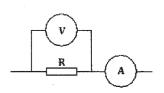
b.
$$R_n = r(r/3 + R_{n-1})/(3r + R_{n-1})$$

c.
$$R_n = r(r + 3R_{n-1})/(3r + R_{n-1})$$


d.
$$R_n = r(2r + R_{n-1})/(3r + R_{n-1})$$

Indication: Essayer pour une cellule puis pour une seconde.

- 9. Sur les arrêtes d'un cube, on a placé des résistances identiques de $\mathbf{6} \Omega$. La résistance équivalente entre les points \mathbf{A} et \mathbf{G} vaut :
 - a. 5Ω
- b.15 Ω
- c. 6Ω d. 18Ω


Indication : pour des raisons de symétrie, on a le même potentiel aux points B, E et D, et le même potentiel aux points C, F et H. les points ayant le même potentiel peuvent être joints par des fils sans changer la résistance équivalente

10. On désire mesurer la valeur d'une résistance. Pour ce faire, on mesure la tension et le courant comme mentionné sur le schéma ci-contre.

On applique après la loi d'ohm pour déterminer la valeur de *R*.

- a. Cette valeur est précise.
- b. Cette valeur est imprécise suite à une imprécision au niveau de I et de U.
- c. Cette valeur est imprécise suite à une imprécision au niveau de \emph{U} .
- d. Cette valeur est imprécise suite à une imprécision au niveau de I.

FICHE DES REPONSES (Physique I) : Questions 1 à 20								
1. Vites:	1. Vitesse v_1 = γ				γ=			
2. Dista	nce D	=						
3. L'acco	élérat	ion		4. Ten	sions			
γ=			T ₁ =		T_2 =			
5. Inég	alité :			Equation	:			
6. L'équ	ation	horaire $x(t)$ =						
7. Sché (bilan d		rces)	M _a .		M _s aga			
8. Les a	ccélér	ations :						
γ1=		d .		γ3=	•			
9. Dista	ance p	arcourue x =		Valeur de	εμ:			
10. Con	nposa	nte R _N =		Accélérat				
11. Vite	esse v) =			110			
12. Rac	ccourc	issement minim	al $x_0 =$					
13. Ene	ergie n	nécanique $\mathbf{E}_m =$						
14. Equ	uation	du mouvement	:	Pério	le : T=			
15. Equ	uation	du mouvement	:	A=	B=			
je je					et (0 pt) pour le cas sans réponse			
Cocher la bonne réponse	16.	a	b	С	d			
her la bo réponse	17.	a	b b	С	d d			
ier ép	18.	a	b	C C	d	Note		
oct	19.	a	b	С	d			
J [20.	a	b	С	d			

Physique II: Fiche des réponses

Problème. Une réponse juste : + 2, Une réponse fausse ou pas de réponse : 0.

	Problème	Chaque question est notée sur 2 points	
		Réponse	Note
1.	l'équation différentielle qui caractérise la tension $m{U_1(t)}$		
2.	Quelle est la valeur de la constante du temps (au) du circuit	τ =	
3.	La durée nécessaire pour que $U_1 = 9.5 V$	T =	
4.	La valeur permanente du courant traversant la résistance R_1	$I(\infty) =$	
5.	La valeur de la tension $oldsymbol{U_1(t)}$ à l'instant $oldsymbol{t_1}$	$U_1(t_1) =$	
6.	L'énergie emmagasinée par le condensateur à l'instant t 1	E =	
7.	La valeur permanente de la tension $U_1(t)$	$U_1(\infty) =$	
8.	La valeur permanente de la tension $oldsymbol{U_2(t)}$	$U_2(\infty) =$	
9.	L'équation différentielle qui caractérise le courant I_3 traversant la résistance R_3 .		
10.	La valeur permanente de la tension $m{U_2}$	$U_2(\infty) =$	

Partie QCM:

Une réponse juste : + 2, Pas de réponse : 0, Une réponse fausse ou plus d'une seule réponse : -1.

		Rép	onse		Note
1.	□а	□ b	□с	□ d	
2.	□ a	□b	□с	□ d	
3.	□ a	□ b	□с	□ d	
4.	□ a	□ b	□с	□ d	
5.	□ a	□ b	ОС	□ d	
6.	□ a	□ b	Ос	□ d	
7.	□ a	□ b	Ос	□ d	
8.	□а	□ b	□с	□ d	
9.	□а	□ b	□с	□ d	
10.	□a	□ b	□ с	□ d	

Note:	
	/40

FICHE DES REPONSES (Physique I) : Questions 1 à 20						
1. Vit	tesse $v_1 = \frac{2d}{v_1} - v_2$		γ = -	$\frac{2}{r^2}(d-Tv_2)$	Note	
	stance: $D = \frac{v_1^2}{T} - v_2$		1 '			
2. Di:	$stance: D = \frac{v_1}{2\gamma} = 1/1$	6 m				
3. L'a	ıccélération		4. Tei	nsions		
$\gamma = \frac{1}{M}$	$\frac{M_1 \sin \alpha + M_2}{M_1 + M_2 + J/R^2} g$	$T_1 = M_1 g \frac{M_2 (1 - \sin \alpha) - J/R^2}{M_1 + M_2 + J/R}$	$\frac{\sin \alpha}{\alpha}$	$T_2 = M_2 g \frac{M_1 (1 + \sin \alpha) + J/R^2 \sin \alpha}{M_1 + M_2 + J/R^2}$		
5. In	égalité : $1 + \cos \alpha \le \mu$	$\sin \alpha$	Equa	ation: $1 + \cos \alpha = \mu \sin \alpha$		
6. L'é	quation horaire :	$x(t) = \frac{1 + \sin \alpha - \mu \cos \alpha}{5} gt^2$				
7. Scl	hémas	▲ N1		N2 ▲ T		
(bilar	n des forces)	M ₁ T1		M ₃		
		▼ M1g		↓ M2g		
8. Les	s accélérations : γ_1	$=\frac{1-\mu}{2}g$	$\gamma_3 = \frac{\mu}{4} g$			
9. Dis	tance parcourue $x =$	$=\frac{\mu d}{4(1-\mu)}$	Valeur de $\mu = 2/3$			
10. Cc	omposante $R_N = mv^2$	$/R + mg \cos \theta$	Accélération tang. $\gamma_i = g \sin \theta$			
11. Vi	tesse $v_0 = \sqrt{Rg}$					
12. Ra	accourcissement min	nimal $x_0 = \sqrt{\frac{6mRg}{k}}$				
		$_{m} = \frac{mR^{2}\dot{\theta}^{2}}{2} + mgR(1 - \cos\theta)$				
14. Eq	14. Equation du mouvement : $\ddot{\theta} + g / R \sin \theta = 0$ Période : $T = \frac{2\pi}{\omega_0} = 2\pi \sqrt{R/g}$					
15. Eq	15. Equation du mouvement : $\ddot{\theta} + 2\lambda\dot{\theta} + g/R\sin\theta = 0$ $A = \frac{\theta_0(\omega_1 + \lambda)}{2\omega_1}$ et $B = \frac{\theta_0(\omega_1 - \lambda)}{2\omega_1}$					
2 points pour une réponse juste, (-1 pt) pour une réponse fausse et (0 pt) pour le cas sans répons						
Cocher la bonne réponse	16. a	b	C	d		
her la bo réponse	17. a	b	С	d		
er 'ép	18. a	b	C	d d		
och	19. a	b	С	d	$\vdash \vdash \vdash$	
0	20. a	b	С	d		

Physique II: science math

Problème. Une réponse juste: +2, Une réponse fausse ou pas de réponse: 0.

	Problème	Chaque question est notée sur 2 points	
	29	Réponse	note
1.	l'équation différentielle qui caractérise la tension $U_1(t)$	$E = (R_1 + R_2) C_1 \frac{dU_1}{dt} + U_1$	
2.	Quelle est la valeur de la constante du temps (au) du circuit	$\tau = (R_1 + R_2) C_1$	
3.	La durée nécessaire pour que $U_{ exttt{1}}=9.5~V$	T=3 au	
4.	La valeur permanente du courant traversant la résistance $R_{f 1}$	$I(\infty) = 0 A$	
5.	La valeur de la tension $\mathit{U}_1(t)$ à l'instant t_1	$U_1(t_1) = 10 V$	00.20
6.	L'énergie emmagasinée par le condensateur à l'instant t_1	$E = \frac{1}{2} C_1 U_1(t_1)^2$	
7.	La valeur permanente de la tension $U_1(t)$	$U_1(\infty) = \frac{C_2 E}{C_1 + C_2}$	
8.	La valeur permanente de la tension $U_2(t)$	$U_2(\infty) = \frac{C_1}{C_1 + C_2} E + \frac{C_2}{C_1 + C_2} U_{20}$	
9.	L'équation différentielle qui caractérise le courant I_3 traversant la résistance R_3 .	$\frac{d^2I_3}{dt^2} + \frac{R_3}{L} \frac{dI_3}{dt} + \frac{1}{LC_2} I_3 = 0$	950 85 - 20 - 20
10.	La valeur permanente de la tension U_2	$U_2(\infty) = 0 V$	

Partie QCM

Une réponse juste: +2, Pas de réponse: 0, Une réponse fausse ou plus d'une seule réponse: -1.

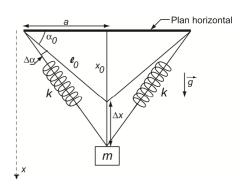
	QCM									Total:		
			Répo	onse				no	te		/40	
1.												
2.					С							
3.			b									
4.	a											
5.	a											
6.			b									
7.					c							
8.							d					
9.	a											
10.							d					

Concours d'entrée en 1^{ère} année des années préparatoires de l'ENSAM Casablanca-Meknès

SERIES: SCIENCES MATHEMATIQUE A/B

Epreuve de physique

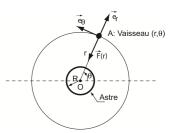
Durée: 2h20min Le 2 Août 2014


- L'épreuve contient 4 pages. Elle est composée de deux parties indépendantes : une partie rédaction et une partie QCM.
- Répondre dans la feuille « fiche de réponse ».
- L'usage de la calculatrice programmable est strictement interdit.

PARTIE REDACTION

Physique I: (Mécanique)

Exercice 1

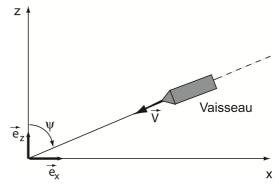

Une masse m=50kg est suspendue par deux ressorts identiques de constante de raideur k=0,5N/m et de longueur à vide l'. L'extrémité de chaque ressort est fixée à un plan horizontal immobile. Au repos, les ressorts sont inclinés d'un angle $\alpha_0=30^\circ$ avec le plan horizontal et ont une longueur de $l_0=2m$. En dehors de la position d'équilibre, l'angle avec l'horizontale est $\alpha=\alpha_0+\Delta\alpha$. x_0 est la distance entre m à la position d'équilibre et le plan horizontal. On se propose d'étudier les oscillations de la masse m lorsqu'elle est écartée de la position d'équilibre par Δx puis relâchée sans vitesse initiale.

- 1. Donner l'expression de la longueur à vide des ressorts, l'.
- 2. A quelle équation différentielle en Δx ($x = x_0 + \Delta x$), la masse m, selon la verticale descendante, satisfait-elle ? le résultat est à exprimer en fonction de m, g, k, l_0 , a, x_0 .
- 3. Si on suppose que $\Delta x << x_0$ et $\frac{l_0}{\sqrt{x^2+a^2}} \approx 1 \frac{x_0 \Delta x}{l_0^2}$. Ré-exprimer l'équation du mouvement trouvée dans la question 2 en fonction de m, g, k, l_0 , et α_0 .
- **4.** Donner la valeur numérique de la période T lorsque $\alpha_0 \to 90^\circ$ à partir de l'horizontal.

Exercice 2

Un vaisseau spatial, assimilé à un point matériel A, mobile sur une orbite circulaire par rapport à un astre de masse M, de centre O et de rayon R. La distance entre le vaisseau et le centre de l'astre est r telle que r >> R. $\mathbb{R}\left(\vec{e}_x, \vec{e}_y, \vec{e}_z\right)$ est un référentiel galiléen lié à l'astre. Supposons que, dans un premier temps, le moteur fusé est éteint et le vaisseau est en vol sur son orbite avec la vitesse $\vec{v}\left(A/\mathbb{R}\right)$ sous l'influence de la seule force gravitationnelle $\vec{F}\left(r\right) = -\frac{GMm}{r^2}\vec{e}_r$.

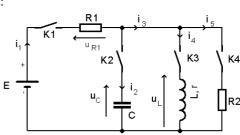
- 5. Nous appelons le moment cinétique, noté ici par \overline{M}_o , la quantité vectorielle $\overline{OA} \wedge m\overline{v}(A/\mathbb{R})$ calculée au point O et associée au mouvement du vaisseau par rapport à l'astre. Donner la valeur vectorielle de $\frac{d\overline{M}_o}{dt}$.
- **6.** Donner l'expression de \overline{M}_o en fonction de m, r et $\dot{\theta}$.
- 7. L'astre crée un champ gravitationnel $\vec{g} = -\frac{GM}{r^2} \vec{e}_r$ ayant une symétrie sphérique. Calculer l'énergie potentielle E_p du vaisseau. (on prendra $E_p(\infty) = 0$).
- **8.** Donner l'expression de l'énergie mécanique $E_{\rm m}$ du vaisseau.
- **9.** Exprimer la période de révolution T_{rev} du vaisseau en fonction de G, M. r.


A un instant donné du voyage du vaisseau, on décide de le faire rentrer dans l'atmosphère avec une vitesse V ce qui provoque le freinage du vaisseau par les hautes couches de l'atmosphère. Ce mouvement est décrit

par l'équation suivante: $m \frac{dV}{dt} = -\alpha V^2 \exp(-z/H)$ avec α est une

constante positive et H une hauteur caractéristique.

11. Donner l'expression de
$$\frac{dV}{dz}$$
 en fonction de α , m , V , H ψ et z .



12. Si la vitesse initiale à l'altitude
$$z_i$$
 est V_i , et en supposant que $\exp(-z/H) >> \exp(-z_i/H)$ calculer $\ln\left(\frac{V}{V_i}\right)$.

Physique II (Electricité):

On considère le circuit représenté sur le schéma ci-dessous, il comporte :

- Un générateur de tension continue E=10V.
- Une bobine d'inductance L et de résistance interne $r=10\Omega$.
- Un condensateur C=200nF.
- Deux conducteurs ohmiques $R_1 = 10\Omega$ et $R_2 = 30\Omega$.
- Quatre interrupteurs K₁, K₂, K₃ et K₄.

N.B.

- ✓ Toutes les parties sont indépendantes et les valeurs des composants peuvent changer d'une partie à l'autre.
- ✓ Dans toutes les parties on note t=0 le temps où les interrupteurs basculent vers leurs positions respectives.

Partie A: K1 et K2 sont fermés, K3 et K4 sont ouverts.

- 1. Etablir l'équation différentielle gouvernant l'évolution de la tension u_C(t) en fonction de E, R1 et C.
- **2.** Donner la valeur de la tension $u_C(t)$ en régime permanant.
- 3. Déterminer l'expression temporelle $u_C(t)$ en supposant que la tension initiale est $u_C(0)=U_0$.
- 4. En supposant U₀=αE, où α est un coefficient compris entre 0 et 1, déterminer le temps t₀ au bout duquel la tension u_C(t) devient égale à βE, où β est un coefficient compris entre α et 1.
- 5. Calculer le temps nécessaire pour que la tension $u_C(t)$ passe de 5% à 95%.
- 6. Calculer l'énergie emmagasinée par le condensateur C quand le régime permanent est établi.

Partie B: K1 et K3 sont fermés, K2 et K4 sont ouverts.

- 7. à $t=0^+$, donner l'intensité du courant i_1 .
- 8. Etablir l'équation différentielle qui relie l'intensité du courant i₁ et sa dérivée en fonction de E, R1, r et L.
- 9. La constante du temps vaut 1ms, déduire la valeur de la bobine L.
- **10.** Donner l'expression de la tension $u_{R1}(t)$ en fonction de E, R1, r et L.
- 11. Calculer l'intensité du courant i₁ en régime permanant.
- 12. Calculer l'énergie emmagasinée par la bobine quand le régime permanent est établi.

Partie C: K₁, K₃ et K₄ sont fermés, K₂ est ouvert.

 $\dot{a} t=0^+$

- 13. Donner l'intensité du courant i_{1.}
- **14.** Donner la valeur de la tension u_L.
- 15. Calculer la résistance équivalente vue par la source de tension.

Quand le régime permanent est établi :

- 16. Calculer la résistance équivalente vue par la source de tension.
- 17. Donner l'intensité du courant i_{5.}

Partie D: K₁, K₂, K₃ et K₄ sont fermés.

Dans cette partie, le condensateur est initialement déchargé et la bobine L est remplacée par une bobine L1=10mH ayant une résistance interne négligeable.

18. Etablir l'équation différentielle qui relie le courant $i_L(t)$ et ses dérivées.

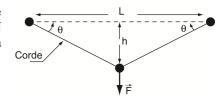
PARTIE QUESTIONS A CHOIX MULTIPLES

Important: Cette épreuve est un Q.C.M (questions à choix multiples). Pour chaque question, on vous propose 4 réponses. Cocher la réponse juste par une croix dans la case correspondante.

Barème: Une réponse juste : + 2, Pas de réponse : 0, Une réponse fausse ou plus d'une seule réponse :-1

1. A t = 0, une particule au repos située à 10m de l'origine accélère avec une valeur de 2m/s² dans le sens négatif. A t = 4s, elle acquiert une certaine vitesse avec laquelle elle continue son voyage avec une accélération nulle jusqu'à t = 7s.

Quelle est sa position, par rapport à l'origine, à l'instant t = 7s?


a. -30m

 $\mathbf{b} \cdot -8\mathbf{m}$

c. -40m

d. -59m

2. Supposons qu'une corde est attachée par ses deux extrémités à deux barres distants de L=30m. Vous prenez le milieu de la corde et vous exercez une force F=1000N perpendiculaire à l'horizontale. Le point d'application de la force est situé à h=1m de la ligne horizontale séparant les 2 barres.

Boite

=10kg

Quelle est la tension T que vous exerceriez sur le fil?

a. 500N

b. 1000N

c. 15000N

d. 7500N

3. Deux enfants jouent avec un pistolet à bille, placé sur une table horizontale, où ils essayent de tirer sur une boite située à une distance ℓ inconnue et une hauteur h du pistolet. Le pistolet projette une bille de

masse m à partir du bord de la table. Il est muni d'un ressort de constante de raideur k. Le premier enfant comprime le ressort à une distance x par rapport au bord de la

Ressort ġĮ

Table horizontale

table et lance la bille. Il constate que la bille est loin de la boite d'une distance y.

Avec quelle distance x, le $2^{\text{ème}}$ enfant doit-t-il comprimer le ressort pour mettre la bille dans la boite?

a.
$$\sqrt{\frac{2hk}{gm}}$$

a.
$$\sqrt{\frac{2hk}{gm}}x$$
 b. $\sqrt{\frac{h}{2gm}}kx$ **c.** $\sqrt{\frac{2h}{3gm}}kx$ **d.** $\sqrt{\frac{gm}{hk}}x$

c.
$$\sqrt{\frac{2h}{3gm}}kx$$

d.
$$\sqrt{\frac{gm}{hk}}x$$

- **4.** Une pile cylindrique de masse m=10kg et de diamètre 20cm est enfoncée dans le sol grâce à des couts de marteau. Ce denier, est un bloc en acier de masse M=50kg chutant verticalement et librement, à plusieurs reprises, d'une hauteur de 2m. On prendra $g = 9.81m/s^2$. M =50kg
- **4.1** La vitesse v du bloc en acier juste avant le choc est :
 - **a.** 6.32m/s
- **b.** 4.42m/s
- c. 6.26m/s
- d.5m/s
- **4.2** En supposant que la quantité de mouvement se conserve, l'expression de la vitesse V de l'ensemble (Masse *M* et *m*) immédiatement après le choc est:

c. $V = \frac{5}{6}v$

4.3 A la $n^{\text{ème}}$ chute de la masse M et le choc avec m, la pile est enfoncée dans le sol avec s=5 cm de profondeur et avec une décélération a. Le choc entre les deux masses est considéré inélastique.

L'accélération a vaut :

b. 52.2m/s^2

c. 195.36 m/s^2

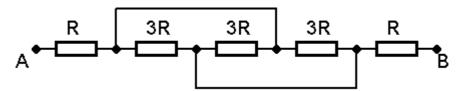
d. 27.24m/s²

Pille

Sol

 st Un choc inélastique est un choc durant lequel l'énergie cinétique ne se conserve pas.

4.4 Appliquer le principe fondamental de la dynamique sur le système (Masse M et m) immédiatement après le choc pour trouver la force de résistance au déplacement (frottement) F_r due à la pénétration de la pile dans le sol. La force F_r vaut :


a. 13.62kN

b. 16.35kN

c. 11.72kN

d. 3.13kN

- 5. En alternative, un voltmètre mesure :
 - a. la valeur maximale de la tension.
 - ${f b.}$ la valeur minimale de la tension.
 - c. la valeur efficace de la tension.
 - d. la valeur instantanée de la tension.
- 6. L'impédance Z d'un dipôle :
 - a. est indépendante de la fréquence N de la tension alternative.
 - b. augmente avec cette fréquence.
 - c. diminue avec cette fréquence.
 - d. varie avec cette fréquence.
- 7. Une bobine se comporte comme un conducteur ohmique :
 - a. lorsque le courant qui la traverse change de valeur.
 - **b.** lorsque la tension entre ces bornes change de valeur.
 - c. en régime permanent.
 - d. en régime variable.
- 8. La tension ne peut pas présenter de discontinuité :
 - a. aux bornes d'un condensateur.
 - **b.** aux bornes d'une bobine.
 - c. aux bornes d'un conducteur ohmique.
 - d. aux bornes d'un interrupteur.
- 9. Dans un régime apériodique d'un circuit RLC, le courant :
 - a. passe par un maximum puis converge vers une valeur finale.
 - **b.** converge de façon monotone vers sa valeur finale.
 - c. oscille en convergeant vers une valeur finale.
 - d. oscille en divergeant.
- 10. La constante d'amortissement d'un circuit RLC est :
 - a. L/R
 - **b.** 2L/R
 - c. LR
 - **d.** R/L
- 11. Quelle est la résistance équivalente du dipôle AB du montage suivant :

- **a.** 3R
- **b.** 5R
- **c.** 7R
- **d.** 11R

Concours d'entrée en 1^{ère} année des années préparatoires de l'ENSAM Casablanca-Meknès SERIES : SCIENCES MATHEMATIQUE A/B

Epreuve de physique

Durée: 2h00 Le 2 Août 2014

Fiche de réponse

Important: La fiche ne doit porter aucun signe indicatif ni signature

Physique I (Mécanique) : Barème : Une réponse juste : 3pts, Une réponse fausse ou pas de réponse:0

N° question	Réponse	Note
1.	$l' = l_0 - \frac{mg}{2k\sin\alpha_0}$	
2.	$\Delta \ddot{x} = g - 2\frac{k}{m} \left[1 - \frac{l_0}{\sqrt{x^2 + a^2}} \left(1 - \frac{mg}{2kx_0} \right) \right] (x_0 + \Delta x)$	
3.	$\Delta \ddot{x} + \left(\frac{2k}{m}\sin^2\alpha_0 + \frac{g}{l_0}\frac{\cos^2\alpha_0}{\sin\alpha_0}\right)\Delta x = 0$	
4.	T = 1.79s	
5.	$\left. \frac{d\overrightarrow{M}_o}{dt} \right _{\mathbb{R}} = \overrightarrow{0}$	
6.	$\overrightarrow{\mathcal{M}}_o = mr^2 \dot{\theta}.\overrightarrow{e}_z$	
7.	$E_p = -\frac{GMm}{r}$	
8.	$E_m = -\frac{GMm}{2r}$	
9.	$E_{m} = -\frac{GMm}{2r}$ $T_{rev} = 2\pi \frac{r^{3/2}}{\sqrt{GM}}$	
10.	$\dot{z} = \frac{dz}{dt} = -V\cos\psi$	
11.	$\frac{dV}{dz} = \frac{\alpha}{m\cos\psi} V \exp(-z/H)$	
12.	$\ln\left(\frac{V}{V_i}\right) = -\frac{\alpha H}{m\cos\psi} \left[\exp\left(-\frac{z}{H}\right) - \exp\left(-\frac{z}{H}\right)\right]$	
	TOTAL/36pts	

Physique II (Electricité) : Barème : Une réponse juste : 2pts, une réponse fausse ou pas de réponse:0

N° question	Réponse	Note
1.	$u_C + R_1 C \frac{du_C}{dt} = E$	2
2.	$u_{\mathcal{C}}(\infty) = E = 10V$	2
3.	$u_C(t) = (U_0 - E)e^{-\frac{t}{\tau}} + E avec \ \tau = R_1C$	2
4	$t_0 = \tau \ln \frac{1 - \alpha}{1 - \beta}$	2
5.	$t_m = \tau ln 19 = 2,94\mu s$	2
6.	$w = \frac{1}{2}CE^2 = 10\mu J$	2
7.	$i_I(O^+)=O$	2
8.	$\frac{di_1}{dt} + \frac{R_1 + r}{L}i_1 = \frac{E}{L}$	2
9.	$L=\tau_1*(R_1+r)=20\text{mH}$	2
10.	$u_{R1}(t) = E \frac{R_1}{R_1 + r} \left(1 - e^{-\frac{t}{\tau_1}} \right) avec \tau_1 = \frac{L}{R_1 + r}$	2
11.	$i_I(\infty)=E/(R_1+r)=0,5A$	2
12.	$w = \frac{1}{2}LI_1^2(\infty) = 2.5mJ$	2
13.	$i_1(0^+)=E/(R_1+R_2)=0.25A$	2
14.	$u_L(0^+) = E \frac{R_2}{R_1 + R_2} = \frac{30}{4} = 7,5V$	2
15.	$R_{eq}(0^{+})=R_{I}+R_{2}=40\Omega$	2
16.	$R_{eq}(\infty) = R_1 + r//R_2 = 17.5\Omega$	2
17.	$i_5(\infty) = \frac{E}{R_{eq}} \frac{r}{r + R_2} = 0.143A$	2
18.	$i_5(\infty) = \frac{E}{R_{eq}} \frac{r}{r + R_2} = 0,143A$ $LC \frac{d^2 i_L}{dt^2} + L \left(\frac{1}{R_1} + \frac{1}{R_2}\right) \frac{di_L}{dt} + i_L = \frac{E}{R_1}$	2
	TOTAL/36pts	36

	N° question			Réponse		Note
	1.	a. =	b . \square	c . \square	d . \square	
 	2.	<i>a</i> . \square	b . \square	c . \square	<i>d</i> . ■	
1éca	3.	<i>a.</i> 	b . \square	c . \square	d . \square	
Mécanique	4.1.	<i>a</i> . □	b . \square	<i>c</i> .	d . \square	
ue	4.2.	<i>a</i> . □	b . \square	<i>c</i> .	d . \square	
	4.3.	a. =	<i>b</i> . \square	<i>c</i> . \square	d . \square	
	4.4.	<i>a</i> . \square	<i>b</i> .	c . \square	d . \square	
	5.	a. 🗆	<i>b</i> . \square	c. 	d . \square	
	6.	<i>a</i> . □	<i>b</i> . \square	<i>c</i> . □	<i>d</i> . ■	
Ele	7.	a. 🗆	<i>b</i> . \square	<i>c</i> .	d . \square	
Electricité	8.	a. I	<i>b</i> . \square	<i>c</i> . \Box	d. 🗆	
cité	9.	a. I	<i>b</i> . \square	<i>c</i> . \square	d . \square	
	10.	a. 🗆	<i>b</i> .	<i>c</i> . \square	d . \square	
	11.	a. I	<i>b</i> . \Box	<i>c</i> . \square	d. 🗆	
			Total /28p	ots		

Concours commun d'accès en Première année de l'ENSAM

Université Moulay Ismail Meknès Ecole Nationale Supérieure d'Arts et Métiers - Meknès Université Hassan II Mohammedia-Casablanca Ecole Nationale Supérieure d'Arts et Métiers - Casablanca

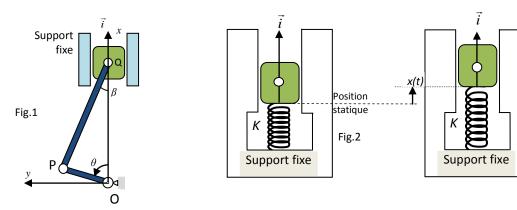
Filières: Sciences Mathématiques A et B

Epreuve de Physique Durée : 2h 15 min

le 29 Juillet 2013

- L'épreuve contient 5 pages
- Répondre dans les deux feuilles : « Fiche des réponses » à rendre avec la feuille d'examen
- Calculatrice non autorisée

Physique I (Mécanique) : Les parties I, II et III sont indépendantes.


L'objet de l'étude est un système, composé de 3 solides rigides (figure 1) qui sont un piston (un petit cylindre de masse m_p), une tige rigide inextensible (PQ) de longueur l, de masse <u>négligeable</u> et un bras (OP) homogène de longueur R et de masse m_b , de moment d'inertie l_b (par rapport à l'axe fixe (O, Δ)). La tige (PQ) permet de lier le piston avec le bras et reste tout le temps en liaison avec le bras (au point P) et avec le piston (au point Q). Le mouvement du piston est une translation suivant l'axe vertical Ox, celui du bras (OP) est une rotation d'axe fixe (O, Δ) avec une vitesse de rotation constante ω_0 (rd/s). On note (figure 1):

- angle de rotation instantanée du bras: $\theta(t)$; angle d'inclinaison de la tige par rapport à $0x : \beta(t)$,
- position instantanée du piston : x(t) telle que $\overrightarrow{OQ} = x(t)\overrightarrow{i}$, avec \overrightarrow{i} est le vecteur unitaire suivant Ox;
- Rapport des dimensions : $\varepsilon = R/l$, L'accélération de la pesanteur : $\vec{g} = -g\vec{i}$, avec $g(m/s^2)$.
- Les forces de frottement appliquées sur le piston (à travers sa surface latérale) par son support sont interprétées par le vecteur $\vec{f} = -\lambda \dot{x} \vec{i}$, où λ est une constante positive donnée.

Important: La présente étude concerne seulement la plage de fonctionnement : $0 \le \theta(t) \le \pi$, correspondant à la descente du piston.

Partie I : l'objet de cette partie consiste à déterminer le couple produit sur le bras lors de la descente du piston.

- 1. En se basant sur un raisonnement purement géométrique (relations dans le triangle OPQ), exprimer $\sin \beta$ en fonction de θ et ε ; puis exprimer la position du piston x(t) en fonction de R, l et $\theta(t)$.
- 2. Quelle approximation peut-on considérer pour que x(t) peut s'écrire sous la forme : $x(t) \approx A\cos\theta(t) + B$, où A et B sont des constantes à identifier. C ette approximation sera considérée dans la suite du problème et on écrit : $x(t) = A\cos\theta(t) + B$.
- 3. Exprimer $\theta(t)$ (sachant que $\theta(t=0)=0$), la vitesse v(t) puis l'accélération $\gamma(t)$ du piston en fonction de R, ω_0 et le temps t.

Dans la suite, on considère que le piston est soumis sur sa face supérieure à une force supplémentaire $\vec{F} = -F(t)\vec{i}$, où $F(t) = F_0 \sin \theta(t)$ et F_0 est une constante positive donnée.

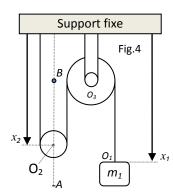
Fig.3

- 4. On désigne par $\vec{F}_{p/t}$ et $\vec{F}_{b/t}$ les forces appliquées sur la tige, respectivement par le piston (p) au point Q et par le bras (b) au point P. Etant donné que la masse de la tige (PQ) est négligeable, en appliquant le PFD (principe fondamental de la dynamique), trouver la relation entre ces deux forces en précisant leurs directions. Justifier la relation : $\vec{F}_{t/p} + \vec{F}_{p/t} = \vec{0}$, où $\vec{F}_{t/p}$ est la force appliquée par la tige (t) sur le piston (p) au point Q.
- 5. Au moyen d'un schéma (voir fiche des réponses), tracer le bilan des forces appliquées sur le piston. Respecter le sens du mouvement indiqué.
- 6. En appliquant le PFD et en tenant compte de l'approximation $\cos \beta \approx 1$, déterminer le module de la force $\vec{F}_{t/p}$, en fonction de m_p , g, \dot{x} , \ddot{x} , θ , λ et F_0 . En déduire le module de $\vec{F}_{t/b}$ (force de la tige (t) sur le bras (b) au point P).
- 7. En appliquant le PFD (équation des moments) au bras, déterminer le couple C(t) produit sur ce bras, lors de la descente du piston, en fonction de m_p , g, \dot{x} , \ddot{x} , θ , $\ddot{\theta}$, λ , F_0 , R, I_b , sachant que la distance du point O à la droite (PQ) est approximée par $h(t) = R \sin \theta$. Exprimer C(t) en fonction de m_p , g, λ , F_0 , R, ω_θ et le temps t.

Partie II: Dans l'objectif d'estimer les forces de frottement s'opposant au mouvement du piston (masse m_p), nous réalisons une expérience, *indépendante du système étudié*, dans laquelle on rattache le piston à un ressort (masse négligeable) de longueur à vide L_0 , de raideur K (fig. 2).

8. Après la mise en place du piston (m_p) sur le ressort, sa longueur est devenue L (le système piston-ressort est au repos). Exprimer L_0 -L en fonction de m, g et K. Dans la suite, cette position d'équilibre statique sera considérée comme origine du mouvement vertical x(t) (fig. 2 et 3).

Les forces de frottement appliquées sur le piston sont toujours de la forme $\vec{f}=-\lambda \dot{x}\vec{i}$ (avec $\lambda \geq 0$).

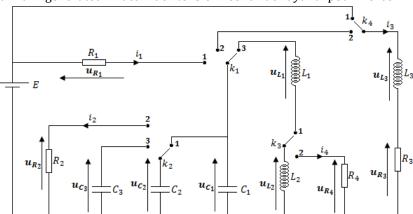

- 9. On écarte le piston de sa position d'équilibre et on l'abandonne à lui-même, en appliquant le principe de la dynamique et en mettant l'équation du mouvement du piston sous la forme : $\ddot{x} + 2\mu\dot{x} + \omega_0^2 x = 0$, préciser les constantes μ et ω_0 en fonction de m_p , λ et K.
- 10. On admet que la solution générale de cette équation est donnée par l'expression : $x(t) = Ae^{-t/\tau}\cos(\omega t)$, où A et ω sont deux constantes positives. Exprimer τ et ω en fonction de μ et ω_0 . Préciser sous quelle condition sur K, en fonction de λ et m_p , l'expression $x(t) = Ae^{-t/\tau}\cos(\omega t)$ sera valable.
- 11. La quantité ($Ae^{-t/\tau}$) est dite amplitude instantanée du mouvement, calculer μ et λ sachant qu'au bout de t=1s cette amplitude est devenue A/2, avec m_p =0.5 kg (on donne ln2=0.69).

Partie III : Un système S de levage (fig.4) est constitué d'une masse m₁, d'une poulie d'axe mobile, d'une poulie d'axe fixe et d'un câble inextensible, tel que :

- Poulie mobile : centre O2, rayon R2, masse m2, moment d'inertie négligé,
- Poulie d'axe fixe : centre O_3 (qui fait la distance d par rapport au support fixe), rayon R_3 , moment d'inertie I_3 , vitesse de rotation (par rapport à son axe fixe) $\omega_3(t)$,
- Câble : inextensible, longueur totale L, de masse négligeable.

La trajectoire du point O_2 est le segment de droite AB. On désigne par $x_1(t)$ et $x_2(t)$ les positions instantanées respectives de la masse m_1 et de la poulie mobile. Le sens positif est orienté vers le bas, l'accélération de la pesanteur g est également vers le bas.

- 12. On note x_{01} et x_{02} les positions initiales (à t=0) respectives de m_1 et de m_2 , exprimer l'énergie potentielle Ep₁ de m_1 et Ep₂ de m_2 en fonction de m_1 , m_2 , g, x_1 , x_2 , x_{01} et x_{02} en considérant Ep₁ nulle en x_{01} et Ep₂ nulle en x_{02} .
- 13. Exprimer l'énergie cinétique E_c de S en fonction de m_I , m_2 , I_3 , \dot{x}_1 , \dot{x}_2 et ω_3 ; En déduire son énergie mécanique E_m en fonction de m_I , m_2 , I_3 , R_3 , g, x_I , x_2 , x_{0I} , x_{02} , \dot{x}_1 et \dot{x}_2 .
- 14. Du fait que le câble est inextensible, sa longueur totale L vérifie à chaque instant l'équation $L=x_1+2x_2+C$. Trouver la constante C en fonction de R_2 , R_3 et la distance d.
- 15. Trouver l'accélération de la poulie mobile en fonction de m_1 , m_2 , I_3 , R_3 et g.



Physique II (Electricité): Les parties A, B, C, D et E sont indépendantes.

Le montage ci-dessous est alimenté par un générateur idéal de tension continue ayant pour force électromotrice : E = 10V.

Il comporte:

- Trois condensateurs de capacités :
 C₁, C₂ et C₃.
- Trois bobines d'inductances :
 L₁, L₂ et L₃, ayant toutes des résistances internes négligeables.
- Quatre conducteurs ohmiques : R_1 , R_2 , R_3 et R_4 .
- Quatre interrupteurs : k_1 , k_2 , k_3 et k_4 .

Le tableau suivant regroupe l'ensemble des composants avec leurs valeurs.

	-	
Composant	Nature	Valeur
R	Résistance	$R_1 = R_2 = R_3 = R_4 = 100 \Omega$
L	Bobine	$L_1 = L_2 = 50 \text{ mH et } L_3 = 100 \text{ mH}$
С	Condensateur	$C_1 = C_2 = 10 \mu F et C_3 = 100 \mu F$

Partie A. k_1 est en position (1) et k_2 est en position (1).

Dans cette partie, on note: C, la capacité du condensateur équivalent aux deux condensateurs C_1 et C_2 en parallèle. On note aussi : t_0 , l'instant où les interrupteurs basculent vers leurs positions respectives, et on suppose qu'à cet instant les condensateurs sont totalement déchargés.

- 1. Quelle est la valeur du courant i_1 en régime permanent ?
- 2. En régime permanent, quelle sera la charge q_1 en mC, au niveau du condensateur C_1 ?
- 3. Quelle sera la valeur, en mJ, de l'énergie stockée au niveau du condensateur C_1 ?
- 4. Quelle est l'équation différentielle vérifiée par la tension u_{C_1} en fonction de R_1 , C et E?
- 5. On donne l'expression temporelle du courant $i_1(t) = Ae^{-B.t}$. Donner les expressions des constantes A et B en fonction de R_1 , C et E.

Partie B. k₂ est en position (2).

Dans cette partie, on note: t_0 , l'instant où l'interrupteur k_2 bascule vers la position (2), et on suppose que $u_{c_2}(t_0) = 10V$.

- 6. Donner l'expression temporelle de la tension $u_{c_2}(t)$ en fonction de R_2 et C_2 .
- 7. Quelle est la valeur, en mA, du courant i_2 qui traverse la résistance R_2 à l'instant t_0 .
- 8. Quelle sera l'énergie stockée dans le condensateur C_2 en régime permanent ?

Partie C. k₂ est en position (3).

Dans cette partie, on note Q_2 et Q_3 , respectivement les charges aux niveaux des condensateurs C_2 et C_3 , et l'instant O_2 , l'instant où l'interrupteur O_2 bascule vers la position (3).

- 9. Quelle sera l'expression de la charge Q_3 en fonction de $Q_2(t_0)$, $Q_3(t_0)$, C_2 et C_3 ?
- 10. Supposant que : $Q_2(t_0) = 0.1 \, mC$ et $Q_3(t_0) = 0C$, quelle sera la valeur de la tension $u_{C_2}(t)$?
- 11. Supposant que : $Q_2(t_0) = 0.1 \, mC$ et $Q_3(t_0) = \frac{Q_2(t_0)}{2}$ Quelle est la valeur de l'énergie, en mJ, qui sera stockée au niveau de C_3 ?

Partie D. k_1 est en position (3), k_2 est en position (1) et k_3 est en position (1).

Dans cette partie, on note L l'inductance équivalente des bobines L_1 et L_2 en série, et t_0 , l'instant où les interrupteurs basculent vers leurs positions respectives.

On suppose aussi que $u_{C_1}(t_0) = 5V$.

- 12. Quelle est la valeur, en mH, de l'inductance L?
- 13. Quelle est la valeur, en mJ, de l'énergie maximale qui sera stockée au niveau de la bobine L_1 ?
- 14. Quelle est la valeur maximale du courant traversant la bobine L_1 ?

Partie E. k_1 est en position (2), k_2 est en position (1) et k_4 est en position (2).

15. Donner l'équation différentielle vérifiée par la tension u_{c_1} .

	FICHE DES REPONSES (Physique I) : Questions 1 à 15					
	(2 points po					
1	$\sin \beta = \frac{R}{L} \sin \theta = E \sin \theta$		x(t)=	Rcos0+P 1/1-E2 sin20		
2	Approximation: $\kappa(k) = R\cos \theta$					
3	$\theta(t) = \omega_0 t$ $v(t) = -RO \sin \theta$	(ou)	$\gamma(t) =$	- Rô2 (000 (J)		
4	Relation:		Justifi	cation:		
	Directions des forces $ec{F}_{p/t}$ et $ec{F}_{b/t}$:			P P P		
	Bilan des forces			Sens du		
5	appliquées sur		Ò	mouvement		
	le piston :					
				9		
6	F _{t/p} =					
	$F_{t/b}$ =			20		
	C (t)=					
7	C(t)=					
8	L ₀ -L =					
9	μ=		ω ₀ =			
10	τ= ω=			Condition sur K :		
11	μ= λ=					
12	E _{p1} =	E _{p2} =				
13	E _c =					
	E _m =					
14	Constante C=					
15	L'accélération γ=				Q	
			4/5			

	Chaque question est notée sur 2 poi	nts
Fiche des réponses (Physique II)	Réponse	Note

Partie A.

1.	La valeur du courant i_1 en régime permanent:	$i_1 = O$
2.	La charge, q_1 , en mC , au niveau du	q1 = C1E = 10-7 mC
3.	La valeur, en mJ , de l'énergie stockée au niveau du condensateur C_1 :	E = 1 C, E2 = 104. 100 = 1mg
4.	L'équation différentielle vérifiée par la tension u_C , en fonction de R_1 , C et E :	E = Rac Jun + Uca
5.	Les expressions des constantes A et B en fonction de R_1 , C et E :	$A = -\frac{\bar{c}}{R_A} \qquad \text{et } B = \frac{A}{R_A C}$

Partie B.

6.	L'expression temporelle de la tension $u_{C_2}(t)$ en fonction de R_2 et C_2 :	$u_{c_2}(t) = A e^{\frac{t}{R_2}C_2} = 10 e^{-\frac{t}{R_2}C_2}$
7.	La valeur, en mA , du courant i_2 qui traverse la résistance R_2 à l'instant t_0 :	i2 = - (2 31/2 => i2(+=0) = 100mA
8.	L'énergie stockée dans le condensateur C_2 en régime permanent :	$E = \frac{1}{2}C_2U^2 = \frac{1}{2}C_2O^2 = 0$

Partie C.

9.	L'expression de la charge Q_3 en fonction de $Q_2(t_0)$, $Q_3(t_0)$, C_2 et C_3 :	Q3 = - 10 e 4 R2C2
10.	La valeur de la tension $u_{C_2}(t)$:	$u_{\mathcal{C}_2}(t) =$
11.	L'énergie stockée, en régime permanent	E =

Partie D.

12.	La valeur, en mH, de l'inductance L :	L =
13.	La valeur, en <i>mJ</i> , de l'énergie maximale qui sera stockée au niveau de la bobine <i>L</i> ₁ :	$E_{max} =$
14.	La valeur maximale du courant traversant la bobine L_1 :	$l_{max} =$

Partie E.

4 60	L'équation différentielle vérifiée par la	
15.	tension $u_{\mathcal{C}_1}$:	 ij

UNIVERSITE MOULAY ISMAIL ECOLE NATIONALE SUPERIEURE D'ARTS ET METIERS-MEKNES

Concours d'entrée en Première année de l'ENSAM de Meknès Filières : Sciences Mathématiques A et B

Epreuve de Physique Durée : 2h 30

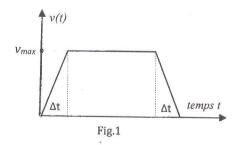
Meknès, le 26 Juillet 2012

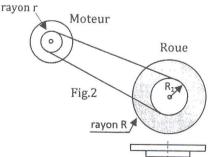
- L'épreuve contient 6 pages

- Répondre dans la feuille : « Fiche des réponses » à <u>rendre avec la feuille d'examen</u>

- Toute application numérique manquant l'unité ne sera pas comptée

Physique I (Mécanique) : Les parties I, II et III sont enchainées, la partie IV est indépendante.

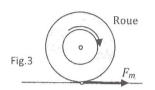

Problème A: On considère une motocyclette de masse m (y compris la masse du motocycliste), qui roule sur un plan *horizontal* ou *incliné* avec une vitesse v (parallèle au chemin de déplacement). La motocyclette se met en mouvement grâce à son moteur qui développe une force de traction F. On note par $g(m/s^2)$ l'accélération de la pesanteur. Lors de son mouvement, la motocyclette est tout le temps soumise à deux forces qui s'opposent au mouvement:

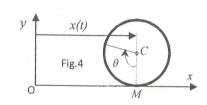

- Force F_r (appelée résistance au roulement), donnée par la formule : $F_r = f_r mg$, où f_r est un coefficient supposé constant;
- Force F_a , résistance de l'air (appelée force aérodynamique), donnée par l'expression : $F_a = \frac{1}{2} \rho A C_d v^2$, où ρ , A et C_d sont des *constantes*. ρ : masse volumique de l'air, A: surface frontale de (motocyclette) et C_d : coefficient constant. La vitesse v est exprimée en m/s et F_a (N).

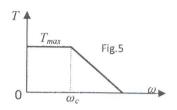
Les directions de F_r et F_a sont parallèles à la direction du mouvement. Pour les applications numériques, on prendra : g=10 m/s², m=200 kg, ρ =1.25 Kg/m^3 , A=0.6 m², Cd=0.75 et f_r = 0.007.

Partie I

- 1. Pour une accélération constante γ , sur *plan horizontal*, exprimer la force de traction F et la puissance P de la motocyclette que son moteur doit fournir en fonction de la vitesse v, γ et des données. Après application numérique ($\gamma=1$ m/s²), donner cette puissance en fonction de v.
- 2. Calculer cette puissance (notée P_m) pour une vitesse maximale v = 100 km/h.
- 3. La motocyclette grimpe une pente d'angle α inconnu avec une vitesse constante, exprimer l'angle maximal de le pente qu'on peut franchir pour une vitesse v donnée, en supposant que la puissance fournie par le moteur est maintenue constante à sa valeur maximale P_m . Calculer $\alpha(°)$ pour $v=100 \ km/h$.
- 4. Dans cette question, la motocyclette grimpe une pente, qui fait un angle α par rapport à l'horizontale, avec une loi de vitesse, représentée sur la figure 1. Exprimer la force de traction F, au début de la décélération, en fonction du temps de décélération Δt , v_{max} et des données. Calculer F pour α =5°, Δt = 13.63 s et v_{max} = 80 km/h.

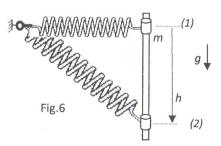





Partie II: Dans l'objectif de déterminer les relations entre les grandeurs relatives au moteur de la motocyclette à celles relatives à la roue, nous considérons le montage d'essai de la figure 2: le moteur entraîne l'une des deux roues (cette roue est appelée par la suite roue motrice) à travers une courroie inextensible (assimilée à un brin) et sans glissement (dans ce montage, les axes de rotation sont supposés fixes). La roue motrice est assimilée à un plateau composé de deux cylindres homogènes coaxiaux en

aluminium de rayons respectifs R et R₁, ayant même hauteur h, la masse volumique de l'aluminium est ρ_a = 2690 kg/m³. On donne :

- Le moment d'inertie du moteur : négligée
- Rayon de l'arbre moteur où passe la courroie : r =5,75 cm
- Grand rayon de la roue motrice, R=21 cm, hauteur h (h = 0.2 cm)
- Rayon au niveau de la roue (motrice), où passe la courroie, R_1 =11,5 cm
- 5. Exprimer le moment d'inertie de la roue motrice, I_r , en fonction de ρ_a , h, R et R_1 . Calculer I_r en $(kg.m^2)$. Rappel : le moment d'inertie d'un cylindre de rayon R par rapport à son axe est $I=mR^2/2$.
- 6. Exprimer la vitesse angulaire ω_R de la roue motrice en fonction de la vitesse angulaire ω_m du moteur et les rayons r et R_I . Justifier votre réponse. En déduire une relation similaire entre les accélérations angulaires $\dot{\omega}_m$ et $\dot{\omega}_R$. On pose par la suite : $G = \omega_R / \omega_m$.
- 7. Le couple T_e développé par le moteur est transmis à la roue motrice à travers la courroie, on désigne sa valeur par T_R appliqué sur la roue. On admet la relation entre ces deux couples : $T_e = G.T_R$. Soit F_m la composante tangentielle qui matérialise l'action appliquée par le sol sur la roue motrice (fig.3). Par application du principe de la dynamique, exprimer F_m en fonction de R, G, F_m , F_m exprimé dans cette question soit l'effort de traction que le moteur F_m exprimé dans cette question soit l'effort de traction que le moteur F_m exprimé dans cette question soit l'effort de traction que le moteur F_m exprimé dans cette question soit l'effort de traction que le moteur F_m exprimé dans cette question soit l'effort de traction que le moteur F_m exprimé dans cette que soit l'effort de traction que le moteur F_m exprimé dans cette que soit l'effort de traction que le moteur F_m exprimé dans cette que soit l'effort de traction que le moteur F_m exprimé dans cette que soit l'effort de traction que le moteur F_m exprimé dans cette que soit l'effort de traction que le moteur F_m exprimé dans cette que soit l'effort de traction que le moteur F_m exprimé dans cette que soit l'effort de traction que le moteur F_m exprimé dans cette que soit l'effort de traction que le moteur F_m exprimé dans cette que soit l'effort F_m exprimé dans cette que soit l'effort de traction que le moteur F_m exprimé de l'effort F_m exprimé dans cette que soit l'effort de traction que le moteur F_m exprimé de l'effort F_m

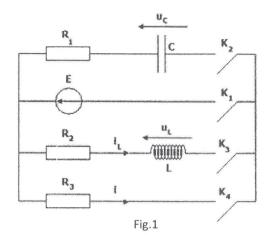


Partie III: On considère ici que la roue roule sans glisser sur un plan horizontal (absence de glissement).

- 8. Pour un angle θ réalisé par la roue lors de son roulement, exprimer la distance x parcourue par son centre C (fig.4).
- 9. Exprimer la relation entre la vitesse linéaire v du point C (égale à celle de la roue elle-même et égale aussi à la vitesse de la motocyclette) et la vitesse angulaire de la roue ω_R . En déduire une relation similaire entre les accélérations linéaire γ de C et angulaire $\dot{\omega}_R$.
- 10. En appliquant la loi de la dynamique au centre de gravité de la motocyclette et en négligeant F_r et Ir (aussi bien pour les questions 11 et 12), exprimer T_e sous la forme : $T_e = A\dot{v} + Bv^2$, où A et B sont des constantes à identifier en fonction des données.
- 11. En admettant que le couple T_e soit donné en fonction de la vitesse angulaire ω du moteur : T_e (Nm) = 153-1.16 ω_m (rd/s), T_{max} = 34 Nm, calculer la valeur de ω_c (figure 5).
- 12. Après A.N., Donner l'équation différentielle du mouvement de la motocyclette dans le cas $\omega_c \le \omega \le \omega_{\max}$. A votre avis, quel sera l'intérêt de cette équation différentielle.

Partie IV: On considère un système composé d'un petit cylindre assimilé à un point matériel de masse m=10 kg et d'un ressort de raideur k=500 N/m et de longueur initiale $l_0=100$ mm, sa longueur dans la position horizontale (1) est l=200 mm. La masse m glisse sans frottement le long d'une tige verticale, tel qu'il est illustré sur la figure 6. La masse est lâchée du repos à partir de la position (1), elle atteint la position (2), située à la distance h avec une vitesse v_2 (2). On choisit la position (1) comme référence pour l'énergie potentielle due à la pesanteur. On note E_p : énergie potentielle, E_c : énergie cinétique et E_m : énergie mécanique, relatives au système.

- 13. Calculer E_{p1} et E_{m1} du système (masse-ressort) dans la position (1).
- 14. Exprimer E_{p2} , E_{c2} en fonction de m, g, l, l_0 , h, k et v_2 , du système dans la position (2).
- 15. Exprimer la vitesse v_2 de la masse lors de son passage vers le bas devant la position h, en fonction de m, g, h, l, l0 et k. Calculer v2 pour h=150 mm.


Physique II (Electricité):

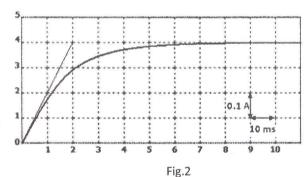
Problème.

Sur la figure (Fig.1) est schématisé un circuit électrique comportant un générateur de tension continue de force électromotrice $E=10\ V$, un condensateur de capacité C, une bobine d'inductance L et de résistance négligeable, trois conducteurs ohmiques de résistances R_1 , R_2 et R_3 , et quatre interrupteurs K_1 , K_2 , K_3 et K_4 .

On utilise une centrale d'acquisition qui permet de visualiser les tensions u_C et u_L et le courant i_L .

Toutes les expériences sont indépendantes, et les valeurs de R_1 , R_2 , R_3 L et C peuvent changer d'une expérience à l'autre.

Expérience A.


Dans cette expérience, les interrupteurs K_1 et K_2 sont fermés, K_3 et K_4 sont ouverts.

- 1. Donner l'équation différentielle vérifiée par la tension uc en fonction de R₁, C et E.
- 2. La résistance R_1 = 20 Ω , et la constante du temps du circuit vaut 0,4 ms. Déduire la valeur de la capacité C.
- 3. Une fois le condensateur totalement chargé, quelle sera la valeur de la tension u_c à ses bornes ?
- 4. Si l'on remplace R_1 par deux conducteurs ohmiques montés en parallèle de résistances $R=10~\Omega$ chacun. Quelle sera la valeur de la constante du temps du nouveau circuit ?

Expérience B.

Dans cette expérience, les interrupteurs K_1 et K_3 sont fermés, K_2 et K_4 sont ouverts. Le courant I_L est reporté sur la figure (Fig.2).

- 5. Quelle est la valeur numérique de la constante du temps du dipôle RL ?
- 6. En déterminant la valeur finale du courant i_L, donner la valeur de la résistance R₂.
- 7. Déduire la valeur de l'inductance L.
- 8. On remplace la bobine par deux bobines montées en série d'inductances L_1 = 0.6H et L_2 . Déterminer la valeur de L_2 pour que le circuit ait une constante de temps double.

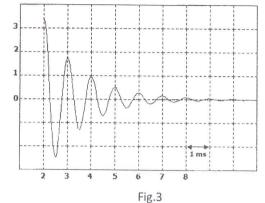
Expérience C.

Les résistances R_1 et R_2 sont court-circuitées (on peut considérer $R_1 = R_2 = 0 \Omega$), les interrupteurs K_2 et K_3 sont fermés, K_1 et K_4 sont ouverts.

On mesure la fréquence propre d'oscillation à l'aide d'un oscilloscope et on trouve f_0 = 356 Hz. Quand on branche un autre condensateur de capacité C' = $10\mu F$, on trouve f_0 = 270,7 Hz.

9. Calculer la valeur de la capacité C et la valeur de l'inductance L.

Expérience D.


Les résistances R_1 et R_2 sont court-circuitées (on peut considérer $R_1 = R_2 = 0 \Omega$), et on remplace la bobine par une autre d'inductance L' et de résistance r.

Initialement, le condensateur est complètement chargé, et est supposé de capacité $C = 50 \mu F$.

A l'instant t=0, les interrupteurs K_2 et K_3 sont fermés, K_1 et K_4 sont ouverts.

L'évolution de la tension u_{C} et reportée sur la figure (Fig.3).

10. En supposant que la pseudo-période est à peu prés égale à la période propre d'oscillation du circuit LC, calculer la valeur de l'inductance L'.

Exercice.

Répondre par Vrai ou Faux

1.	La constante de temps d'un dipôle RL est inversement proportionnelle à la valeur de la résistance.	
2.	La constante du temps d'un circuit RL est égale à la durée nécessaire pour que le courant y circulant se stabilise.	
3.	La période propre d'oscillation d'un circuit LC augmente lorsque la valeur de la capacité C augmente.	
4.	On peut considérer que la résistance interne d'une bobine L n'a aucun effet sur la période d'oscillation d'un circuit LC.	
5.	La capacité équivalente de deux condensateurs en série est toujours inférieure à la valeur de la capacité la plus faible.	
6.	Dans un circuit LC parfait la tension aux bornes du condensateur tend vers zéro en régime permanent.	
7.	L'intensité du courant dans un circuit RC en début de charge est non nulle même si le condensateur est initialement déchargé.	
8.	La résistance équivalente de deux conducteurs ohmiques en série est toujours supérieure à la valeur de la résistance la plus grande.	
9.	On ne peut pas utiliser un oscilloscope pour mesurer l'intensité du courant dans un circuit RC.	
10.	L'impédance d'un condensateur en régime continu est très faible.	
11.	La valeur efficace d'une tension sinusoïdale peut être négative.	
12.	Quand la fréquence du courant diminue, l'impédance d'une bobine augmente.	
13.	Si le courant traversant une bobine est constant, alors forcément la tension à ses bornes est nulle.	
14.	La tension aux bornes d'un condensateur est en avance de phase par rapport au courant le traversant.	
15.	La capacité équivalente de deux condensateurs en parallèle est toujours de valeur supérieure à la valeur de la capacité la plus grande.	
16.	Quand la fréquence du courant diminue, l'impédance du condensateur augmente.	
17.	En régime continue, un condensateur est équivalent à un court-circuit.	
18.	Quand un condensateur est totalement chargé, le courant qui le traverse est nul.	
19.	La tension aux bornes du condensateur, dans un circuit RC, est toujours apériodique.	
20.	La tension aux bornes du condensateur, dans un circuit RLC en régime libre, est toujours pseudopériodique.	

FICHE DES REPONSES (Physique I) : Questions 1 à 15			Note				
	Force de traction : $F =$	es estambles de manuelle committe de la committe d La committe de la committe de				grouse was an one of the state	
1.	Puissance : P =			P(v)	=		
2.	$P_m =$					and the second s	
3. (α= ,				A.N. α =		
4.	F =		annual consistence of the second consistency		A.N. F =		
5.	Moment d'inertie $I_r =$				A.N. I,		
6.	$\omega_R =$	Justification :			1	$\dot{\omega}_R =$	
7.	$F_m =$			A Andrew St. Law Property Communication Comm		Add Statement of S	
8. 1	Relation (x, θ) :		kant kalangang ang ang ang ang ang ang ang ang a	- gage out over the Addition of the Control			
9.1	Relation (v, ω _R):		Relation (·γ, $\dot{\omega}_{R}$) :			
10	Couple : $T_e =$				777		
A=		B=	and the second s	And the state of t			
11	. Vitesse angulaire : ω_c						
12	. Equation différentielle	:					
				TO CONTROL TO SEE AND CONTROL TO SEE AND CONTROL TO SEE			
13	Energies (1): $E_{pl} = \frac{1}{2}$		E_n	n1 =			
14	Energies (2) : $E_{p2} =$						
E_c	2 =						
15	. Vitesse : $v_2 =$				A	A.N. $v_2 =$	

(Physique II)

Cette feuille est un document à rendre et ne doit porter aucun signe indicatif ou signature du candidat

Problème		Chaque question est notée sur 2 poin	
	1 Tobleme	Réponse	Note
1.	L'équation différentielle vérifiée par la tension u_c en fonction de R_1 , C et E .		
2.	La valeur de la capacité C.	C =	
3.	La tension u _C aux bornes du condensateur,	$u_c =$	
4.	La valeur de la constante du temps du nouveau circuit.	$\tau =$	
5.	La valeur numérique de la constante du temps du dipôle RL.	$\tau =$	
6.	La valeur de la résistance R ₂ .	$R_2 =$	
7.	La valeur de l'inductance L.	L =	
8.	La valeur de L ₂ .	$L_2 =$	
9.	La capacité C et la valeur de l'inductance L.	C = et L =	
10.	La valeur de l'inductance L'.	L' =	

Exercice (bonne réponse : +1, mauvaise réponse : -0.5)

Note	Réponse (Vrai/Faux)	Question
		1.
		2.
		3.
		4.
		5.

Question	Réponse (Vrai/Faux)	Note
6.		
7.		
8.		
9.		
10.		

Question	Réponse (Vrai/Faux)	Note
11.		
12.		
13.		
14.		Arriver and a second se
15.		

Question	Réponse (Vrai/Faux)	Note
16.		A CONTRACTOR OF THE PARTY OF TH
17.		
18.		
19.		
20.		

Note

FICHE DES REPONSES (Physique I) : Questions 1 à 15			Note				
	Force de traction : $F =$			*			
1.							
2.	$P_m =$						
3. 0	X are		A STATE OF THE STA		A.N. α =		
4.	F =	A-1-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			A.N. F =		
5.	Moment d'inertie $I_r =$				A.N. I,		
6.	$\omega_R =$	Justification:				$\dot{\omega}_R =$	
7. $F_m =$							
8.1	Relation (x, θ) :						
9. Relation (v, ω_R) :							
10	. Couple : $T_e =$						
A= B=							
11. Vitesse angulaire : ω_c =							
12. Equation différentielle :							
977							
13. Energies (1): $E_{pl} = 2.5 \text{ J}$ $E_{ml} = 2.5 \text{ J}$							
14. Energies (2): $E_{\rho 2} = -mgh$							
$E_{c2} = \frac{1}{2} \text{ m V}_2^2$							
15. Vitesse: $v_2 = \sqrt{2gh + \frac{k}{m} (\ell - \ell_0)^2}$ A.N. $v_2 = 2031$ m/s							

(Physique II)

Cette feuille est un document à rendre et ne doit porter aucun signe indicatif ou signature du candidat

	Problème	Chaque question est notée sur 2 points		
		Réponse	Note	
1,	L'équation différentielle vérifiée par la tension u_c en fonction de R_1 , C et E .	RAC duc + Uc = E		
2.	La valeur de la capacité C.	c=2x10-5F=204F		
3,	La tension u _c aux bornes du condensateur.	$u_c =$		
4.	La valeur de la constante du temps du nouveau circuit.	T = 100ms		
5.	La valeur numérique de la constante du temps du dipôle RL.	τ = 20 ms	-	
6.	La valeur de la résistance R ₂ .	$R_2 = 25 \text{ Sb}$		
7.	La valeur de l'inductance L.	L= 0,5H		
8.	La valeur de L ₂ .	$L_2 = 0$		
9.	La capacité C et la valeur de l'inductance L.	C = et L =		
10.	La valeur de l'inductance L'.	L' =		

Exercice (bonne réponse : +1, mauvaise répo

Note	Réponse (Vrai/Faux)	Question
Note	Vrai	1,
	Fcux	2.
	Vrcii	3.
	Vrai	4,
	Vrai	5,

Note	Réponse (Vrai/Faux)	Question
laore	Faux	6.
	Vrai	7.
	Vegi	8.
	Vrai	9.
······································	Faux	10.

Question	Réponse (Vrai/Faux)	Note
11.	Faux	Note
12.	Foux	
13.	Faux	
14.	Faux	
15.	Foux	

Question	Réponse (Vrai/Faux)	Note
16.	Vrai	Note
17.	Vrai	The state of the s
18.	Vrai	
19.	Vrai	
20.	F-cu x	

Note

UNIVERSITE MOULAY ISMAIL

ECOLE NATIONALE SUPERIEURE D'ARTS ET METIERS-MEKNES

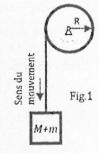
Concours d'entrée en Première année de l'ENSAM de Meknès Filières : Sciences Mathématiques A et B

Meknès, le 09 Aout 2011

Epreuve de Physique Durée : 2h 30

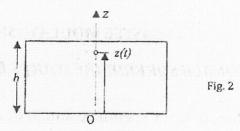
L'épreuve contient 6 pages

- Répondre dans la feuille : « Fiche des réponses »


- Toute application numérique manquant l'unité ne sera pas comptée

Les pages 5/6 et 6/6 sont des fiches des réponses à rendre.

Exercice 1.


Soit un ascenseur de masse M, destiné à soulever une charge dont la masse maximale est notée m. Son mouvement vers le haut est freiné par une force de frottement \vec{f} , supposée constante. On désigne par T la force de traction, développée par le moteur de l'ascenseur pour faire monter la charge. Soit ν la vitesse de montée du système (ascenseur+charge). On donne : $M=1000\,Kg$, $m=800\,Kg$, $f=4000\,N$, $g=10\,m/s^2$.

- 1. Exprimer la force de traction T nécessaire au soulèvement du système à une vitesse constante en fonction de M, m, g et f. Calculer la puissance P_i que doit fournir le moteur pour v=3m/s.
- 2. Exprimer la puissance P_i que doit fournir le moteur pour réaliser une accélération constante de module γ vers le haut en fonction de M, m, g, γ , f et la vitesse instantanée ν (on néglige l'inertie du moteur). Calculer cette puissance à l'instant t=2 s si le départ était à vitesse nulle et $\gamma=0.8m/s^2$.
- 3. Le câble de traction (de masse négligeable) de l'ascenseur s'enroule sur le moteur au moyen d'un tambour de rayon R, le tambour a une inertie J par rapport à son axe (Fig.1). A un moment donné, le tambour se trouve sans liaison avec le moteur et le système est alors en chute libre. Trouver l'accélération y du système en fonction de M, m, J, R, g et f.
- 4. Calculer la distance parcourue pour une durée d'une seconde, en négligeant le moment d'inertie J du tambour, (indication : le frottement est toujours existant (force f=4000 N) et vitesse initiale nulle).

Exercice 2.

Soit une bille de masse m, en chute au sein d'un fluide (Fig.2), dans le champ de pesanteur uniforme d'accélération $\vec{g} = -g\vec{z}$, lâchée sans vitesse initiale d'une hauteur h. La bille est assimilée à un point matériel (son volume est nul), sa position est repérée par la cote z(t) relativement à l'axe vertical ascendant (Oz) du repère galiléen R(Oxyz), ses coordonnées x(t) et y(t) sont constamment nulles.

Cas I: La poussée d'Archimède et le frottement du fluide sont négligés.

5. Exprimer l'accélération γ de la bille en fonction de g. En utilisant les conditions initiales, déterminer l'équation horaire z(t) du mouvement de la bille.

<u>Cas II</u>: La poussée d'Archimède est toujours négligée, mais le frottement du fluide n'est plus négligé et il est représenté par une force telle que $\vec{f} = -\alpha \vec{v}$ agissant sur la bille; \vec{v} étant le vecteur vitesse instantanée de la bille et α est une constante positive.

- 6. Etablir l'équation différentielle du mouvement de la bille.
- 7. On admet que la vitesse peut se mettre sous la forme $v(t) = \frac{-mg}{\alpha} + A e^{-t/\tau}$, où A et τ sont des constantes à identifier : déterminer A et τ en fonction de m, g et α .
- 8. déterminer la position z(t) de la bille en fonction de m, α , g, h et le temps t.

Exercice 3.

On considère un pendule pesant constitué d'une plaque homogène de forme carrée, de côté 2b, de centre de gravité G, de masse m, située dans le champ de pesanteur d'accélération g suivant l'axe vertical (Ox); elle est suspendue au milieu de l'un de ses côtés (fig.3) et réalise, dans le repère galiléen R(Oxyz), des oscillations autour de sa position d'équilibre, sans frottement. Pour une position quelconque, la plaque est repérée par l'angle θ que forme la droite (OG) avec la verticale. On donne le moment d'inertie de la plaque par rapport à l'axe (Oz): $J = \frac{5mb^2}{3}$.

- 9. Exprimer l'énergie potentielle E_{ρ} de la plaque, en fonction de m, g, b et θ . On prendra $E_{\rho}=0$ pour $\theta=0$.
- 10. Exprimer son énergie cinétique E_c et son énergie mécanique E_m , en fonction de b, m, g, θ et $\dot{\theta}$.
- 11. Si à l'instant initial, la plaque est lâchée sans vitesse initiale à partir de l'angle θ_m , déterminer la vitesse maximale v_{max} de son centre de masse en fonction de b, g et θ_m .

Fig.3

12. En utilisant la loi de conservation de l'énergie mécanique, établir l'équation différentielle du mouvement de la plaque.

Dans la suite, on considère les petites oscillations de la plaque, on rappelle que $\cos^2\theta \approx 1 - \theta^2/2$ et $\sin\theta \approx \theta$ pour θ petit. On donne pour les applications numériques : $\theta_{\rm st} = \pi/20$, $b = 0.1 {\rm m}$ et $g = 10 {\rm m/s^2}$.

- 13. Calculer la période T du mouvement de la plaque autour de sa position d'équilibre. Déterminer l'équation horaire du mouvement de la plaque (avec application numérique).
- 14. Exprimer puis calculer les composantes γ_s et γ_s de l'accélération du cendre de gravité G, à l'instant t=T/4.
- 15. Exprimer puis calculer les composantes R_x et R_y de la force du support sur la plaque au poit 0, à l'instant t = T/4.

2/6

Exercice 4.

Le montage ci-contre comporte un générateur idéal de force électromotrice constante E =24V, deux condensateurs de capacités respectives : C_1 = 10 μF et C_2 = 150 μF et une bobine d'inductance L_1 .

L'interrupteur k est en position (1).

- 16. Donner l'expression de la capacité équivalente C des deux capacités C_1 et C_2 .
- 17. Calculer sa valeur numérique.
- 18. Donner l'expression de la tension aux bornes de la capacité C₂ lorsque les deux condensateurs sont complètement chargés.
- 19. Calculer sa valeur numérique.
- 20. Donner l'expression de la charge électrique Q2 du condensateur C2.

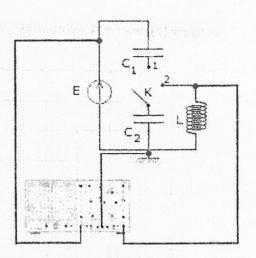


Fig.4

L'interrupteur k est en position (2).

La figure (5) illustre la tension aux bornes de la bobine L.

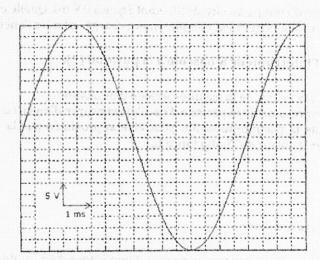
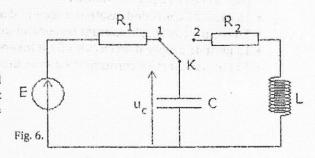



Fig.5

- 21. Donner l'équation différentielle vérifiée par cette tension qu'on note $u_L(t)$.
- 22.Donner l'expression de la tension u_L(t).
- 23. Donner l'expression de la période propre To des oscillations en fonction de L et C2.
- 24. Calculer sa valeur numérique.
- 25. Déduire la valeur de l'inductance L.

Exercice 5.

Le montage ci-contre comporte un générateur idéal de force électromotrice constante E=15V, deux résistances R_1 et R_2 , un condensateur de capacité $C=42 \mu F$ et une bobine d'inductance L.

La figure (7) montre l'évolution de la tension $u_c(t)$ aux bornes du condensateur.

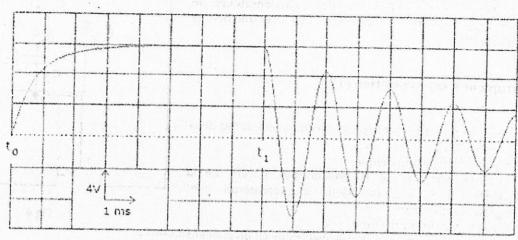


Fig. 7.

A l'instant to, l'interrupteur K est en position (1).

26. La constante du temps du circuit RC étant égale à $0.9~\mathrm{ms}$. Quelle est la valeur de la résistance R_1 ? 27. Une fois le condensateur est complètement chargé, calculer l'énergie qui y est emmagasinée.

A l'instant t₁, l'interrupteur K bascule à la position (2).

- 28. Déterminer la valeur de la pseudo-période d'oscillation.
- 29. Donner l'expression de la période d'oscillation propre d'un circuit LC.
- 30. Sachant que la pseudo-pulsation peut être approximée par la pulsation propre d'un circuit LC, déterminer la valeur de l'inductance L.

Exercice 6.

Répondre par vrai ou faux.

- Quand la fréquence du courant augmente, l'impédance d'un condensateur augmente.
- Quand la fréquence du courant augmente, l'impédance d'une bobine augmente.
- La valeur efficace d'une tension sinusoïdale de valeur maximale 5V est égale à 3.53V.
- ullet La valeur maximale du déphasage entre deux tensions sinusoïdales est égale à π rad.
- La capacité équivalente de deux condensateurs en série est toujours de valeur plus faible que la plus faible des deux capacités.
- La résistance équivalente de deux résistances en parallèle est toujours de valeur plus faible que la plus faible des deux résistances.
- La capacité d'un condensateur augment d'autant plus que l'épaisseur de son diélectrique est faible.
- En régime continu, le courant traversant un condensateur est toujours nul.
- La période propre d'un circuit LC est inversement proportionnelle à la capacité.
- La puissance active consommée par un dipôle est toujours supérieure à la puissance apparente.

Université Moulay Ismaïl

Ecole Nationale Supérieure d'Arts

et Métiers - Meknès

Concours d'entrée en première année de l'Ecole Nationale Supérieure d'Arts et Métiers – Meknès Filières : Sciences mathématiques A et B

Matière : Physique Durée totale : 3h

Remarques importantes : - La rédaction peut être en français ou en arabe.

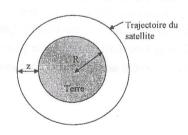
- Cette épreuve est composée de deux parties indépendantes :

* Une partie Rédaction (les réponses seront rédigées sur la feuille de rédaction).

* Une partie R.S.F (les réponses seront notées sur la fiche de réponse).

Partie Rédaction

Exercice 1 (Rédiger les réponses sur la feuille de rédaction)


La loi d'attraction universelle, appliquée à deux corps de masses m₁ et m₂ dont les centres sont à la distance d s'écrit :

$$F = G \frac{m_1 m_2}{d^2}$$
. Où G étant une constante égale à 6,67.10⁻¹¹ (SI).

- 1- Exprimer l'accélération de pesanteur g₀ au niveau du sol en fonction de G, du rayon R de la terre et de la masse M de la terre, supposée concentrée en son centre.
- 2- Sachant que R= 6400 km, calculer M. On donne au niveau du sol $g_0 = 9.8 \text{ m/s}^2$.
- 3- Exprimer, en fonction de g₀, R et z, l'intensité g de la pesanteur à l'altitude z (z est mesurée par rapport au niveau du sol).
- 4- Montrer que si z est très petit devant R, l'accélération de pesanteur g est une fonction linéaire de z.

On donne:
$$\frac{1}{(1+x)^2} \approx 1-2x$$
 quand x est négligeable devant 1.

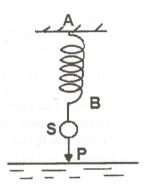
- 5- Un satellite artificiel de masse m évolue à très haute altitude, où la valeur de g est celle trouvée à la question 3-, en décrivant un cercle concentrique à la terre dans le plan de l'équateur (voir figure ci-contre).
 - a- En appliquant le principe fondamental de la dynamique, exprimer la vitesse du satellite en fonction de g₀, R et z.
 - **b-** Calculer cette vitesse pour z = 36000 km?
 - c- Quelle est la durée d'une révolution? L'exprimer en secondes et en heures, Conclure.

Pour les questions 6 et 7, on supposera que le centre de l'orbite circulaire est déplacé par rapport au centre de la terre. Le point A de cette orbite le plus rapproché à la terre a une altitude z_A = 20000 km, le point B le plus éloigné à une altitude z_B = 36000 km. La vitesse au point B est celle trouvée en 5-b.

- 6- On prendra sur toute l'orbite une valeur constante de g égale à celle qu'on calcule pour z = 36000 km d'après la question 3. En utilisant le théorème de l'énergie cinétique, déterminer l'expression et la valeur de la vitesse au point A.
- 7- On veut maintenant faire un calcul plus exact de la vitesse au point A. On tient alors compte de la variation de g en fonction de z.
 - a- Sachant que la variation de l'énergie potentielle de pesanteur correspondant à une variation dz de z est donnée par : $dE_{pp} = Fdz$ où F est le module de la force d'attraction à l'altitude z. Déterminer l'expression de l'énergie

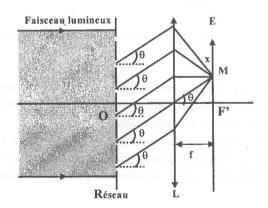
potentielle de pesanteur $E_{pp}(z)$ à une altitude z en fonction de g_0 , R, z et m. On prendra le niveau du sol comme référence $E_{pp}(z=0)=0$.

b- En utilisant la conservation de l'énergie mécanique, déterminer numériquement la vitesse au point A.


Partie R.S.F

Les cinq exercices de cette partie sont indépendants.

Exercice 2 (Donner les réponses sur la fiche de réponse)


Un ressort **AB** de masse négligeable, de constante de raideur k = 50 N/m est fixé par son extrémité A à un point fixe. On accroche à l'extrémité B un corps solide S assimilé à un point matériel de masse m = 50g. Le solide S est écarté de sa position d'équilibre, verticalement, vers le bas d'une longueur a = 5mm.

- 1- Déterminer l'expression, puis la valeur numérique de la période T des oscillations du corps S.
- 2- A l'instant t=0, le centre d'inertie G de S passe par sa position d'équilibre G_0 en allant vers le bas, dans le sens positif. On repère la position de G par son abscisse y(t) sur une droite d'origine G_0 , orientée vers le bas.
 - a- Donner l'équation y(t) du mouvement.
 - b- Déterminer les instants de t_k pour lesquelles l'énergie cinétique est maximale en fonction de T et k (k est un entier).
- 3- On fixe sur la partie inférieure de S une pointe verticale de masse négligeable (voir figure ci-dessous). L'extrémité de cette pointe est animée du mouvement étudié précédemment (question 2) et vient frapper au point P la surface d'une nappe d'eau. L'amplitude des ondes circulaires concentriques qui se propagent à partir de P est a=5 mm.
 - a- La distance qui sépare deux crêtes successives est 12 cm. En déduire la longueur d'onde λ .
 - b- Donner la vitesse V de propagation de l'onde en fonction de λ et T. Calculer sa valeur.
- 4- On place sur l'eau, à la distance d à partir de P, un morceau ponctuel de liège (L) (L'amortissement des ondes à la surface d'eau est négligeable).
 - a- Quelle est la valeur minimale d_{min} prise par d pour que les vibrations en P et en L soient en phase.
 - **b-** A un instant t_0 on mesure une élongation A de la vibration en P. A quelle instant t_1 après t_0 on retrouve cette même élongation en L (On exprime t_1 en fonction de t_0 , d, λ et T)?

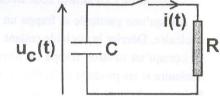
Exercice 3 (Donner les réponses sur la fiche de réponse)

Un réseau par transmission de pas a =10⁻⁶ m , disposé devant une lentille convergente (L) de distance focale f=10 cm , et de foyer image F', est éclairé sous une incidence normale par un faisceau lumineux monochromatique de longueur d'onde λ =0,4.10⁻⁶ m . Dans le plan focal de la lentille on place un écran (E). Tous les rayons diffractés dans la direction θ convergent au point M d'abscisse x par rapport à l'axe (F'x) (figure ci-dessous).

1- Donner la relation entre x et θ .

- 2- Déterminer en fonction de a et θ , l'expression de la différence de marche δ entre deux rayons successifs difractés dans la direction θ .
- 3- Déterminer en fonction de a, k et λ , l'expression de $\sin(\theta_k)$ (θ_k : l'angle correspondant à l'ordre k (k est un entier relatif)).
- 4- Quelles sont les valeurs numériques de tous les ordres possibles.
- 5- On incline maintenant le faisceau lumineux d'un angle θ_0 par rapport à la normale au réseau.
 - a- Oue devient l'expression de $sin(\theta_k)$ (θ_k est défini à la question 3).
 - b- Sachant que la tâche lumineuse de l'ordre 2 correspondant à l'incidence normale du faisceau s'est déplacée au foyer F' quand le faisceau est incliné de θ_0 . Déterminer l'expression donnant θ_0 puis calculer sa valeur en degré.

Exercice 4 (Donner les réponses sur la fiche de réponse)


Les niveaux d'énergie de l'atome d'hydrogène vérifient la relation $E_n = -\frac{E_0}{n^2}$ où n étant un entier naturel non nul et

 $E_0=13.6 \text{ eV}$. On donne $h=6.62.10^{-34} \text{ J.s}$ (constante de Plank); $c=2.998.10^8 \text{ m/s}$ et $1 \text{ eV} = 1.602.10^{-19} \text{ J.s}$

- 1- Quelle est l'énergie d'ionisation E_i de l'atome d'hydrogène quand il est à son état fondamental (n=1).
- 2- Déterminer l'expression de la vitesse minimale V_{min} d'un électron de masse m qui rentre en choc avec un atome d'hydrogène au repos et permettant de l'exciter depuis l'état fondamental jusqu'à l'état correspondant au niveau n.
- 3- a- Déterminer l'expression de la longueur d'onde λ du rayonnement émis par l'atome d'hydrogène quand il passe de l'état excité d'énergie E_n ($n \ge 2$) à l'état fondamental, en fonction de n, h, c et E_0 .
 - b- Pour quelle valeur de n la longueur d'onde est minimale. En déduire la valeur numérique de λ_{\min} .

Exercice 5 (Donner les réponses sur la fiche de réponse)

Un condensateur de capacité C=100 microfarads est préalablement chargé sous la tension U=1000 V. On installe ce condensateur dans un circuit comportant une résistance R=100 k Ω et un interrupteur (figure ci-contre). On ferme l'interrupteur à l'instant t=0 s.

- 1- A l'instant de la fermeture, Calculer la différence de potentiel entre les armatures du condensateur $\mathbf{u}_C = \mathbf{U}_0$ (en \mathbf{V}) et le courant \mathbf{i}_0 (en $\mathbf{m} \mathbf{A}$) dans le circuit.
- 2- A l'instant de la fermeture, la différence de potentiel entre les armatures du condensateur montre une tendance à la diminution. Calculer (en V/s) la pente de la tangente à l'origine de la tension aux bornes du condensateur.
- 3- Calculer la différence de potentiel u_{C10} (en V) aux bornes du condensateur à l'instant t = 10 s.
- 4- Calculer la valeur du courant i_{50} (en μ A) dans le circuit à l'instant t = 50 s.

Exercice 6 (Donner les réponses sur la fiche de réponse)

Les trois parties A, B et C sont indépendantes.

A- La radioactivité est utilisée dans le traitement des tumeurs et des cancers: c'est la radiothérapie. Le principe consiste à bombarder une tumeur avec le rayonnement β- émis par le "cobalt 60". Dans certains cas, il faut une source radioactive plus ionisante: on utilise un rayonnement de type alpha, plus massif que les autres. La découverte de la radioactivité a donné aux sciences, à la médecine et à l'industrie un élan qui ne s'est pas ralenti.

Le cobalt $^{60}_{27}$ Co est émetteur β^- de constante radioactive $\lambda = 4 \times 10^{-9} \text{ s}^{-1}$.

1- Écrire l'équation de désintégration du "cobalt 60". On supposera que le noyau fils est produit dans un état excité. **Données:**

Extrait de la classification périodique:

25Mn	₂₆ Fe	₂₇ C0	₂₈ Ni	29Cu

Constante d'Avogadro: 6,02×10²³ mol⁻¹

Masse molaire atomique du cobalt 60 : 60 g.mol-1

2- Un centre hospitalier reçoit un échantillon de "cobalt 60".

2.1- Déterminer le nombre N_0 de noyaux contenus dans l'échantillon de $1\mu g$ à l'instant de sa réception dans l'établissement hospitalier.

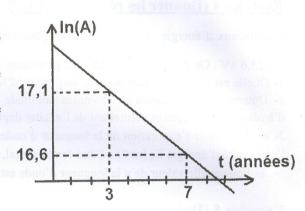
2.2- Donner l'expression liant dN, dt, λ et N dans laquelle N représente le nombre de noyaux encore présents dans l'échantillon à l'instant de date t et dN étant le nombre de désintégrations pendant une courte durée dt.

2.3- En déduire l'expression de dN en fonction de dt, λ , N_0 et t.

Le technicien du laboratoire est chargé de contrôler cette source, tous les ans. A l'aide d'un compteur, il détermine le nombre de désintégrations qu'un échantillon radioactif produit par seconde. Ce nombre est appelé activité A définie

par : $A = \frac{-dN}{dt}$. L'activité peut se mettre alors sous la forme $A = A_0 \cdot e^{-\lambda \cdot t}$.

2.4- Que vaut littéralement A₀?


2.5- On trace à l'aide d'un logiciel approprié le graphe du logarithme de l'activité A en fonction du temps: $\ln (A) = f(t)$ (figure ci-contre).

Exprimer In (A) en fonction de t, λ et A_0 : activité initiale de l'échantillon à l'instant de sa réception.

2.6- Déterminer graphiquement la valeur de la constante de désintégration radioactive λ en an⁻¹.

2.7- Donner la relation entre $t_{1/2}$ (temps de demi-vie) et λ .

2.8- Calculer $t_{1/2}$ en s. On donne : 1 an = 3,156 × 10⁷ s.

B- Fission de l'Uranium 235. Déchets radioactifs subsistant au bout d'un siècle.

3- Lorsqu'une particule α frappe un noyau de béryllium 9_4 Be, un neutron est émis. Ecrire l'équation de cette réaction nucléaire. Décrire le nucléide restant.

4- Lorsqu'un neutron frappe un noyau d'Uranium $^{235}_{92}U$, il se produit une fission. Ecrire l'équation de cette réaction nucléaire si les produits de la fission sont le strontium $^{34}_{38}Sr$ et le xénon $^{140}_{54}Xe$.

5- Les produits de la fission sont radioactifs et se transmutent en d'autres produits radioactifs. L'ensemble de tous ces produits de la fission constitue les « déchets radioactifs ». Parmi ces déchets, on trouve le strontium ⁹⁰ Sr de demi-vie 25 ans et le césium ¹³⁷ Cs de demi-vie 33,333 ans. Un déchet contient 8 mg de strontium ⁹⁰ Sr et 8 mg de césium ¹³⁷ Cs.

Quelle quantité (en mg) de ces éléments restera-t-il dans ce déchet un siècle (100 ans) plus tard ?

 \mathbb{C} - Une centrale nucléaire type PWR (réaction à eau ordinaire pressurisée) utilise comme combustible de l'uranium enrichi en uranium $^{235}_{92}U$.

6- Un noyau d'uranium $^{235}_{92}U$ peut absorber un neutron. Parmi les réactions possibles, il ya celle où apparaissent 2 nucléides radioactifs $^{144}_{56}Ba^*$ et $^{89}_{36}Kr^*$. Ecrire l'équation de cette réaction. S'agit-t-il d'une fission ou d'une fusion pucléaire?

7- Chaque noyau d'uranium 235 libère en moyenne une énergie de 200 MeV au cours de la réaction précédente ; 30 % de cette énergie est transformée en énergie électrique. Une « tranche » d'une centrale nucléaire (type PWR) fournit une puissance électrique de 920 MW.

Calculer en kilogrammes la consommation journalière de 235 U dans cette centrale. On donne la masse d'un noyau d'uranium 235 : approximativement 235 u.

On donne : Unité de masse atomique : 1 $u = 1,66.10^{-27} \text{ kg}$; 1 $eV = 1,6.10^{-19} \text{ J}$.

Ecole Nationale Supérieure d'Arts

et Métiers - Meknès

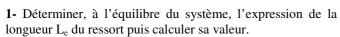
Concours d'entrée en première année de l'Ecole Nationale Supérieure d'Arts et Métiers – Meknès Séries : Sciences mathématiques A et B

Matière : Physique Durée totale : 3h

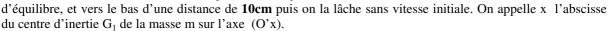
Remarque importante : Cette épreuve est composée de deux parties :

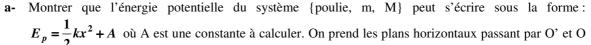
- Une partie rédaction distribuée au début ;
- Une partie QCM distribuée après 1h30mn.

Partie rédaction :

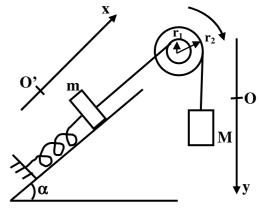

On donne $g = 10 \text{m/s}^2$.

Exercice 1


Une poulie, mobile sans frottements autour d'un axe horizontal, possède deux gorges **solidaires** de rayons r_1 = 6cm et r_2 = $2r_1$. Le moment d'inertie de la poulie par rapport à son axe de rotation est égal à J=2,82.10⁻³ kg.m². Un fil inextensible et sans masse est enroulé sur la grande poulie et supporte une masse M=300 g. Un fil inextensible et sans masse est enroulé sur la petite poulie et supporte une masse m=1 Kg et peut glisser **sans**


frottements sur un plan incliné d'un angle α =30°. On appelle G_1 et G_2 les centres d'inertie respectivement des masses m et M

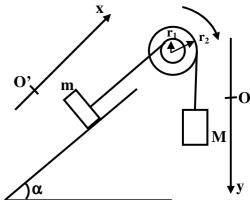
A- La masse m est reliée à un ressort de masse négligeable, de raideur k=20 N/m et de langueur initiale $L_0=20$ cm. L'autre extrémité du ressort est fixée. On étudiera par la suite le système {poulie, m, M}.


2- Les origines des axes (Oy) et (O'x) coïncident avec les positions de G_1 et G_2 à l'équilibre du système. A l'instant initial t=0 on écarte la masse M, à partir de sa position

comme références de l'énergie potentielle de pesanteur, respectivement pour les masse m et M. La référence de l'énergie potentielle élastique est prise quand le ressort n'est pas déformé.

- **b-** Montrer que l'énergie cinétique du système peut s'écrire sous la forme : $E_c = \frac{1}{2}B x^{\circ 2}$ où **B** est une constante à calculer.
- **c-** Donner la valeur numérique de la vitesse maximale de la masse m.
- **d-** Déterminer l'équation différentielle du mouvement de la masse m et calculer la période T des oscillations
- **e-** Donner l'expression numérique de l'équation horaire x(t).
- **f** Déterminer, à l'instant $t = \frac{T}{2}$, les valeurs des tensions des deux fils.

B- Le ressort de la partie A est maintenant éliminé. A l'instant initial, les centres d'inertie G_1 et G_2 des masses m et M se situent, respectivement en O' et O. On appelle x l'abscisse de la position de G_1 sur l'axe (O'x).


1- Donner l'expression de l'énergie mécanique du système $\{poulie, m, M\}$ pour une position x de G_1 . On prend les plans horizontaux passant par O' et O comme références de l'énergie potentielle de pesanteur, respectivement pour les masses m et M.

- 2- En déduire l'expression de l'accélération γ de la masse m. Donner sa valeur numérique.
- **3-** Quel est le nombre de tours, effectués par la poulie, au cours des 3 premières secondes ?
- **4-** A cause des frottements sur le plan incliné, l'accélération réelle **a** de la masse m est inférieure à γ. On suppose que ces frottements

sont équivalents à une seule force constante f qui s'oppose au mouvement de la masse m et de module f=0,4N.

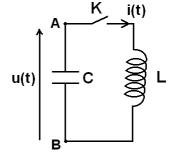
a- En appliquant la deuxième loi de Newton aux masses m, M et à la poulie, exprimer puis calculer l'accélération **a**.

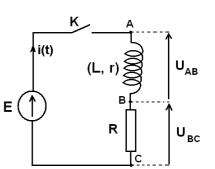
b- Calculer les valeurs des tensions des deux fils.

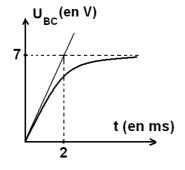
Exercice 2

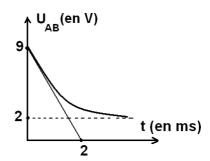
On considère le circuit de la figure ci-contre. La résistance de la bobine est négligeable. La tension aux bornes du condensateur vaut $U_0=10~V$, l'interrupteur K étant ouvert. A l'instant t=0, on ferme l'interrupteur K.

1- Préciser la nature du phénomène observé.


- 2- Des enregistrements ont permis d'obtenir les expressions de u(t) et i(t): $u(t) = 10.\cos(2.10^4.t)$ en volt et $i(t) = 20.\sin(2.10^4.t)$ en mA.
 - a- Ecrire la relation entre u(t), L, C et du(t)/dt. Justifier votre réponse.
 - **b-** Montrer que C = 100 nF et en déduire la valeur de L.
 - **c-** Calculer la valeur de l'énergie E du circuit. Comment varie E au cours du temps ?
 - **d-** Calculer la période propre T₀ du circuit.
- **3-** On définit t_1 la date à laquelle, pour la première fois après la fermeture de K, l'énergie est répartie de façon égale entre la bobine et le condensateur. Calculer l'instant t_1 et en déduire les valeurs de $u(t_1)$ et $i(t_1)$.



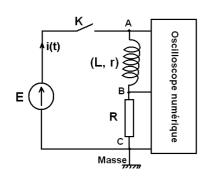

Le circuit de la figure ci-contre est composé d'un générateur de tension continue E, d'une bobine d'inductance L et de résistance $r=10~\Omega$, d'un interrupteur K et d'un conducteur ohmique R.

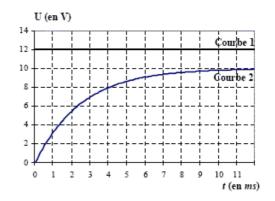

A t=0, on ferme l'interrupteur K. Un oscilloscope à mémoire permet de suivre les valeurs des tensions U_{BC} et U_{AB} au cours du temps. Ces tensions sont illustrées dans la figure ci-dessous.

- 1- Déterminer la valeur de E.
- **2-** Calculer R et en déduire L (en mH).
- **3-** Déterminer l'expression de l'intensité i du courant en fonction de L, R, E et r. En déduire la valeur de l'intensité i à t = 3 ms.
- **4-** Calculer la valeur de l'énergie stockée par la bobine à t = 3 ms.

Matière : Physique

Séries : Sciences mathématiques A et B


Partie QCM:


<u>Important</u>: Cette épreuve est un Q.C.M (questions à choix multiples). Veuillez cocher Les réponses exactes dans la fiche de réponse ci-jointe.

On donne g=10m/s ²				
1- Un projectile est lancé depuis la Jusqu'à quelle hauteur s'élèvera-t-		es frottements dus à l'air	r ?	
a) 60 m	b) 100 m	c) 80 m	d) 125 m	
2- Lors des Jeux Olympiques, un qu'il accélère de manière constante vitesse constante pour la fin de la ca) 3,22 m/s ²	e pendant les 50 j	premiers mètres et main	tient ensuite une	démarrage ?
3- Sur une route horizontale, on force motrice constante . Pour to équivalents à une force constant atteint la vitesse 45Km/h.	outes les question	ns de cet exercice on	va supposer que les	s frottements sont
3.1 Quelle est la valeur de la force				
a) 1500 N	b) 2500 N	c) 3500 N		d) 4500 N
3.2 Quel est le travail fourni au vé a) 562,5 KJ	b) 700,5 KJ	ette pnase de demarrage c) 50,5 KJ		d) 300 KJ
On veut maintenir constante cette			J	u) 300 KJ
3.3 Quelle est la nouvelle valeur d				
_	b) 350 N	c) 500 N		d) 250 N
A la vitesse 45Km/h, le véhicule	e aborde une pe	nte (montée) inclinée o	de 10° par rapport	à l'horizontal. On
suppose que la force motrice est su				
3.4 Quel est le module de l'accélér			2	D = 42
a) $4,25 \text{ m/s}^2$	b) $3,33 \text{ m/s}^2$	c) 1,77 m/s		d) $5,63 \text{ m/s}^2$
3.5 Quelle est la distance parcouru	-	•		
a) 30,8 m	b) 44 m	c) 65,8 m	d) 50 m	
4- Une barre rectiligne homogène AO est vertical, MN peut se dépla les oscillations ont une période T période devient T ₂ =2,42s.	acer dans un plar	n horizontal, L'ensembl	le constitue un pendu	ale de torsion dont
4.1 Quelle est la valeur du mo	ment d'inertie !	J de la barre MN (sa	ins les	
surcharges) par rapport à l'axe AC				
a) 2,12.10 ⁻² Kg.m ²		.10 ⁻² Kg.m ²		
c) 3,5.10 ⁻² Kg.m ²		10^{-3} Kg.m^2	\mathbf{N}	A M
4.2 Quelle est la valeur de la const				
a) 0,113 N.m/rad c) 3,111 N.m/rad		23 N.m/rad 1 N.m/rad	m	m
4.3 Quelle est la vitesse angulaire			s au moment de pass	age nar sa nositon
d'équilibre au cours d'oscillations			, au moment de pass	age par sa positori
a) 1.03 rad/s	b) 5.55 rad/s	c) 4.07 rad/s		d) 3.03 rad/s

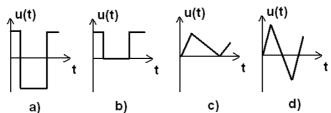
5- Un dipôle est constitué de l'association en série d'une bobine présentant une inductance L et une résistance r avec un conducteur ohmique de résistance $R = 40 \Omega$. Ce dipôle est alimenté par une source de tension continue E à travers un interrupteur K. Il est parcouru par un courant i(t).

Les bornes A, B et C sont reliées aux entrées d'un oscilloscope numérique à mémoire permettant d'enregistrer l'évolution des tensions. A l'instant t = 0, on ferme l'interrupteur K ; l'enregistrement génère les courbes 1 et 2.

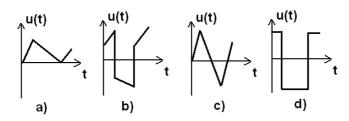
- **5.1** Quelle est la tension représentée par la courbe 1 ?
- a) u_{AB}
- b) u_{BC}.
- c) u_{AC}.
- d) E-u_{BC}.

- **5.2** Quelle est la tension représentée par la courbe 2 ?
- a) u_{BC}.
- b) u_{AB}.
- c) u_{AC}.
- d) E+u_{BC}.
- **5.3** Quelle sera l'allure de la courbe de variation du courant i choisie parmi les quatre courbes ci-dessous ?

- **5.4** Quelle est la valeur de E?
- a) 10 V.
- b) 12 V.
- c) 2 V.
- d) 0 V.


- **5.5** L'intensité maximale I_{max} atteinte par i vaut :
- a) 2,5 mA
- b) 0,25 mA.
- c) 2,5 A.
- d) 0,25 A.
- **5.6** L'équation différentielle définissant i s'exprime de la manière suivante :
- a) di/dt + (r + R).i = E/L.

b) di/dt + L.(r + R).i = E/L.


c) di/dt + (r + R).i/L = E.

- d) di/dt + (r + R).i/L = E/L.
- **5.7** La résistance r de la bobine a pour valeur :
- a) 80 Ω.
- b) 8 Ω.
- c) $80 \text{ m}\Omega$.
- d) 8 mΩ.

- **5.8** La valeur de l'inductance L de la bobine vaut :
- a) 0,12 H.
- b) 1,2 H.
- c) 0,12 mH.
- d) 12 mH.
- **5.9** On remplace maintenant le générateur de tension par un générateur de courant délivrant un courant de dents de scie (figure ci-contre). On considérera que la résistance r de la bobine est nulle.
 - on I₀
- **5.9.1** Quelle sera, parmi les quatre courbes ci-dessous, l'allure de la courbe de variation de la tension u_{AB} ?

5.9.2 Quelle sera, parmi les quatre courbes ci-dessous, l'allure de la courbe de variation de la tension u_{BC}?

Fiche de Réponse pour la partie QCM

Matière: Physique

Séries Bac : Sc Math (A et B)

Important: La fiche ne doit porter aucun signe indicatif ni signature

Pour chaque question, on vous propose quatre réponses : a), b), c) et d). Cochez la réponse juste par une **croix** dans la case correspondante.

<u>Barème</u>: Une réponse juste : +1, une réponse fausse ou pas de réponse ou plus d'une seule réponse : 0.

Numéro		C	hoix		Note
de					
question					
1	(a)□	b)	c)	d)□	
2	(a) □	b)	c)	d)□	
3.1	(a) □	b)	c)	d)□	
3.2	(a) □	b)	c)	d)□	
3.3	(a)□	b)	c) 🗆	d)□	
3.4	(a)□	b)	c)	d)□	
3.5	a)□	b)	c)	d)□	
4.1	a)□	b)	c)	d)	
4.2	(a)□	b)	c)	d)	
4.3	a) 🗆	b)	c)	d)	
5.1	(a) □	b)	c)	d)	
5.2	(a) □	b)	c)	d)	
5.3	(a)□	b)	c) 🗆	d)□	
5.4	a) 🗆	b)	c) 🗆	d)□	
5.5	a) 🗆	b)	c)	d)	
5.6	a) 🗌	b)	c)	d)	
5.7	a) 🗌	b)	c)	d)	
5.8	a) 🗌	b)	c)	d)	
5.9.1	a) 🗌	b) 🗆	c)	d) 🗌	
5.9.2	a) [b)	c)	d)	

Ecole Nationale Supérieure d'Arts

et Métiers - Meknès

Concours d'entrée en première année de l'Ecole Nationale Supérieure d'Arts et Métiers – Meknès Séries : Sciences mathématiques A et B Sciences et techniques

Matière : Physique Durée totale : 3h

Remarque importante : Cette épreuve est composée de deux parties :

- Une partie rédaction distribuée au début ;
- Une partie QCM qui sera distribuée après 1h30mn.

Partie rédaction :

On donne $g = 10 \text{m/s}^2$.

Exercice 1:

Important:

Soient f une fonction qui dépend du temps t et c une constante.

On appelle équation différentielle de type 1 : $f - c^2 f = 0$ avec f est la dérivée seconde de f par rapport à f

On appelle équation différentielle de type 2 : $f + c^2 f = 0$

On admet que les solutions de l'équation différentielle de type 1 sont de la forme : $f(t) = A e^{ct} + B e^{-ct}$ où A et B sont des constantes.

On admet également que les solutions de l'équation différentielle de type 2 sont de la forme :

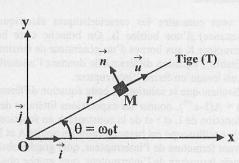
 $f(t) = A\cos(c t + \varphi)$ où A et φ sont des constantes.

Une tige (T) contenue dans le plan fixe (Oxy) horizontal est animée d'un mouvement de rotation uniforme autour de l'axe fixe (Oz), à la vitesse angulaire constante ω_0 , sa position est alors repérée par $\theta=\omega_0 t$. Sur la tige (T) peut coulisser sans frottements un anneau M de masse m, assimilé à un point matériel. La position de M sur

la tige est définie par $\overrightarrow{OM} = \overrightarrow{r} \ \overrightarrow{u}$. Les vecteurs unitaires \overrightarrow{u} et \overrightarrow{n} sont orthogonaux et définis

par : $\vec{u} = \cos(\theta) \stackrel{\rightarrow}{i} + \sin(\theta) \stackrel{\rightarrow}{j}$ et $\vec{n} = -\sin(\theta) \stackrel{\rightarrow}{i} + \cos(\theta) \stackrel{\rightarrow}{j}$ (voir figure ci-contre). L'objectif de cet exercice est d'étudier le mouvement de M dans un référentiel Galiléen. Pour tout l'exercice on donnera :

 $\overrightarrow{F} = F_1 \overrightarrow{n} + F_2 \overrightarrow{k}$ la force exercée par (T) sur M et


 $\overrightarrow{P} = -mg \overrightarrow{k}$ le poids de M et on utilisera

 \overrightarrow{u} , \overrightarrow{n} , \overrightarrow{k}) comme base de projection des vecteurs.

1- Montrer que
$$\frac{d\overrightarrow{u}}{dt} = \omega_0 \stackrel{\rightarrow}{n}$$
 et $\frac{d\overrightarrow{n}}{dt} = -\omega_0 \stackrel{\rightarrow}{u}$.

2- Montrer en utilisant la question précédente que la vitesse et l'accélération de M sont données par :

$$\overrightarrow{v} = \overrightarrow{r} \overrightarrow{u} + r \omega_0 \overrightarrow{n} \text{ et } \overrightarrow{a} = (\overrightarrow{r} - r \omega_0^2) \overrightarrow{u} + 2 \overrightarrow{r} \omega_0 \overrightarrow{n} \text{ où } \overrightarrow{r} = \frac{dr}{dt} \text{ et } \overrightarrow{r} = \frac{d^2r}{dt^2}$$

- 3. On se propose d'étudier le mouvement de l'anneau M.
 - a-Faire la projection, dans la base (u, n, k), de la relation fondamentale de la dynamique appliquée à l'anneau M.
 - b- En déduire que r vérifie une équation différentielle de type 1. Expliciter la constante c dans ce cas.
 - c- On donne comme conditions initiales du mouvement de l'anneau: $r(t=0) = r_0$ et r(t=0) = 0.

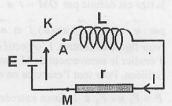
Déterminer l'équation horaire r (t) du mouvement de l'anneau M ainsi que les composantes F_1 et F_2 de F. d-Montrer qu'au bout d'un certain temps, qu'on ne vous demande pas de le déterminer, l'anneau M va quitter

- la tige (T).
- 4. On suppose maintenant que l'anneau M est attaché à un ressort enfilé sur la tige, l'autre extrémité du ressort est fixée au point O. Le ressort est de masse négligeable, de longueur initiale L_0 et de constante de raideur k.
 - a-Exprimer la force élastique $\overrightarrow{F_e}$ exercée par le ressort sur l'anneau M pour une position r donnée.
 - b- Faire la projection, dans la base (u, n, k), de la relation fondamentale de la dynamique appliquée à l'anneau M.

On suppose par la suite que
$$\omega_0^2 < \frac{k}{m}$$
 et on pose $\omega^2 = \frac{k}{m} - \omega_0^2$ et $L_e = \frac{\frac{k}{m}L_0}{\frac{k}{m} - \omega_0^2}$.

- c-Montrer que la fonction $g = r L_e$ vérifie une équation différentielle de type 2. Expliciter la constante c dans ce cas.
- d- On donne comme conditions initiales du mouvement de l'anneau : $r(t=0) = r_0$, r(t=0) = 0 et on suppose que $r_0 > L_c$. Déterminer l'équation horaire r(t) du mouvement de l'anneau M.
- e-Quelle est la nature du mouvement de M sur la tige (T) et que représentent les grandeur ω et L_e ?

Exercice 2:

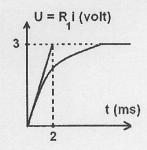

Un solide de masse m =250g glisse sur un plan AB=50 cm incliné d'un angle α =30°sur l'horizontale. Au passage en A sa vitesse est 2 ms⁻¹ et en B est 2,5 ms⁻¹. La force de frottement, supposée constante, s'oppose au mouvement.

- 1. Montrer que le mouvement du solide est uniformément varié.
- 2. Calculer le module de l'accélération du solide.
- 3. Calculer le module de la force de frottement.
- 4. Calculer la durée de déplacement du solide depuis A jusqu'au B.

Exercice 3:

On veut connaître les caractéristiques électriques L (inductance) et r (résistance) d'une bobine B. On branche cette bobine en série avec un interrupteur K aux bornes d'un générateur de tension continue E=6 V.

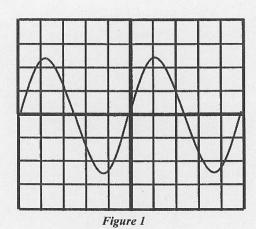
- 1. Etablir l'équation différentielle donnant l'intensité du courant i(t) dans le circuit lorsqu'on ferme l'interrupteur.
- 2. Sachant que la solution de cette équation différentielle est donnée par $i(t) = A(1-e^{-t/\tau})$, donner les expressions littérales de la constante de temps τ en fonction de L et r et de la constante A en fonction de E et r.
- 3. Un oscilloscope est branché entre les points A et M du circuit ; M étant relié à la masse de l'oscilloscope.
- Avant fermeture de l'interrupteur, quel graphe observe-t-on sur l'écran de l'oscilloscope ?
 Après fermeture de l'interrupteur, quel graphe observe-t-on sur l'écran de l'oscilloscope ?
- 4. On place un ampèremètre dans le circuit. Après fermeture de l'interrupteur, l'intensité se stabilise à 1,2 A. Calculer la résistance r de la bobine.


5. On associe en série avec la bobine B une résistance $R_1 = 5 \Omega$. Un oscilloscope à mémoire permet de visualiser la tension aux bornes de la résistance R_1 illustrée dans la figure ci-contre.

- Quelle est la valeur maximale de l'intensité du courant parcourant le circuit ?

- Quelle est la constante de temps ?

- Calculer l'inductance de la bobine.


6. On dispose d'une nouvelle bobine B' (L', R') et on veut déterminer ses caractéristiques par une autre méthode. Cette bobine B' est mise en série avec $R_1 = 5~\Omega$ et un condensateur C variable. Un générateur fournissant une tension alternative à la fréquence 5000 Hz alimente le circuit. Une voie de l'oscilloscope est branchée aux bornes de R_1 tandis que l'autre est branchée aux bornes du générateur.

- En examinant le graphe de *la figure 1* qui permet de visualiser la tension aux bornes de R₁, déterminer la sensibilité horizontale de l'oscilloscope en microseconde par division.

- En modifiant les valeurs de la capacité, la tension $U_1(t)$ aux bornes de R_1 et la tension U(t) aux bornes du générateur sont en phase (figure 2). Cet événement se produit pour C=10 microfarads. Quelles sont les valeurs de L' et R'?

La sensibilité choisie pour visualiser U(t) et U₁(t) est 1 V.cm⁻¹. La base du temps est sur la graduation 2 ms.cm⁻¹

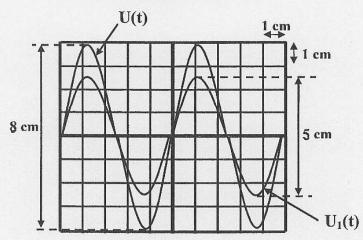


Figure 2

Matière: Physique

Séries : Sciences mathématiques A et B Sciences et techniques

Partie QCM:

Important : Cette épreuve est un Q.C.M (questions à choix multiples). Veuillez cocher Les réponses exactes dans la fiche de réponse ci-jointe.

On donne g=10m/s2

In train, dont la masse totale est M = 600.103 kg, part sans vitesse initiale, sur une voie horizontale et atteint la vitesse de 36Km/h en 10mn. La résistance à l'avancement est constante et de module 20000N.

1.1 Sachant que le mouvement du train est uniformément accéléré. L'accélération du mouvement est :

a) 1 m/s^2

b) 0.016 m/s^2

c) 0,033 m/s²

d) 0.5 m/s^2

1.2 La force de traction de la locomotive est :

b) 30000 N

c) 25000 N

d) 40000N

a) 50000 N 1.3 La distance parcourue pour atteindre la vitesse 36 km/h est :

a) 4 km

b) 2,5 km

c) 3 km

d) 5 km

1.4 L'énergie fournie par le moteur est :

a) 90000 kJ

b) 3000 kJ

c) 50000 kJ

d) 3500 kJ

1.5 La puissance moyenne développée par le moteur est :

a) 12 kW

b) 250 kW

c) 1050 kW

d) 150 kW

2- Un point matériel S, de masse m = 600 g glisse sur une piste ABC située dans un plan vertical. La partie AB est un quart de cercle de rayon r = 15cm. Sur cette partie AB les frottements sont négligeables. La partie BC est horizontale et BC=25 cm. Le mobile part de A sans vitesse initiale, il descend et s'immobilise en C à cause des frottements sur la piste BC.

2.1 La vitesse en B est environ égale à :

a) 1,22 m/s

b) 2,73 m/s

c) 2,15 m/s

d) 1,73 m/s

2.2 L'expression du carré de la vitesse en M est :

b)
$$2gr(1-\cos\theta)$$

c)
$$gr(1-\cos\theta)$$

d)
$$2gr\cos\theta$$

2.3 Si θ =20°, l'action du support en M sur le point matériel est :

a) 16,9 N

b) 7,33 N

c) 6 N

d) 3 N

2.4 En supposant que la force de frottement sur la partie BC est constante. Sa valeur est :

a) 3,6 N

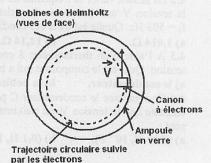
b) 1,2 N

c) 3,75 N

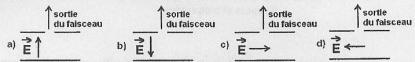
2.5 Le module de l'accélération du point matériel sur la partie BC est :

b) 2.5 m/s^2

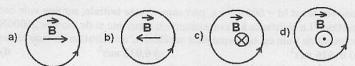
c) 6 m/s2


d) 2 m/s2

3- Pour déterminer le rapport (désigné par e/m) de la valeur absolue de la charge d'un électron sur sa masse, on utilise un appareil schématisé sur la figure ci-contre. Des électrons sont accélérés par un champ électrique E (créé par une tension électrique U appliquée entre deux plaques) dans le canon à électrons dont ils émergent à la vitesse V. Ils sont soumis ensuite à l'action d'un champ magnétique B uniforme créé par deux bobines de Helmholtz, situées dans des plans parallèles et parcourues par un courant d'intensité I. Les électrons décrivent alors une trajectoire circulaire de diamètre D = 2R.


On rappelle les deux relations caractéristiques utiles dans cette analyse :

$$\frac{1}{2}$$
.mV² = e.U (1)

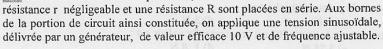

mV = eRB (2)

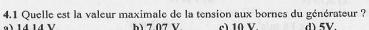
3.1 Parmi les schémas ci-dessous, quel est celui qui donne la bonne orientation du champ électrique E qui accélère les électrons comme il est indiqué sur la figure ?

3.2 Parmi les schémas ci-dessous, quel est celui qui donne la bonne orientation du champ magnétique B qui dévie les électrons comme il est indiqué sur la figure (suivant le sens de la flèche) ?

- 3.3 Dans le dispositif constitué par les bobines de Helmholtz et qui permet de créer un champ magnétique uniforme :
- a) les deux bobines n'ont pas le même rayon;
- b) la distance entre les bobines est égale au diamètre des bobines ;
- c) les deux bobines sont parcourues par un courant de sens contraire ;
- d) la distance entre les bobines est égale au rayon des bobines.
- 3.4 Parmi les phrases suivantes, choisir celle qui est correcte :
- a) la valeur de la vitesse V est indépendante de la valeur de la tension U accélératrice ;
- b) les valeurs de la tension U et de la vitesse V sont proportionnelles ;
- c) si la valeur de la tension U est multipliée par 2, la valeur de V l'est aussi ;
- d) la valeur de la vitesse V est proportionnelle à la racine carrée de la valeur de la tension U.
- 3.5 On a relevé une série de mesures concernant l'intensité I, la tension U et le rayon R. On ne modifie pas la valeur de U, mais on augmente la valeur de l'intensité I. La valeur du rayon R du cercle :
- a) diminue. b) augmente. c) ne varie pas. d) devient infini.

 3.6 Pour une deuxième série de mesures, on fixe la valeur de I, puis on diminue la valeur de U. la valeur du
- rayon R du cercle:


 a) devient infini.


 b) ne varie pas.

 c) augmente.

 d) diminue.
- a) devient infini.b) ne varie pas.c) augmente.3.7 Quelle est l'expression du rapport e/m en fonction des grandeurs U, B et D?
- a) $8U/(D^2.B^2)$. b) $4U/(D^2.B^2)$. c) 8U/(D.B). d) $8U/(D^2.B)$.
- 3.8 Sachant que U = 210 V, I = 1,25 A, D = 10,1 cm et le champ B est lié à l'intensité I par la relation B = 0,78.I (mT). Quelle est la valeur numérique de e/m ?

 a) $1.73.10^{11} \text{ C.kg}^{-1}$.
 b) $1.73.10^{11} \text{ C.kg}^{-1}$.
 c) $17.3.10^{11} \text{ C.kg}^{-1}$.
 d) $1.73.10^{-11} \text{ C.kg}^{-1}$.
- a) 1,73.10¹ C.kg⁻¹. b) 1,73.10¹¹ C.kg⁻¹. c) 17,3.10¹¹ C.kg⁻¹.
- 42 Un condensateur de capacité C, une bobine d'inductance L et de résistance r négligeable et une résistance R sont placées en série. Aux bornes

- a) 14,14 V. b) 7,07 V. c) 10 V. d) 5V.
 4.2 En faisant varier la fréquence du signal par le générateur, on constate que la tension V aux bornes de la résistance R, passe par un maximum pour
- $f_1 = 503$ Hz. Quelle est dans ces conditions la valeur de R si la valeur maximale de l'intensité est 10 mA:
- $f_1 = 503$ Hz. Quelle est dans ces conditions la valeur de R si la valeur maximale de l'intensité est a) 1,414 Ω . b) 14,14 Ω . c) 141,4 Ω . d) 1414 Ω .
- 4.3 A l'aide d'un thermomètre à contact, on repère la température des différents composants du circuit sous tension. Quel est le composant qui a la température la plus élevée ?
- a) le condensateur. b) la bobine. c) la résistance. d) aucun.
- 4.4 On remplace le condensateur C par un second condensateur de capacité C' = $C + C_1$ tel que $C_1 = 5~\mu F$. On constate que la tension V est maximale pour $f_2 = 205~Hz$. Les valeurs de l'inductance L et la capacité C (L, C) sont :
- a) (0,01 H, 10⁻⁶ F). b) (0,1 H, 10⁻⁵ F). c) (0,1 H, 10⁻⁶ F). d) (1 H, 10⁻⁶ F).

Fiche de Réponse pour la partie QCM

Matière : Physique

Séries Bac : Sciences Math (A et B) - Sciences et Techniques

Important: La fiche ne doit porter aucun signe indicatif ni signature

Pour chaque question, on vous propose quatre réponses : a), b), c) et d). Cochez la réponse juste par une **croix** dans la case correspondante.

Barème: Une réponse juste: +1, une réponse fausse ou pas de réponse ou plus d'une seule réponse: 0.

Numéro			Choix		Note
de					
question					
1.1	a) 🗌	b)□	c) 🗌	d)□	
1.2	(a) [b)□	c) 🗌	d)□	
1.3	a) 🗌	b)□	c) 🗆	d)□	
1.4	a) 🗌	b)□	c)	d)□	
1.5	(a) [b)□	c)	d)□	
2.1 2.2	a) 🗆	b)□	c)	d)□	
2.2	(a)□	b)□	c)	d)□	
2.3	a) 🗌	b)□	c)	d)□	
2.4	a) 🗌	b)□	c) 🗆	d)□	
2.5	a) 🗆	b)□	c) 🗆	d)□	
3.1	a) 🗌	b)□	c)	d)□	
3.2	(a)□	b)□	c)	d)□	
3.3	(a)□	b)□	c)	d)□	
3.4	a)□	b)□	c)	d)□	
3.5	a) 🗌	b)□	c)	d)□	
3.6	a) 🗌	b)	c)	d)□	
3.7	a) 🗌	b)□	c)	d)□	
3.8	a) 🗌	b)□	c)	d)□	
4.1	a) 🗌	b)□	c)	d)□	
4.2	a) 🗆	b)□	c)	d) 🗌	
4.3	a) 🗆	b)□	c)	d) 🗌	
4.4	a) 🗌	b)□	c)	d)□	

Moutamadris.ma

Un	iversité Hassan II Casablanca	Concours d	'entrée en 1 ^{ère} a SER		années _l CIENCES					Casablan	ca-Mekn	ès		ite Moulay mail
		Nom:	Epr	euve de	mathé	matio			2016 lu candida	nt	Compos	stage		
0	AA ensam	Prénom :								Ne	rien écrire d	ans ce cadre	A'A	
/	OSLANA.	CNE:							*					المجرسة الوطنية العا و المائة Placert Dress (1995)
No	te:	Epreuve de ma	thématique			Dure	ée : 2h00	0			N		postage e dans ce cadre	
	50	Important : La	a fiche ne doit po	rter auc	un signe i	ndica	tif ni sig	nature						
	On suppose sue a	QUESTIO	NS REPONSES PREC	ISES: (Un										
Q1	L'entier strictement p	to 1 pour tout n et que $\lim_{n \to +\infty} a_n$ to sitif k étant donné, calculer $\frac{1}{n} + \frac{1}{n} + \frac{1}{n$	Q1 =		NOTE	Q2	$\frac{1}{2} < u_n$	< 1.0 or $X_0 = u_0$	considère la $et \ \forall n \in \mathbb{N}$	suite $(X_n)_n$	que, pour tou a_n telle que : $= \frac{X_n + u_{n+1}}{1 + X_n u_{n+1}}$		$\lim_{n\to+\infty} X_n =$	NOTES
Q3	Im(z). Déterminer la telle que :	cose $x = \text{Re}(z)$ et $y =$ relation entre x et y et $\frac{z^2 + z + 1}{z - 1} \in \mathbb{R}$),			Q4	Soit α ∈	E C. Déte comple	erminer, Γ , Γ xe dont les a $ z - \alpha = 2 $	ffixes z vér	les points	Γ est		
Q5		ne de définition, D, de la				Q6			$ \hat{\text{ome à coeffle}} = \lim_{x \to +\infty} \frac{E(P(x))}{P(E(x))} $		ement positif	S.	Q6 =	
Q7	Calculer la dérivée d'o $f(x) = \frac{\ln(x)}{x}$	ordre n de la fonction				Q8	Trouver	· l'ensem	ıble, Q8, de t	toutes les fo	enctions $f: \mathbb{R}$ (x + y) = f(x)			
Q9	Pour $k \in \mathbb{N}^*$, trouver :	rivable en 0 telle que $f(0) = 0$ $+ f\left(\frac{x}{2}\right) + f\left(\frac{x}{3}\right) + \dots + f\left(\frac{x}{k}\right)$	09 =			Q10	Soit y	$y: x \mapsto y$		on de l'équat	tion différent	ielles :	Q10 =	
Q11		$= \lim_{x \to +\infty} \frac{\pi}{2} - \left(\tan \frac{\pi x}{2x+1} \right)^{\frac{1}{x}}$)· Q11 =			Q12	Soit a <	1 et so	$x \rightarrow \frac{h}{2}$ it h une fonc		$\sup_{1,+\infty[p]} \frac{1}{1} + \infty[p]$ $12 = (h^{-1})'(1)$		Q12 =	
Q13	Trouver Q_{13} l'ensembl $\ln \sin x + \ln \tan x =$	le des solutions de l'équation : $=\ln \cos x $	Q13 = {			Q14			$Q_{14} = \lim_{x \to \pi}$				Q14 =	
Q15		ose $A = \frac{(2k^2+5k-2)(4k^2+11k+4)}{k+3}$ ble des valeurs de k tel que $A \in$				Q16			$_{6} = \lim_{n \to +\infty} \frac{1}{n} E$				Q16 =	
		PARTIE QCM : U	Une réponse juste : - -3 4 \	2pts, Pas	de réponse	e: Opts	s, Une rép	onse fa	usse ou plu	ıs d'une sei	ıle réponse .	-1pts		
Q17	Pour quelles valeurs n'est pas inversible	de m la matrice $\begin{pmatrix} 1-m\\4\\6 \end{pmatrix}$	$ \begin{array}{cccc} -7 - m & 8 \\ -7 & 7 - m \end{array} $	A -1 e	t 2	Unique	ment -1	С	-1 et -3	D Aucu	nes des trois	réponses	7	
Q18	Soit f dáfinia nar f(($f(x) = 0 \text{ et } f(x) = e^{x^2 - x + \ln x }$	il olene	A	*	В				C		Ď		
				1 '	dmet une gente en (0,0))	Sur [0,1], de la droit	,		,	et au point (ngente de per	- N	Aucunes des trois réponses	
Q19	Soit C_{fm} sa courbe. A		*	à ga	est pas déri uche en 0	ivable			ont symétric xe des ordon		Pour $m > \max_{]-\infty,0]} f_m$	$0, \text{ on} = m\left(\frac{2}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right)$	D Aucunes trois rép	
220	MAROCAIN". Soit l'é expérience 3 fois en re que tous les tirages	trouvent 14 jetons portant expérience: « tirer simulta emettant à chaque tirage les sont équiprobables. Soit 1 lettres tirées. Quelle est la p	anément 5 jetons : 5 lettres tirées dans 17 le nombre de foi	». On rép la boîte. C s de form	oète cette on suppose er le nom	A	1000	В	1001	С	1002	D .	1003	
Q21	Une boite A contier numérotés : 0, 3, 3, 5 sur le jeton, puis on r	nt 3 jetons numérotés : 1, 5, 5, 5. On tire au hasard un remet ce jeton tiré dans A. eton tiré de B. A ce couple (, 2, 4. Une boite in jeton dans A, on lin	B contien t le nombr	t 6 jetons re a porté on pour B,	A	(1001) ³	В	(1001) ⁵	С	(1001) ³	D	(1001) ³	
	est la probabilité pou	r que $M(a,b)$ soit situé sur l	l'ellipse d'équation				$\frac{1}{6}$		$\frac{2}{6}$		$\frac{3}{6}$	Aucu	unes des trois répon	ses
222	$A(1,1,1)$ et $B\left(\frac{-1}{2},\frac{3}{2},$	n repère orthonormé, on consic 0) et les trois plans; (P) : et (H) le plan passant par A e a sphère de centre B et pas	x + y + z - 1 = 0, et perpendiculaire à		ercle de cent		_	Le plus į	grand cercle	dans la sphè	C L'e	nsemble vid	de Aucunes trois répo	
23		urel non nul et $(I_n)_n$ la suite	e définie par :	A A	$(\frac{3}{2}, \frac{1}{4})$ et de ra	Iyon $\sqrt{\frac{8}{8}}$	B B			С		D		
	$I_n = \int_1^0 x e^{-nx^2} dx. CI$	hoisir la bonne réponse:		$I_n =$	$\frac{1}{2}\left(1-\frac{1}{e^n}\right)\left($	$1+\frac{1}{e^n}$).	(1,	$_n)_n$ est	minoré par	$\frac{-1}{2}$. (I_7)) _n Converge v	rers 0	Aucunes des trois réponses	
	Soit l'équation $(E):$ appartenant à $[0,2\pi]$	sin(x) = cos(2x). On che	erche le nombre de		2 , 6 , 1	A		В		C		D		
25	Dans \mathbb{R}^4 muni de sa b	pase canonique $(\vec{t}, \vec{j}, \vec{k}, \vec{l})$, o $(\vec{t}, \vec{j}, \vec{k}, \vec{l})$, La d	on considère l'espace limension de F, noté	e vectoriel	F défini	Une A	solution	В		C	trois solution	ns P		ions
							1	_	2		3		4	

Université Hassan II

CONCOURS D'ACCES A L'ENSAM-MEKNES ET A L'ENSAM-CASABLANCA

Epreuve de Mathématiques : Filière Sciences Mathématiques A et B Vendredi 24 Juillet 2015 - Durée : 2h

Partie I : Questions à réponses précises

Chaque réponse est notée sur 2pts

	Questions	Réponses
Q1	Soit la proposition P : " $\forall a \in \mathbb{R}_+^*$; $a + \frac{1}{a} \ge 2$ ". Donner la négation et le tableau de	$ar{P}$:
	vérité de la proposition P .	P est
Q2	Le code confidentiel d'une carte bancaire est constitué d'un nombre de 4 chiffres	
	non nuls. Combien y-a-t-il de codes contenant une fois, et une seule, le chiffre 1?	
Q3	Soient les nombres complexes suivants :	S =
	$z=e^{\frac{2\pi}{7}i}$, $a=z+z^2+z^4$ et $b=z^3+z^5+z^6$. Sachant que $a+b=-1$ et $\overline{b}=a$,	
	donner la valeur de la somme $S = cos\left(\frac{2\pi}{7}\right) + cos\left(\frac{4\pi}{7}\right) + cos\left(\frac{8\pi}{7}\right)$.	
Q4	Dans le plan complexe muni d'un repère orthonormé direct $(\mathcal{O}, \vec{u}, \vec{v})$, on considère	
	les points A, B et C d'affixes respectivement $a=2, b=-1+i\sqrt{3}$ et $c=-1-i\sqrt{3}$.	z =
	Donner la forme trigonométrique de $z=rac{c-a}{b-a}$, et déduire l'angle $ heta$ de la rotation qui	
	transforme B en C .	$\theta =$
Q5	Résoudre dans \mathbb{R} l'inéquation : $3^{\cos{(x)}} + 3^{\cos{(\pi-x)}+1} \le 2\sqrt{3}$.	S =
Q6	Calculer $\lim_{x\to 0} f(x)$; où $f(x) = \frac{e^{x^2 - \cos(x)}}{2x^2}$.	$\lim_{x \to 0} f(x) =$
Q7.	Soit g la fonction définie sur $[0, +\infty[$ par $g(x) = ln\left(\frac{x}{x+1}\right) - \frac{\ln(x)}{x+1} + 1$ si $x > 0$ et	a =
-		9
	$g(0) = a \in \mathbb{R}$. Déterminer la valeur de a pour que g soit continue sur $[0, +\infty[$.	$Df^{-1} =$
Q8	Soit $f(x) = \ln(1 + e^{-x})$. Déterminer f^{-1} .	
Q9	Déterminer la primitive F de la fonction $x \mapsto \frac{1}{x \ln(x)} \text{sur }]1, +\infty[\text{ qui vaut } 1 \text{ en } e.$	$f^{-1}(x) = F(x) =$
Q10	Calculer, en utilisant les sommes de Riemann, la limite de la suite $u_n = \sum_{k=1}^n \frac{n}{n^2 + k^2}$.	$\lim_{n} u_n =$
Q11	Soient $f(x) = \frac{x}{1+x^2} - Arctan(x)$ et C_f sa courbe représentative dans un repère	A =
	orthonormé $(0, \vec{l}, \vec{l})$ tel que : $ \vec{l} = \vec{l} = 1$ cm. Calculer l'aire A de la surface	
	délimitée par C_f et les droites $x = 0$, $x = 1$ et $y = 0$.	
Q12	Soit $I_n = \int_0^1 x^n \ln(1+x) dx$, $\forall n \ge 1$. Calculer $\lim_n I_n$.	$\lim_{n} I_n =$
Q13	Sachant que $x \mapsto sin^2(x)$ est une solution de l'équation différentielle	$y_{0}=$
-	(E): $y'' + 4y - 2 = 0$, déterminer la solution particulière y_0 de (E) telle que sa	
	courbe passe par $A(0, \sqrt{2})$ et ayant une tangente en A de coefficient directeur 1.	
Q14	Soit S la sphère d'équation cartésienne: $x^2 + y^2 + z^2 - 2x - 2y = 0$.	(E):
	Déterminer l'équation (E) du plan tangent \mathcal{P} à \mathcal{S} au point $\mathcal{O}(0,0,0)$.	
Q15	Sachant que $10^{3n}\equiv 1[27]$, $\forall n\in\mathbb{N}$, déterminer le reste r de la division euclidienne	r =
	$de 10^{100} + 100^{10} par 27.$	
Q16	Résoudre dans \mathbb{Z}^2 l'équation : $x^2 - 2y^2 + xy + 2 = 0$	S =
Q17	Une usine produit des pièces dont 2% sont défectueuses. Après contrôle, on s'est	P =
	aperçu que 97% des pièces bonnes sont acceptées et 99% des pièces défectueuses	
	sont rejetées. Quelle est la probabilité P d'avoir une pièce bonne et rejetée ?	

Partie II: Questions à choix multiples

Une réponse correcte = 2pts, aucune réponse = 0pts, plus d'une réponse ou une réponse fausse = - 1pt

Q18. Soit $M_3(\mathbb{R})$ l'espace des matrices carrées d'ordre 3 à coefficients réels. La matrice $A = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ vérifie :

 $A^3 \neq 2I$

A non inversible

 $\{I,A^3\}$ libre dans $M_3(\mathbb{R})$

A est inversible et $A^{-1} = \frac{1}{2}A^2$

Q19. Soient l'espace vectoriel réel $E=\{f\colon x\mapsto (ax+b)e^{2x}; a,b\in\mathbb{R}\}$ et f_1 et f_2 les deux éléments de E définies par : $f_1(x)=e^{2x}$ et $f_2(x)=xe^{2x}$. Soit $B=\{f_1,f_2\}$ et $g\colon x\mapsto \int_0^x \left(t+\frac{1}{2}\right)e^{2t}dt$. Alors

les vecteurs f_1 et f_2 sont liés

 $g \notin E$

B est une base de E et les coordonnées de g dans B sont $\left(0, \frac{1}{2}\right)$

B est une base de E et les coordonnées de g dans B sont (0,1)

Q20. On considère le disque unité $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ et la proposition $P : "\exists A, B \subset \mathbb{R}; \ D = A \times B"$. Alors

 $(1,0) \in D$ et P est vraie

 $(0,1) \in D$ et P est vraie

P est fausse

aucune des trois réponses

Q21. Soit $f:[0,1] \to \mathbb{R}$ strictement monotone telle que f(0)=0 et f(1)=1. L'équation : $f(x)=1-x^n, n\geq 1$

n'a pas de solution admet deux solutions distinctes

admet une solution unique

aucune des trois réponses

Q22. Soit $f(x) = x - \ln|2e^x - 1|$. Alors

f bornée au voisinage de $-\infty$

f n'est pas bornée au voisinage de +∞

f bornée au voisinage de $+\infty$

aucune des trois réponses

Q23. Soit $f(x) = \frac{e^{x}-1}{x} + \ln(x)$. La courbe représentative \mathcal{C}_f de f

admet en $+\infty$ une branche parabolique de direction asymptotique la droite y = 0

admet une asymptote oblique en +∞ est au-dessus de la droite y = 0

aucune des trois réponses

Q24. L'équation $cos^4(x) + sin^4(x) = 1$ admet dans $[-\pi, \pi]$

une infinité de solutions

8 solutions

4 solutions

aucune solution

Q25. Soient a et b deux entiers naturels non nuls. Alors le nombre $N=a^4+4b^4$ vérifie :

 $N < (a-b)^2 + b^2$

 $N < (a+b)^2 + b^2$

N est premier

N n'est pas premier

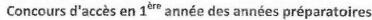
CONCOURS D'ACCES A L'ENSAM-MEKNES ET A L'ENSAM-CASABLANCA

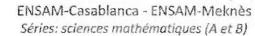
Epreuve de Mathématiques : Filière Sciences Mathématiques A et B Vendredi 24 Juillet 2015 - Durée : 2h

Partie I : Questions à réponses précises

Chaque réponse est notée sur 2pts

13 on 2 of A 15 of 92 resting the 10 of 35 46 66 92 resting the

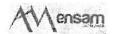

Q1	Questions Questions	Réponses
	Solit to proposition F : $\forall a \in \mathbb{R}_+$; $a + - \ge 2$ ". Donner la négation et le tableau do	P:"]a EIR*; a+1/a (2"
Q2	verte de la proposition P.	Pest Viaie
QZ		
Q3	normals. Comblem y-a-t-il de codes contenant une fois, et une seule le chiffre 1.2	4 x 83 = 2048
QS	Total ico nombres complexes sulvants:	S =
	$z = e^{\frac{2\pi}{7}t}, a = z + z^2 + z^4 \text{ et } b = z^3 + z^5 + z^6. \text{ Sachant que } a + b = -1 \text{ et } \overline{b} = a,$	
	donner la valeur de la somme $S = cos\left(\frac{2\pi}{7}\right) + cos\left(\frac{4\pi}{7}\right) + cos\left(\frac{8\pi}{7}\right)$.	-1/2
Q4	Dans le plan complexe muni d'un repère orthonormé direct $(\mathcal{O}, \vec{u}, \vec{v})$, on considère	
	les points A, B et C d'affixes respectivement $a=2$, $b=-1+i\sqrt{3}$ et $c=-1-i\sqrt{3}$.	$z = \begin{bmatrix} 1, \sqrt{3} \end{bmatrix}$
	Donner la forme trigonométrique de $z = \frac{c-a}{c}$ et déduis y $\frac{c}{c} = -1 - i\sqrt{3}$.	$z = LA_1'''5$
	Donner la forme trigonométrique de $z = \frac{c-a}{b-a}$, et déduire l'angle θ de la rotation qui transforme B en C .	a T/
Q5	Résoudre dans \mathbb{R} l'inéquation : $3^{\cos(x)} + 3^{\cos(\pi-x)+1} \le 2\sqrt{3}$.	b = 1/3
	$1 \leq 2\sqrt{3}.$	S={+113+2RT, REZ?
Q6	Calculer $\lim_{x\to 0} f(x)$; où $f(x) = \frac{e^{x^2 - \cos(x)}}{2x^2}$.	(3, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
Q7	$\frac{\partial u_{x} \partial u_{x} \partial u_{x}}{\partial u_{x}} = \frac{\partial u_{x}}{\partial u_{x}}$	$\lim_{x\to 0} f(x) = 3/4$
Q/	Soit g la fonction définie sur $[0, +\infty[$ par $g(x) = ln(\frac{x}{x+1}) - \frac{ln(x)}{x+1} + 1$ si $x > 0$ et	$a = \Lambda$
	$g(0) = a \in \mathbb{R}$. Determiner la valeur de a pour que a soit continue sur la les l	1
Q8	Soit $f(x) = \ln(1 + e^{-x})$. Déterminer f^{-1} .	D.C-1 7 -
		$Df^{-1} = $
Q9	Déterminer la primitive F de la fonction $x \mapsto \frac{1}{x \ln(x)} \sup]1, +\infty[$ qui vaut 1 en e .	$F(x) = \lim_{n \to \infty} (\ln(n)) + A$ $\lim_{n \to \infty} u_n = \frac{11}{4}$ $A = \frac{11}{4}$
Q10	Calculer en utilisant les sommes de Riverte	(m(m(nc)) +1
	Calculer, en utilisant les sommes de Riemann, la limite de la suite $u_n = \sum_{k=1}^n \frac{n}{n^2 + k^2}$	$\lim_{n} u_n = \sqrt{1}/I_n$
Q11	Soient $f(x) = \frac{x}{1+x^2} - Arctan(x)$ et C_f sa courbe représentative dans un repère	1-
	orthonormé $(\mathcal{O}, \vec{i}, \vec{j})$ tel que : $ \vec{i} = \vec{j} = 1cm$. Calculer l'aire A de la surface	11/ Pm (2)
	délimitée par C_f et les droites $x = 0$, $x = 1$ et $y = 0$.	$A = \frac{11}{4} - \frac{2}{2}$
Q12	Soit $I_n = \int_0^1 x^n \ln(1+x) dx$, $\forall n \ge 1$. Calculer $\lim_n I_n$.	
Q13	Sachant due $x \mapsto \sin^2(x)$ and $x \mapsto \sin^2(x)$	$\lim_{n} I_{n} = \bigcirc$
	Sachant que $x \mapsto sin^2(x)$ est une solution de l'équation différentielle (E): $y'' + 4y - 2 = 0$ détermine le solution de l'équation différentielle	yo= Sin2(x) + √2 (0)(2x)
	(E): $y'' + 4y - 2 = 0$, déterminer la solution particulière y_0 de (E) telle que sa courbe passe par $4(0.\sqrt{2})$ et avent une telle que sa	
Q14	courbe passe par $A(0, \sqrt{2})$ et ayant une tangente en A de coefficient directeur 1.	+ 1 sin (2x)
-	solve in spliciff a equation cartesienne: $x^2 + y^2 + z^2 - 2x = 0$	(E): X + Y = 0
Q15	Déterminer l'équation (E) du plan tangent \mathcal{P} à \mathcal{S} au point $\mathcal{O}(0,0,0)$. Sachant que $10^{3n} = 1[27]$ $\forall n \in \mathbb{N}$ détermine le	7, 7, 7, 5
	Sachant que $10^{3n} \equiv 1[27]$, $\forall n \in \mathbb{N}$, déterminer le reste r de la division euclidienne de $10^{100} + 100^{10}$ par 27.	r = 2
216	Résoudre dans \mathbb{Z}^2 l'équation : $x^2 - 2y^2 + ay + 2 = 0$	
		$S = \{(0,1), (0,-1), (-1,1), (1,1)$
		D -
	aper ya que 37 70 des pieces ponnes sont accentées et 000% des mis accentées	30 x 3 = 294
	sont rejetées. Quelle est la probabilité P d'avoir une pièce bonne et rejetée ?	100 100 10000


Partie II: Questions à choix multiples

Une réponse correcte = 2pts, aucune réponse = 0pts, plus d'une réponse ou une réponse fausse = - 1pt

Q18. Soit $M_3(\mathbb{R})$ l'espace des matrices carrées d'ordre 3 à coefficients réels. La matrice $A = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ vérifie :
$A^3 \neq 2I$ A non inversible $\{I, A^3\} \text{ libre dans } M_3(\mathbb{R})$ $A \text{ est inversible et } A^{-1} = \frac{1}{2}A^2$
Q19. Soient l'espace vectoriel réel $E=\{f\colon x\mapsto (ax+b)e^{2x}; a,b\in\mathbb{R}\}$ et f_1 et f_2 les deux éléments de E définies par : $f_1(x)=e^{2x}$ et $f_2(x)=xe^{2x}$. Soit $B=\{f_1,f_2\}$ et $g\colon x\mapsto \int_0^x \left(t+\frac{1}{2}\right)e^{2t}dt$. Alors
Q20. On considère le disque unité $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ et la proposition $P : "\exists A, B \subset \mathbb{R}; \ D = A \times B$ ". Alors
Q21. Soit $f: [0,1] \to \mathbb{R}$ strictement monotone telle que $f(0) = 0$ et $f(1) = 1$. L'équation : $f(x) = 1 - x^n, n \ge 1$ n'a pas de solution admet deux solutions distinctes solution unique réponses
Q22. Soit $f(x) = x - \ln 2e^x - 1 $. Alors $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Q23. Soit $f(x) = \frac{e^{x}-1}{x} + \ln(x)$. La courbe représentative C_f de f
Q24. L'équation $cos^4(x) + sin^4(x) = 1$ admet dans $[-\pi, \pi]$ une infinité de solutions 8 solutions 4 solutions aucune solution
Q25. Soient a et b deux entiers naturels non nuls. Alors le nombre $N=a^4+4b^4$ vérifie : $N<(a-b)^2+b^2$ $N<(a+b)^2+b^2$ N est premier N n'est pas premier

Université Hassan II-Mohammedia-Casablanca / Université Moulay Ismail Concours d'accès en 1ère année des années préparatoires


Épreuve de Mathématique

Samedi 02 Août 2014- Durée 2h00

I - QUESTIONS À RÉPONSES PRÉCISES

Une réponse correcte = 2pt, pas de réponse ou une réponse fausse = 0pt

	Questions	Réponses	Notes
Q1	Calculer la limite de la suite $(u_n)_n$ définie par:	3.	
2pt	$u_n = \frac{n}{\sqrt{n^4 + 1}} + \frac{n}{\sqrt{n^4 + 2}} + \dots + \frac{n}{\sqrt{n^4 + n}}$	$\lim_{n} u_n =$	
Q2 /	Déterminer, dans $[0,2\pi]^2$, l'ensemble S des		
/	solutions du système:	S =	
/	$(\sqrt{2}\cos x - \cos x\cos y = \frac{1}{2}$	The same a sum attention to the same at th	
/ Zpt	$\sin x + \cos y = \sqrt{2}$		
Q3 /	Déterminer la forme algébrique de:		1
1	([= [] 42	z =	
ℤ2pt	$z = \left(\sqrt{2 - \sqrt{3}} - i\sqrt{2 + \sqrt{3}}\right)^{4/2}$		
Q4 /	Déterminer, Γ, l'ensemble des points du plan	r est	1
/	complexe dont les affixes z vérifient:		
/ 2pt	$(iz+1)(z+i-1) \in i\mathbb{R}$		
Q5 /	Soit $a \in]0, \pi[$. Calculer	D ==	
1	$D = \prod \cos\left(\frac{a}{2^k}\right)$		
/ 2pt	k=1 2~		
Q6 /	Calculer:		
1	$A_n = \sum_{k=1}^{\infty} \frac{k}{(k+1)!}$	$A_n =$	
/ 2pt	$\underset{k=1}{\overset{-1}{\swarrow}}(k+1)!$	A Samuria manuri an está ESA S. A caldiberation al	
Q7 /	Calculer		
1	$\ell = \lim_{x \to 0} x^2 \left(1 + 2 + 3 + \dots + E\left(\frac{1}{ x }\right) \right)$	$\ell =$	
/2pt	and the second s		ļ
Q8 /	Évaluer la limite	al malle como un fredique que es qualque ello anno qui	
/	$j = \lim_{x \to 0} \frac{\sqrt[3]{x+1} - \sqrt[4]{x+1}}{x}$	<i>j</i> =	
/2pt			ļ
Q9 /	Trouver toutes les applications $f: \mathbb{R} \to \mathbb{R}$ dérivable	5(4) -	
/2pt	telles que: $\forall (x, y) \in \mathbb{R}, \ f(x^4 + y) = x^3 f(x) + f(y)$	f(x) =	
Q10/	Soit g la fonction définie par		-
/	$\forall x \in]0, \pi[g(x) = \cos x \sqrt{1 - \cos x}$	g'(x) =	
/ 2pt	Calculer $g'(x)$ en fonction $g(x)$, $\forall x \in]0, \pi[\setminus \{\frac{\pi}{2}\}]$		
Q11/	Soit h définie sur \mathbb{R}^+_+ par $h(x) = \ln e^x - e^{2x} $	$\forall x \in D_{h^{-1}} = \dots$	
1	Déterminer h^{-1} .		
/2pt		$h^{-1}(x) = \dots$	
Q12/	Calculer		
/	$K = \lim_{\alpha \to 0} \int_{\alpha}^{1} \frac{\operatorname{Arctan}(x)}{x^{2}} dx$	K ==	
/ 2pt			ļ
Q13/	calculer l'intégrale <u>*</u>		
1	$\sqrt{\sin x}$	L =	
/ 2pt	$L = \int_{0}^{\infty} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$		
014	Résoudre l'équation différentielle	y(x) =	
/	$\int_{-1}^{\frac{\pi}{2}} (x) dx = 0$		
/ 2pt	$y'' + 2y' + 10y = \sin 3x$, $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} y(t)dt = 0$, $y'(\pi) = \frac{6}{37}$		
Q15	Résoudre, dans N ² , l'équation $x^2 - y^2 = 404$	S=	***************************************
2pt			

ENSAM-Casablanca - ENSAM-Meknès Séries: sciences mathématiques (A et B)

II - QUESTIONS À CHOIX MULTIPLES

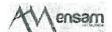
Une réponse correcte = 2pt, pas de réponse = 0pt, plus d'une réponse au une réponse fausse = -1pt.

Q16: Pour quelles valeurs de m la matrice $\begin{pmatrix} -1 & -1 & -2m \\ 1 & -m+1 & 1 \\ 2 & 3 & m \end{pmatrix}$ est inversible:	Notes
A G	
-1 et un nombre négatif uniquement -1 -1 et un nombre positif -1 et 1/2	1
Q17: Sur $[0, +\infty[$, la fonction f définie par $f(x) = x + \ln(x+1)$ est:	
A B C D	
toujours positive puis négative négative puis positive aucunes des trois puis positive puis positive réponses	
Q18: Soit f définie par $f(0) = \frac{1}{e}$, $f(e) = 0$ et $f(x) = e^{\left(\frac{1+\ln x}{1-\ln x}\right)}$. Alors sa courbe C_f admet:	
A B C	
une asymptoteen $x = e$ une demien $x = e$ une demiaucunes desoblique en $+\infty$ tangente à gauchetangente à droite verticaletrois réponses	
Q19: Dans une boite se trouvent 14 jetons portant chacun une lettre du nom "SAHARA MAROCAIN". On tire successivement et sans remise 5 jetons. Quelle est la probabilité pour que l'on tire les lettres du nom "SMARA' dans un ordre quelconque? A B C D	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
contient 2 jetons numérotés : 1 , 0. On tire au hasard un jeton a de B_1 , un jeton b de B_2 , un jeton c de B_3 . Quelle est la probabilité pour que l'équation $ax^2 + bx + c = 0$ admet des racines réelles?	
0,5 0,25 1	
Q21: Dans l'espace muni d'un repère orthonormé, on considère les deux points $A(-1,1,1)$ et $B(7,-5,5)$. Soit S la sphère dont l'un des diamètre est le segment $[AB]$. Le plan tangent à S au point $C(1,1-1)$ est:	
2x - 3y + 4z + 5 = 0 4x + 3y + 2z - 5 = 0 2x + 2y - z - 5 = 0 4x + 2y + 2z - 5 = 0	
Q22: Soit $(u_n)_n$ la suite de terme général $u_n = \int_0^1 \frac{e^{nx}}{1+e^x} dx$. Alors	
A B C D	
$\lim_{n \to +\infty} \frac{u_n}{e^n} = +\infty \qquad \lim_{n \to +\infty} \frac{u_n}{e^n} = 0 \qquad \lim_{n \to +\infty} \frac{u_n}{e^n} = 1 \qquad \text{aucunes des trois réponses}$	
Q23: Soit E l'espace vectoriel défini par: $E = \{(x, y, z, t) \in \mathbb{R}^4, x+y+z+t=0 \ et \ 2x+y=0\}$. Quelle est la dimension de E ?	
A B C D	
Q24: Combien l'équation $\tan x + \tan 2x + \tan 3x + \tan 4x = 0$ possède-t-elle de solutions dans $\left[0, \frac{2\pi}{3}\right]$?	
Possede-t-elle de solutions dans [U, 3] ?	
A B C D Cinq solutions Six solutions Sept solutions - Plus que sept solutions	1 3 1 4
Cinq solutions Six solutions Sept solutions Plus que sept solutions Q25:	
$\lim_{n \to +\infty} \prod_{k=0}^{n-1} \cos\left(\frac{2^k \pi}{2^n - 1}\right)$	
A B C	70
0 1 $+\infty$ cette limite n'existe pas	age Z

Université Hassan II-Mohammedia-Casablanca / Université Moulay Ismail

Concours d'accès en 1ère année des années préparatoires

ENSAM-Casablanca - ENSAM-Meknès Séries: sciences mathématiques (A et B)


Épreuve de Mathématique

Samedi 02 Août 2014- Durée 2h00

I - QUESTIONS À RÉPONSES PRÉCISES

Une réponse correcte = 2pt, pas de réponse ou une réponse fausse = 0pt

	Questions	Réponses	Notes
Q1	Calculer la limite de la suite $(u_n)_n$ définie par:		
2pt	$u_n = \frac{n}{\sqrt{n^4 + 1}} + \frac{n}{\sqrt{n^4 + 2}} + \dots + \frac{n}{\sqrt{n^4 + n}}$	$\lim_{n} u_n = \Lambda$	
Q2	Déterminer, dans $[0,2\pi]^2$, l'ensemble S des		
1	solutions du système:	$S = \left(\frac{\pi}{4}, \frac{-\pi}{4}\right) \text{ et } \left(\frac{\pi}{4}, \frac{\pi}{4}\right)$	
1/	$\int \sqrt{2} \cos x - \cos x \cos y = \frac{1}{2}$	(4 4)	
/ Zpt	$\sin x + \cos y = \sqrt{2}$		
Q3 /	Déterminer la forme algébrique de:		
2pt	$z = \left(\sqrt{2 - \sqrt{3}} - i\sqrt{2 + \sqrt{3}}\right)^{42}$	$z = \Delta$	
Q4 /	Déterminer, Γ, l'ensemble des points du plan	Γ est	
1	complexe dont les affixes z vérifient:	1-1x	
/ 2pt	$(iz+1)(z+i-1)\in i\mathbb{R}$	Principal of the University and the Control of the	
Q5	Soit $a \in]0, \pi[$. Calculer_	Sin O	
1	$D = \prod_{k=1}^{n} \cos\left(\frac{a}{2^k}\right)$	$D = \frac{\sin \alpha}{2}$	
/ 2pt	$\nu = \prod_{k=1}^{\infty} \cos\left(\frac{2^k}{2^k}\right)$	~ 3m (2n)	
Q6 /	Calculer:		
1	n	A = A - A	
14.	$A_n = \sum_{k=1}^{\infty} \frac{k}{(k+1)!}$	$A_n = A - \frac{A}{(n+4)!}$	
/ 2pt	K=1		
Q7 /	Calculer		
/2pt	$\ell = \lim_{x \to 0} x^2 \left(1 + 2 + 3 + \dots + E\left(\frac{1}{ x }\right) \right)$	$\ell = \frac{1}{2}$	
Q8 /	Évaluer la limite		
1		$j = \frac{1}{12}$	
/2pt	$\dot{j} = \lim_{x \to 0} \frac{\sqrt[3]{x+1} - \sqrt[3]{x+1}}{x}$	12	
Q9 /	Transition of the state of the		
us/	Trouver toutes les applications $f: \mathbb{R} \to \mathbb{R}$ dérivable telles que:	f(x) =	
/ 2pt	$\forall (x,y) \in \mathbb{R}, \ f(x^4 + y) = x^3 f(x) + f(y)$	1(2)-	
Q10/	Soit g la fonction définie par		
/	$\forall x \in]0, \pi[g(x) = \cos x \sqrt{1 - \cos x}$	g'(x) =	
/ 2pt	Calculer $g'(x)$ en fonction $g(x)$, $\forall x \in]0, \pi[\setminus \{\frac{\pi}{2}\}]$		
Q11	Soit h définie sur \mathbb{R}^+ par $h(x) = \ln e^x - e^{2x} $	$\forall x \in D_{h^{-1}} = \dots,$	
1	Déterminer h^{-1} .	va a Dhat announce,	
/2pt		$h^{-1}(x) = \dots$	and the same of th
Q12/	Calculer		
1	$K = \lim_{\alpha \to 0} \int_{a}^{1} \frac{\operatorname{Arctan}(x)}{x^{2}} dx$	K =	in the second
/2pt	$A = \lim_{\alpha \to 0} \int_{\alpha} \frac{1}{\chi^2} dx$		
Q13/	calculer l'intégrale		
/	7 /rdw -		
/2pt	$L = \int_{0}^{\infty} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$	$L = \frac{11}{L}$	
Q14/	Résoudre l'équation différentielle	$y(x) = K_A (\cos 3x + K_2 \sin 3x) e^{-3x}$	
/	$y'' + 2y' + 10y = \sin 3x$, $\int_{-\pi}^{\frac{\pi}{2}} y(t)dt = 0$, $y'(\pi) = \frac{6}{37}$		
/ zpt		$+\frac{\Delta}{6}$ Sin 3x + $\frac{1}{36}$ CB 3a	
	Résoudre, dans \mathbb{N}^2 , l'équation $x^2 - y^2 = 404$	S= (54,50); (102, 100); (203, 201)	
/2pt	A COMPANY OF THE PROPERTY OF T	, , , , , , , , , , , , , , , , , , , ,	

Concours d'accès en 1ère année des années préparatoires

ENSAM-Casablanca - ENSAM-Meknès Séries: sciences mathématiques (A et B)

II - QUESTIONS À CHOIX MULTIPLES

Une réponse correcte = 2pt, pas de réponse = 0pt, plus d'une réponse ou une réponse fausse = -1pt.

цть: Hour quelles valeurs	de m la matrice $\begin{pmatrix} -1\\1\\2 \end{pmatrix}$	$\begin{pmatrix} -1 & -2m \\ -m+1 & 1 \\ 3 & m \end{pmatrix}$ est inversib	ble:		Notes
Δ	[R]				!
-1 et un nombre nég	atif uniquem	nent -1 -1 et un	nombre positif	-1 et 1/2	1
117: Sur [0, +∞[, la fonc	tion f définie par $f(x)$	$= x + \ln(x + 1)$ est:			
A]	В	[6]	Γ	D	
toujours positive	positive puis négat	tive négative puis		aucunes des trois	i !
	puis positive			réponses	ļ
18: Soit f définie par f ($(0) = \frac{1}{e}, f(e) = 0$ et $f(e) = 0$	$(x) = e^{\left(\frac{1+\ln x}{1-\ln x}\right)}$. Alors sa co	ourbe \mathcal{C}_f admet	t:	
A	В	[c]		D	
une asymptote	en x = e une den			aucunes des	
oblique en +∞	tangente à gauch	e tangente à di	roite verticale	trois réponses	
ans un ordre quelconque	B 10	C 50	D	lettres du nom " SMARA" nes des trois réponses	
6006	1001	145			
		-c = 0 admet des racines		$_2$, un jeton c de B_3 . Quelle	
st la probabilité pour que A 0,5	B $0,25$	c = 0 admet des racines $c = 0.75$	réelles?		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
st la probabilité pour que A 0,5 21: Dans l'espace muni d	e l'équation $ax^2 + bx + \frac{B}{0,25}$	-c = 0 admet des racines	réelles? D Dints $A(-1,1,1)$	1) et <i>B</i> (7, -5,5). Soit <i>S</i> la	
A 0,5 21: Dans l'espace muni d	e l'équation $ax^2 + bx + \frac{B}{0,25}$	c=0 admet des racines $0,75$	réelles? D Dints $A(-1,1,1)$	1) et <i>B</i> (7, -5,5). Soit <i>S</i> la	
t la probabilité pour que $0,5$ 21: Dans l'espace muni di hère dont l'un des diament 0 $0,5$	e l'équation $ax^2 + bx + B$ 0,25 l'un repère orthonormé ètre est le segment [AB] 0 $4x + 3y + 2z + B$	c = 0 admet des racines 0,75 c, on considère les deux po 1. Le plan tangent à S au C C C C	réelles? D Dints $A(-1,1,1)$	1) et <i>B</i> (7, -5,5). Soit <i>S</i> la	
t la probabilité pour que A 0,5 C 21: Dans l'espace muni di thère dont l'un des diame C	e l'équation $ax^2 + bx + B$ 0,25 l'un repère orthonormé ètre est le segment [AB] 0 $4x + 3y + 2z + B$	c = 0 admet des racines 0,75 c, on considère les deux po 1. Le plan tangent à S au C C C C	réelles? D Dints $A(-1,1,1)$ point $C(1,1-1)$	1) et <i>B</i> (7, -5,5). Soit <i>S</i> la 1) est:	
t la probabilité pour que A 0,5 C 21: Dans l'espace muni d'ahère dont l'un des diame C	e l'équation $ax^2 + bx + B$ 0,25 l'un repère orthonormé ètre est le segment [AB] 0 $4x + 3y + 2z + B$	c = 0 admet des racines 0,75 c, on considère les deux po 1. Le plan tangent à S au C C C C	réelles? D Dints $A(-1,1,1)$ point $C(1,1-1)$	1) et <i>B</i> (7, -5,5). Soit <i>S</i> la 1) est:	
t la probabilité pour que A 0,5 C 21: Dans l'espace muni de hère dont l'un des diame C	e l'équation $ax^2 + bx + \frac{B}{B}$ $0,25$ l'un repère orthonormé ètre est le segment [AB $0 4x + 3y + 2z = \frac{B}{B}$ eterme général $u_n = \frac{B}{B}$	c = 0 admet des racines 0,75 e, on considère les deux po 1. Le plan tangent à S au	réelles? D Dints $A(-1,1,1)$ point $C(1,1-1)$ $z-5=0$	1) et <i>B</i> (7, -5,5). Soit <i>S</i> la 1) est:	
t la probabilité pour que $\frac{A}{0,5}$ 21: Dans l'espace muni d'hère dont l'un des diame $\frac{A}{2x-3y+4z+5} = \frac{2x-3y+4z+5}{100} = \frac{u_n}{n\to +\infty} = \frac{u_n}{e^n} = +\infty$	e l'équation $ax^2 + bx + \frac{B}{B}$ $0,25$ l'un repère orthonormé ètre est le segment [AB] $0 4x + 3y + 2z = \frac{B}{B}$ e terme général $u_n = \frac{B}{B}$ $\lim_{n \to +\infty} \frac{u_n}{e^n} = 0$	c = 0 admet des racines 0,75 c, on considère les deux po B]. Le plan tangent à S au C	réelles? D Dints $A(-1,1,1)$ point $C(1,1-1)$ $z-5=0$ D aucui	1) et $B(7, -5,5)$. Soit S la 1) est: $4x + 2y + 2z - 5 = 0$ nes des trois réponses	
t la probabilité pour que A 0,5 21: Dans l'espace muni d'inère dont l'un des diame A $2x-3y+4z+5=$ 22: Soit $(u_n)_n$ la suite de A $\lim_{n\to+\infty}\frac{u_n}{e^n}=+\infty$ 23: Soit E l'espace vector	e l'équation $ax^2 + bx + \frac{B}{B}$ $0,25$ l'un repère orthonormé ètre est le segment [AB] $0 4x + 3y + 2z = \frac{B}{B}$ e terme général $u_n = \frac{B}{B}$ $\lim_{n \to +\infty} \frac{u_n}{e^n} = 0$	c = 0 admet des racines 0,75 c, on considère les deux pos 3]. Le plan tangent à S au C	réelles? D Dints $A(-1,1,1)$ point $C(1,1-1)$ $z-5=0$ D aucui	1) et $B(7, -5,5)$. Soit S la 1) est: $4x + 2y + 2z - 5 = 0$ nes des trois réponses	
at la probabilité pour que A 0,5 C 21: Dans l'espace muni de phère dont l'un des diame C 2 C 2 C 2 C 2 C 2 C 2 C 3 C 4 C 2	e l'équation $ax^2 + bx + \frac{B}{B}$ $0,25$ l'un repère orthonormé ètre est le segment [AB $0 4x + 3y + 2z + \frac{B}{B}$ e terme général $u_n = \frac{B}{B}$ $\lim_{n \to +\infty} \frac{u_n}{e^n} = 0$ riel défini par: $E = \{(x_n)$	c = 0 admet des racines 0.75	réelles? D Dints $A(-1,1,1)$ point $C(1,1-1)$ $z-5=0$ D aucui $t=0$ et $2x$	1) et $B(7, -5,5)$. Soit S la 1) est: $4x + 2y + 2z - 5 = 0$ These des trois réponses $+ y = 0$ Quelle est la	
t la probabilité pour que A 0,5 21: Dans l'espace muni d'hère dont l'un des diame A 2 $x-3y+4z+5=$ 22: Soit $(u_n)_n$ la suite de A $\lim_{n\to +\infty} \frac{u_n}{e^n} = +\infty$ 23: Soit E l'espace vector mension de E ?	e l'équation $ax^2 + bx + B$ 0,25 l'un repère orthonormé ètre est le segment [AB 0	c = 0 admet des racines 0.75 c, on considère les deux possible. Le plan tangent à S au 0.5 0.75 0	réelles? D Dints $A(-1,1,1)$ point $C(1,1-1)$ $z-5=0$ D aucui $t=0$ et $2x$	1) et $B(7,-5,5)$. Soit S la 1) est: $4x + 2y + 2z - 5 = 0$ hes des trois réponses $+ y = 0$ Quelle est la	
at la probabilité pour que A 0,5 21: Dans l'espace muni d'un des diament l'un des diament l'un des diament A 2 $x-3y+4z+5=$ 22: Soit $(u_n)_n$ la suite de A $\lim_{n\to +\infty} \frac{u_n}{e^n}=+\infty$ 23: Soit E l'espace vector mension de E ?	e l'équation $ax^2 + bx + B$ 0,25 l'un repère orthonormé ètre est le segment [AB 0	c = 0 admet des racines 0.75	réelles? D Dints $A(-1,1,1)$ point $C(1,1-1)$ $z-5=0$ D aucui $t=0$ et $2x$	1) et $B(7,-5,5)$. Soit S la 1) est: $4x + 2y + 2z - 5 = 0$ hes des trois réponses $+ y = 0$ Quelle est la	
at la probabilité pour que A 0,5 21: Dans l'espace muni d'ohère dont l'un des diame A $2x - 3y + 4z + 5 =$ 22: Soit $(u_n)_n$ la suite de A $\lim_{n \to +\infty} \frac{u_n}{e^n} = +\infty$ 23: Soit E l'espace vector mension de E ? A 1 24: Combien l'équation (A)	e l'équation $ax^2 + bx + B$ 0,25 l'un repère orthonormé ètre est le segment [AB 0	c = 0 admet des racines 0,75 c, on considère les deux pos 3]. Le plan tangent à S au $ \begin{array}{c c} C \\ -5 = 0 \\ \hline C \\ 2x + 2y - \\ \hline C \\ 1+e^{x} \\ dx$. Alors $ \begin{array}{c c} C \\ \hline \lim_{n \to +\infty} \frac{u_n}{e^n} = 1 \\ y, y, z, t) \in \mathbb{R}^2, x + y + z - \\ \hline C \\ 3 \\ x + \tan 4x = 0 \text{ possède-t} $	réelles? D Dints $A(-1,1,1)$ point $C(1,1-1)$ $z-5=0$ D aucur t = 0 et 2x D aucur c-elle de solutio	1) et $B(7, -5, 5)$. Soit S la 1) est: $4x + 2y + 2z - 5 = 0$ The set des trois réponses $+ y = 0$ Quelle est la The set des trois réponses The set des trois	
st la probabilité pour que A 0,5 21: Dans l'espace muni d'ohère dont l'un des diame A $2x - 3y + 4z + 5 =$ 22: Soit $(u_n)_n$ la suite de A $\lim_{n \to +\infty} \frac{u_n}{e^n} = +\infty$ 23: Soit E l'espace vector mension de E ? A 1 24: Combien l'équation A Cinq solutions	e l'équation $ax^2 + bx + B$ 0,25 l'un repère orthonormé ètre est le segment [AB 0	c = 0 admet des racines 0.75 c, on considère les deux possible. Le plan tangent à S au 0.5 0.75 0	réelles? D Dints $A(-1,1,1)$ point $C(1,1-1)$ $z-5=0$ D aucur t = 0 et 2x D aucur c-elle de solutio	1) et $B(7,-5,5)$. Soit S la 1) est: $4x + 2y + 2z - 5 = 0$ hes des trois réponses $+ y = 0$ Quelle est la	
st la probabilité pour que A 0,5 21: Dans l'espace muni donère dont l'un des diame A 2 $x-3y+4z+5=$ 22: Soit $(u_n)_n$ la suite de A $\lim_{n\to+\infty} \frac{u_n}{e^n}=+\infty$ 23: Soit E l'espace vector mension de E ? A 1 24: Combien l'équation A	e l'équation $ax^2 + bx + \frac{B}{B}$ 0,25 l'un repère orthonormé ètre est le segment [AB B 0	c = 0 admet des racines 0,75 c, on considère les deux pos 3]. Le plan tangent à S au $ \begin{array}{c c} C \\ -5 = 0 \\ \hline C \\ 2x + 2y - \\ \hline C \\ 1+e^{x} \\ dx$. Alors $ \begin{array}{c c} C \\ \hline \lim_{n \to +\infty} \frac{u_n}{e^n} = 1 \\ y, y, z, t) \in \mathbb{R}^2, x + y + z - \\ \hline C \\ 3 \\ x + \tan 4x = 0 \text{ possède-t} $	réelles? D Dints $A(-1,1,1)$ point $C(1,1-1)$ $z-5=0$ D aucur t = 0 et 2x D aucur c-elle de solutio	1) et $B(7, -5, 5)$. Soit S la 1) est: $4x + 2y + 2z - 5 = 0$ The set des trois réponses $+ y = 0$ Quelle est la The set des trois réponses The set des trois	
st la probabilité pour que A 0,5 (21: Dans l'espace muni de phère dont l'un des diametre A 2 $x-3y+4z+5=$ (22: Soit $(u_n)_n$ la suite de A $\lim_{n\to+\infty}\frac{u_n}{e^n}=+\infty$ (23: Soit E l'espace vector imension de E ?	e l'équation $ax^2 + bx + \frac{B}{B}$ 0,25 l'un repère orthonormé ètre est le segment [AB B 0	c = 0 admet des racines C = 0,75 de, on considère les deux possible. Le plan tangent à S au C = 0 = 2 x + 2 y - $\int_0^1 \frac{e^{nx}}{1+e^x} dx$. Alors C = $\lim_{n\to +\infty} \frac{u_n}{e^n} = 1$ C = $\lim_{x\to +\infty} \frac{v_n}{e^n} = 1$ Sept solutions	réelles? D Dints $A(-1,1,1)$ point $C(1,1-1)$ $z-5=0$ D aucur t = 0 et 2x D aucur c-elle de solutio	1) et $B(7, -5, 5)$. Soit S la 1) est: $4x + 2y + 2z - 5 = 0$ The set des trois réponses $+ y = 0$ Quelle est la The set des trois réponses The set des trois	

Ecole Nationale Supérieure d'Arts et Métiers , Meknès — Casablanca

CONCOURS COMMUN D'ACCÈS EN PREMIÈRE ANNÉE

Filières : Sciences Mathématiques A et B

Epreuve de Mathématiques

Lundi 29 Juillet 2013 - Durée : 2h 02mn

- Les questions sont à réponse PRÉCISE
- Les questions sont INDÉPENDANTES
- Chaque question est NOTÉE sur (2Pts)

Overtices	NOTEE sur (2Pts)
Questions	Réponses
 Répondre par Vrai ou Faux : si la proposition q est la négation de la proposition p 1. (p) : n ∈ IN est pair. (q) : n ∈ IN est impair. 2. (p) : f est paire. (q) : f est impaire. 3. (p) : Ali est Meknassi. (q) : Ali est Casablancais. 4. (p) : Mohammed ne voyage jamais sans bagages. (q) : Mohammed voyage toujours avec des bagages. 	1.:
Résoudre le système : $\begin{cases} x^2 - y^2 = 12 \\ \ln x - \ln y = \ln 2 \end{cases}$	$S = \cdots$
Déterminer trois réels a , b et c en progression arithmétique tels que $\begin{cases} a+b+c &= 9 \\ a^3+b^3+c^3 &= 153 \end{cases}$	S =
Déterminer l'ensemble des $x \in \mathbb{R}$ tels que : $\sin{(\sin{x})} = 1$	S =
Mettre sous la forme $a+ib$ $(a,b\in I\!\!R)$ le nombre complexe: $z=\left(\frac{1+i}{2-i}\right)^2+\frac{3+6i}{3-4i}$	$z = (\cdots) + i (\cdots)$
Calculer $n = card(E)$ avec $E = \mathcal{P}(\mathcal{P}(\{1, 2\}))$	$n = \cdots$
Pour $n \in \mathbb{N}$, calculer $A_n = \sum_{i=0}^n \sum_{j=0}^n \max(i,j)$ sachant que $\sum_{k=0}^n k = \frac{n(n+1)}{2}, \sum_{k=0}^n k^2 = \frac{n(n+1)(2n+1)}{6}$	$A_n = \cdots$
Soit $n \in \mathbb{N}$ tel que $n \ge 3$, calculer $B_n = \prod_{k=3}^n \frac{k^2 - 1}{k^2 + k - 6}$.	$B_n = \cdots$
On considère un ségment $[A, B]$ de longueur a . Soit M_1 e milieu de $[A, B]$, M_2 le milieu de $[B, M_1]$, M_3 le milieu de $[M_1, M_2]$ milieu de $[M_2, M_3]$ e milieu	$AM_n = \cdots$

Questions	
	Réponses
Déterminer le domaine de définition de la fonction $f(x) = \sqrt{10 - x - 6\sqrt{x - 1}} - \sqrt{5 - x - 4\sqrt{x - 1}}$	$D_f = \cdots$
Quelles sont les fonctions de $I\!\!R$ dans $I\!\!R$ qui sont à la forcroissantes et périodiques ?	is
Calculer $g \circ f$ telle que $f(x) = \begin{cases} x+3 & \text{si } 0 \le x \\ x^2 & \text{si } 0 > x \end{cases}$ et $g(x) = \begin{cases} 2x+1 & \text{si } x \le 3 \\ x & \text{si } x > 3 \end{cases}$	$g \circ f(x) =$
Déssiner l'allure d'une fonction f vérifiant les conditions suivantes : (a) f est continue sur $[0, 1]$. (b) $f(0) = 0$ et $f(1) = 1$. (c) $\forall x \in [0, 1], f(x) \leq x$. (d) f n'est pas bijective	
Calculer $L = \lim_{x \to 0} \frac{\sin(x) + \tan(x)}{\sqrt{x^2}}$.	$L = \cdots $
Trouver tous les polynômes P vérifiant $P(2t) = P'(t) P''(t) \forall t \in \mathbb{R}$	S =
On considère une fonction h dérivable sur \mathbb{R}^* telle que $h'(x) = \frac{1}{x}$. On pose $F(x) = h\left(x + \sqrt{1 + x^2}\right)$. Calculer $F'(x)$	$F'(x) = \cdots$
Soit f la fonction réelle définie sur IR par $f(x) = \frac{2x+1}{\sqrt{x^2+x+1}}$. On note par g la fonction réciproque de f . Calculer $g'(1)$.	$g'(1) = \cdots$
Déterminer a , b , c et d (4 réels) pour que $\forall x > 0$, $\frac{a}{x+b} \le \ln\left(1+\frac{1}{x}\right) \le \frac{c}{x+d}$	$a = \cdots \qquad \qquad c = \cdots \qquad \qquad c = \cdots \qquad \qquad d = \cdots \qquad \qquad d = \cdots \qquad \qquad d = \cdots \qquad \qquad \qquad d = \cdots \qquad \qquad \qquad d = \cdots \qquad
Calculer $I = \int_0^{11} \left x^2 - 5x + 6 \right dx$	<i>I</i> = · · · · · · · · · · · · · · · · · ·
Déterminer le minimum de l'expression x^2+y^2 dans le as suivant $x+2y=5$	S =
de prof de Maths est enrhumé. Il utilise des mouchoirs arrés de 25cm de côté. En huit jours, il a utilisé 6 mètres arré de tissu. Combien en moyenne, a t-il utilisé de nouchoires par jour?	Moy/j = · · · · · · · · · · · · · · · · · ·
Ine boite de bonbons pèse 1kg. La boite vide pèse $900g$ e moins que les bonbons. Quelle est le poids P de la oite ?	P =
e quelle façon peut-on obtenir 100 en utilisant un seul niffre $(0, 1, \dots, 9)$ 6 fois et 2 opérations $(+, -, \times, \div)$?	100 =

Ecole Nationale Supérieure d'Arts et Métiers , Meknès — Casablanca

CONCOURS COMMUN D'ACCÈS EN PREMIÈRE ANNÉE

Filières: Sciences Mathématiques A et B

Epreuve de Mathématiques

Lundi 29 Juillet 2013 - Durée : 2h 02mn

- Les questions sont à réponse PRÉCISE
- Les questions sont INDÉPENDANTES
- Chaque question est NOTÉE sur (2Pts)

Questions	Réponses
 Répondre par Vrai ou Faux : si la proposition q est la négation de la proposition p 1. (p) : n ∈ IN est pair. (q) : n ∈ IN est impair. 2. (p) : f est paire. (q) : f est impaire. 3. (p) : Ali est Meknassi. (q) : Ali est Casablancais. 4. (p) : Mohammed ne voyage jamais sans bagages. (q) : Mohammed voyage toujours avec des bagages. 	
Résoudre le système : $\begin{cases} x^2 - y^2 &= 12\\ \ln x - \ln y &= \ln 2 \end{cases}$	$S = \cdots \left\{ \cdot \left(2, 4 \right) \right\}$
Déterminer trois réels a , b et c en progression arithmétique tels que $\begin{cases} a+b+c &= 9 \\ a^3+b^3+c^3 &= 153 \end{cases}$	$S = -\{.(\Lambda_1, 3, .5.)\}.$
Déterminer l'ensemble des $x \in IR$ tels que : $\sin{(\sin{x})} = 1$	$S = \cdots \left\{ \begin{array}{c} \phi \\ \end{array} \right\}$
Mettre sous la forme $a+ib$ $(a, b \in \mathbb{R})$ le nombre complexe: $z = \left(\frac{1+i}{2-i}\right)^2 + \frac{3+6i}{3-4i}$	$z = (\cdots \frac{23}{25} \cdots) + i(\cdots \frac{36}{25} \cdots)$
Calculer $n = card(E)$ avec $E = \mathcal{P}(\mathcal{P}(\{1,2\}))$	$n = \dots 2 $ $ = 16 $
Pour $n \in \mathbb{N}$, calculer $A_n = \sum_{i=0}^n \sum_{j=0}^n \max(i,j)$ sachant que $\sum_{k=0}^n k = \frac{n(n+1)}{2}, \sum_{k=0}^n k^2 = \frac{n(n+1)(2n+1)}{6}$	$A_n = \frac{n(n+1)(\ln -1)}{6}$
Soit $n \in \mathbb{N}$ tel que $n \geq 3$, calculer $B_n = \prod_{k=3}^n \frac{k^2 - 1}{k^2 + k - 6}$.	$B_n = \frac{20 (n-1)}{(n+2)(n+3)}$
On considère un ségment $[A, B]$ de longueur a . Soit M_1 le milieu de $[A, B]$, M_2 le milieu de $[B, M_1]$, M_3 le milieu de $[M_1, M_2]$, M_4 le milieu de $[M_2, M_3]$, etc. Pour tout $n \in \mathbb{N}$, M_{n+2} est le milieu de $[M_n, M_{n+1}]$. Exprimer la longueur AM_n en fonction de n	$AM_n = \frac{AB}{2} \cdot AB \cdot \left(\sum_{i=1}^n (-1)^i \cdot \frac{A}{2^i} \right)$

Questions	Réponses
Déterminer le domaine de définition de la fonction $f(x) = \sqrt{10 - x - 6\sqrt{x - 1}} - \sqrt{5 - x - 4\sqrt{x - 1}}$	$D_f = \cdots$
Quelles sont les fonctions de $I\!\!R$ dans $I\!\!R$ qui sont à la fois croissantes et périodiques ?	
Calculer $g \circ f$ telle que $f(x) = \begin{cases} x+3 & \text{si } 0 \le x \\ x^2 & \text{si } 0 > x \end{cases}$ $\text{et } g(x) = \begin{cases} 2x+1 & \text{si } x \le 3 \\ x & \text{si } x > 3 \end{cases}$	$g \circ f(x) = \begin{cases} 2m^2 + 1 & \text{olasso} \\ 2m^2 + 1 & \text{olasso} \end{cases}$
Déssiner l'allure d'une fonction f vérifiant les conditions suivantes : (a) f est continue sur $[0, 1]$. (b) $f(0) = 0$ et $f(1) = 1$. (c) $\forall x \in [0, 1], f(x) \le x$. (d) f n'est pas bijective	(Voir concours 2013 SC. exp)
Calculer $L = \lim_{x \to 0} \frac{\sin(x) + \tan(x)}{\sqrt{x^2}}$.	L =
Trouver tous les polynômes P vérifiant $P(2t) = P'(t) P''(t) \forall t \in \mathbb{R}$	$S = \cdots $
On considère une fonction h dérivable sur \mathbb{R}^* telle que $h'(x) = \frac{1}{x}$. On pose $F(x) = h\left(x + \sqrt{1 + x^2}\right)$. Calculer $F'(x)$	$F'(x) = \cdots$
Soit f la fonction réelle définie sur IR par $f(x) = \frac{2x+1}{\sqrt{x^2+x+1}}$. On note par g la fonction réciproque de f . Calculer $g'(1)$.	$g'(1) = \cdots$
Déterminer a , b , c et d (4 réels) pour que $\forall x > 0$, $\frac{a}{x+b} \le \ln\left(1+\frac{1}{x}\right) \le \frac{c}{x+d}$	$a = \cdots \qquad \qquad c = \cdots \qquad \qquad c = \cdots \qquad \qquad d = \cdots \qquad \qquad d = \cdots \qquad \qquad d = \cdots \qquad \qquad \qquad d = \cdots \qquad \qquad \qquad d = \cdots \qquad
Calculer $I = \int_0^{11} \left x^2 - 5x + 6 \right dx$	1 = Ly 1.5 / . 2 (. Voir. 2013 Sc αρ)
Déterminer le minimum de l'expression x^2+y^2 dans le cas suivant $x+2y=5$	s =5
Le prof de Maths est enrhumé. Il utilise des mouchoirs carrés de 25cm de côté. En huit jours, il a utilisé 6 mètres carré de tissu. Combien en moyenne, a t-il utilisé de mouchoires par jour ?	Moy/j = C. mou Chois/ your
Une boite de bonbons pèse 1kg. La boite vide pèse $900g$ de moins que les bonbons. Quelle est le poids P de la boite ?	P =5.0.g
De quelle façon peut-on obtenir 100 en utilisant un seul chiffre $(0,1,\cdots,9)$ 6 fois et 2 opérations $(+,-,\times,\div)$?	100 =99

$oldsymbol{U}$ niversité $oldsymbol{M}$ oulay $oldsymbol{I}$ smaïl

$m{E}$ cole $m{N}$ ationale $m{S}$ upérieure d' $m{A}$ rts et $m{M}$ étiers — $m{M}$ eknès

CONCOURS D'ENTREE en 1ère Année

Filière : Sciences Mathématiques A et B

Epreuve de Mathématiques

Jeudi 26 Juillet 2012 - Durée : 2h 00mn

Questions à réponse précise, Partie A

NB : Chaque question est notée sur (1Pt)		
Questions	Réponses	
Trouver la prériode T de la fonction suivante : $f(x) = \sin\left(\frac{x}{2}\right) + \cos\left(x\right)$		
Résoudre dans IR l'équation : $\cos^4(4x) - \sin^4(4x) = 1$		
Déterminer $a, b \in \mathbb{R}$ tels que $(1+i)^9 = a+ib$		
Calculer $C = \lim_{n \to +\infty} n \ln \sqrt{\frac{n+1}{n-1}}$		
Soit f une fonction dérivable sur IR , calculer la dérivée de $g(x) = \exp((f(x^2))^2)$		
Soit $E = \mathbb{R} \setminus \{-2\}$ et soit $f : E \longrightarrow \mathbb{R}$ telle que $f(x) = \frac{x+1}{x+2}$ avec $x \in E$, trouver $f(E)$		
Trouver les maximums et les minimums de la fonction $f: [-1, 1] \longrightarrow \mathbb{R}$ définie par $f(x) = x^2 - x + x $		
On donne les points $A(1,2)$, $B(-2,1)$ et $C(0,4)$. Déterminer l'angle \widehat{BAC} en radian		
Soit x un réel positif. Combien y-a-t-il d'entiers naturels multiples de 3 entre 0 et x ?		
Déterminer le quotient et le reste de la division eulidienne de $X^5 - 7X^4 - X^2 - 9X + 9$ par $X^2 - 5X + 4$		

NB: Chaque	question	est no	otée sur	(2Pts)
------------	----------	--------	----------	--------

Questions	Réponses
Soit $f:[a,b] \longrightarrow I\!\!R$ une fonction continue telle que	
$\forall x \in [a,b], \ f(a+b-x) = f(x). \text{ on pose } I = \int_a^b f(x)dx$	
et $J = \int_a^b x f(x) dx$. Calculer J en fonction I .	
Soit E un ensemble, et A , B deux sous ensembles de E . On appelle différence symétrique de A et B , notée $A\Delta B$, le sous-ensemble de E : $A\Delta B = \{x \in A \cup B \mid x \not\in A \cap B\}$. Calculer $A\Delta E$ et $A\Delta C_E^A$	
Le périmètre d'un triangle isocèle vaut 1. Déterminer les dimensions de ce triangle pour que son aire soit la plus grande possible.	
On note $u_n = 25^n + 2^{3n+4}$. Trouver $a, b \in \mathbb{Z}$ tels que $\forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n$	
Calculer $D = \int_{-1}^{1} \frac{1}{x^2 - 2} dx$	
Pour $n \in \mathbb{N}^*$, on pose $S_n = 1^2 + 2^2 + 3^2 + + n^2$. Soit k un entier compris entre 1 et n . Utiliser l'égalité $(k+1)^3 - k^3 = 3k^2 + 3k + 1$ pour calculer S_n .	
Soit x un réel et $E(x)$ la partie entière de x . Déterminer	
$F = \lim_{n \to +\infty} \frac{E(x) + E(2x) + E(3x) + \dots + E(nx)}{n^2}$	
De combien de façon peut-on payer 10 DHS avec des pièces de 10 et 20 centimes ? ($1 \text{ DH} = 100 \text{ centimes}$)	
Soient x_1 , x_2 et x_3 les racines de $x^3 + 2x - 1 = 0$, calculer $X = x_1^3 + x_2^3 + x_3^3$	
Le 1^{er} juin 2012, les participants d'un club d'astronomie ont observé le corps céleste \mathcal{A} qui apparait tout les 51 jours. Le 28 juin 2012, ils ont observé le corps céleste \mathcal{B} , qui apparait tout les 72 jours. A quelle date devront-ils fixer une nouvelle réunion pour observer simultanément les deux corps?	
Déterminer un cercle de centre Ω et de rayon R tangent aux trois droites d'équations respectives : $y=2x+1,\ y=2x+7$ et $y=-\frac{1}{2}x$	

$oldsymbol{U}$ niversité $oldsymbol{M}$ oulay $oldsymbol{I}$ smaïl

Ecole Nationale Supérieure d'Arts et Métiers — Meknès

CONCOURS D'ENTREE en 1ère Année

Filière : Sciences Mathématiques A et B

Epreuve de Mathématiques

Jeudi 26 Juillet 2012 - Durée : 2h 00mn

Questions à réponse précise, Partie A

Questions a reponse precise, I divide		
NB : Chaque question est notée sur (1Pt)		
Questions	Réponses	
Trouver la prériode T de la fonction suivante : $f(x) = \sin\left(\frac{x}{2}\right) + \cos\left(x\right)$	Reportses $ \begin{cases} (x + 4\pi) = \sin(2\pi + \frac{\pi}{2}) + \cos(x + 4\pi) \\ = f(x) \end{cases} $ $ \Rightarrow T = 4\pi $	
Résoudre dans \mathbb{R} l'équation : $\cos^4(4x) - \sin^4(4x) = 1$	S= SKI / KEZ6	
Déterminer $a, b \in \mathbb{R}$ tels que $(1+i)^9 = a+ib$	a = b = 16	
Calculer $C = \lim_{n \to +\infty} n \ln \sqrt{\frac{n+1}{n-1}}$	C = + 00	
Soit f une fonction dérivable sur IR , calculer la dérivée de $g(x) = \exp\left(\left(f\left(x^2\right)\right)^2\right)$	g'(x)=4 x f(x2). f(x2) g(x)	
Soit $E = \mathbb{R} \setminus \{-2\}$ et soit $f : E \longrightarrow \mathbb{R}$ telle que $f(x) = \frac{x+1}{x+2}$ avec $x \in E$, trouver $f(E)$	V	
Trouver les maximums et les minimums de la fonction $f: [-1, 1] \longrightarrow \mathbb{R}$ définie par $f(x) = x^2 - x + x $	1.1mr = P(x)-0	
On donne les points $A(1,2)$, $B(-2,1)$ et $C(0,4)$ Déterminer l'angle \widehat{BAC} en radian	$BAC = \frac{ABC + AC - BC}{2ABAC}$ $BAC = 1,55 \text{ rad}$	
Soit x un réel positif. Combien y-a-t-il d'entiers na turels multiples de 3 entre 0 et x ?		
Déterminer le quotient et le reste de la division eul dienne de $X^5 - 7X^4 - X^2 - 9X + 9$ par $X^2 - 5X +$	Le quotient: n3_2x2_14x_63 4 Le reste: -268x + 261	

Questions a reponse precise, Partie B		
NB : Chaque question est notée sur (2Pts)		
Questions	Réponses	
Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction continue telle que $\forall x \in [a,b], \ f(a+b-x) = f(x).$ on pose $I = \int_{-b}^{b} f(x)dx$	$\pi = a + b - t$ $J = \int_{a}^{b} \pi f(n) dn = \int_{b}^{a} (a + b - t) f(t) dt$	
et $J = \int_a^b x f(x) dx$. Calculer J en fonction I .	$= (a+b)I - J$ $=) J = \underbrace{a+b}_{2} I$ $A \triangle \overline{A} = A \triangle C \stackrel{A}{\leftarrow} = I \nearrow Z$	
Soit E un ensemble, et A , B deux sous ensembles de E . On appelle différence symétrique de A et B , notée $A\Delta B$, le sous-ensemble de E : $A\Delta B = \{x \in A \cup B \mid x \not\in A \cap B\}$. Calculer $A\Delta E$ et $A\Delta C_E^A$	ADE = (AUSI) (Ansi) = SIA = A	
Le périmètre d'un triangle isocèle vaut 1. Déterminer les dimensions de ce triangle pour que son aire soit la plus grande possible.	$S'(n) = \frac{1}{\sqrt{4}n - 4} \text{ etser } \frac{1}{4}, \frac{1}{2}$ $S'(n) = \frac{1 - 3n}{\sqrt{4}n - 4}, S'(n) = 0 \Leftrightarrow n = \frac{1}{3}$ $AB = AC = BC = \frac{1}{3}$	
On note $u_n = 25^n + 2^{3n+4}$. Trouver $a, b \in \mathbb{Z}$ tels que $\forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n$	0 = 33 et $b = -200$	
Calculer $D = \int_{-1}^{1} \frac{1}{x^2 - 2} dx$	D = V2 In (V2-1)	
Pour $n \in \mathbb{N}^*$, on pose $S_n = 1^2 + 2^2 + 3^2 + + n^2$. Soit k un entier compris entre 1 et n . Utiliser l'égalité $(k+1)^3 - k^3 = 3k^2 + 3k + 1$ pour calculer S_n .	$5_n = \sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$	
Soit x un réel et $E(x)$ la partie entière de x . Déterminer $F = \lim_{n \to +\infty} \frac{E(x) + E(2x) + E(3x) + \cdots + E(nx)}{n^2}$	$F = \lim_{n \to +\infty} u_n = \frac{\alpha}{2}$	
De combien de façon peut-on payer 10 DHS avec des pièces de 10 et 20 centimes ? ($1 \text{ DH} = 100 \text{ centimes}$)	(0,50); (1,49); ; (50,0), Par suite le nombre de façon est 151 façons	
Soient x_1 , x_2 et x_3 les racines de $x^3 + 2x - 1 = 0$, calculer $X = x_1^3 + x_2^3 + x_3^3$	$M_1^3 + \lambda_2^3 + \lambda_3^3 = 3$	
Le 1 ^{er} juin 2012, les participants d'un club d'astronomie ont observé le corps céleste \mathcal{A} qui apparait tout les 51 jours. Le 28 juin 2012, ils ont observé le corps céleste \mathcal{B} , qui apparait tout les 72 jours. A quelle date devront-ils fixer une nouvelle réunion pour observer simultanément les deux corps?	En pourra observer simultanément les deux corps le: 31 octobre 2012	
Déterminer un cercle de centre Ω et de rayon R tangent aux trois droites d'équations respectives : $y=2x+1,\ y=2x+7$ et $y=-\frac{1}{2}x$	$S2(-3,2)$ et $R = \frac{3\sqrt{5}}{5}$ $-2(-\frac{4}{5}, -\frac{2}{5})$ $R = \frac{3\sqrt{5}}{5}$	

$oldsymbol{U}$ niversité $oldsymbol{M}$ oulay $oldsymbol{I}$ smaïl Ecole Nationale Supérieure d'Arts et Métiers — Meknès

CONCOURS D'ENTREE en 1ère Année

Filière : Sciences Mathématiques A et B

Epreuve de Mathématiques

Mardi 09/08/11 - Durée : 2h 10mn

Questions à réponse précise, Partie I

	onse précise, Partie I (NB : Chaque question est notée sur (1Pt))
Répondre dans la colonne Réponses	Réponses
Questions	The pointer
Les propositions suivantes sont-elles vraies or fausses?	
 (a) Toute application injective d'un ensemble dans lui même est bijective 	e Tao o 5 V extracted season of many forester.
(b) $\forall x > 1$, $\frac{x-1}{\ln(x-1)} \in \mathbb{R}$	State and published assessment of the control of th
(c) Soit A , B et C trois ensembles, on $(A \cup B) \cap C = A \cup (B \cap C)$	a System
(d) $\forall x \in \mathbb{R}, x^2 < 0 \Longrightarrow x < 0$	
(e) La somme de deux irrationnels est un irr tionnel	a-
Traduire à l'aide des quantificateurs les propsitions suivantes : (a) La fonction f est constante sur $[0, 5]$	00-
(b) La fonction g n'est pas injective : l'ensemble E	
(c) La fonction h, définie sur R, atteint tou les valeurs de N	A DECEMBER OF THE PROPERTY OF
 (d) Tout réel possède une racine carré dans (e) Etant donnés trois réels, il y en a au m deux de même signe 	

Questions à réponse précise, Partie II

Questions	Réponses
Déterminer l'ensemble des polynômes P tels que $P\left(x^2\right) = \left(x^2+1\right)P\left(x\right)$	<u> Leaucovon</u>
Résoudre dans \mathbb{Z}^2 l'équation : $198x + 216y = 36$	rena l
E, F et G étant trois ensembles finis exprimer $card(E \cup F \cup G)$ en fonction des cardinaux des ensembles $E, F, G, E \cap F, E \cap G, F \cap G$ et $E \cap F \cap G$	
Exprimer à l'aide d'intervalles de $I\!\!R$ l'ensemble suivant : $A=\{x\in I\!\!R\ /\ 2\leq x <4\}$	
Comment faire 21 avec les chiffres 1 5 6 et 7 utilisés qu'une fois chacun, et en utilisant à son gré les opérateurs simples +, -, * et /	
Calculer le nombre complexe $B = \left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$	
Calculer $\alpha = \sum_{k=1}^{n} \frac{2^k + 3^{k+2}}{5^{k+1}}$	
Calculer $\beta = \sum_{k=1}^{n} (2k+7)$	
Dans le plan rapporté à un repère orthonormé, on contidère les points A , B et C de coordonnées : $A(2,4)$, $B(-2,1)$ et $C(4,3)$. On note d la distance du point A à la droite (BC) . Donner la valeur de d .	PRI 1869 - Burka og predigneret og i 1945 Er edelingerete i 1948 - Frank eller til det skriverete i 1945 - 1946 Frank y deline skriverete
Calculer la limite de la suite dont le terme général est donné par : $u_1 = \sqrt{2}, u_2 = \sqrt{2\sqrt{2}},$ $u_3 = \sqrt{2\sqrt{2}\sqrt{2}}, \cdots$	AND A DESCRIPTION OF THE STATE

Questions à réponse précise, Partie III

Répondre dans la colonne Réponses (NB	: Chaque question est notée sur (2Pts))
	Réponses
Questions Conner l'ensemble S des réels appartenant à l'intervalle $[0, 2\pi[$ vérifiant l'équation : $\sin x)^2 + \frac{\sqrt{3}}{2}\sin x = 0$	
Résoudre dans IR l'équation $ E(x) = 3$ avec $E(x)$ est la partie entière de x	
Calculer $\lim_{x \to +\infty} \frac{2x+1}{\sqrt[3]{x^3+3x}}$	
Déterminer l'équation de la droite qui est asymptote à la courbe C_f en $+\infty$ de la fonction f , définie sur \mathbb{R}^* par $f(x) = \frac{2e^x + 1}{1 - e^x}$	
Calculer la dérivée, lorsqu'elle existe, de la fonction suivante : $f(x) = x \ln x+1 $	
On considère, pour tout $n \in IN^*$, l'intégrale $I_n = \int_0^1 x^n e^{2x} dx$. Trouver une relation entre I_n et I_{n-1} avec $n > 1$	
Soit la fonction f définie sur $I = [0, 3]$ par $f(x) = \begin{cases} -1 & \text{si } x = 0\\ xe^{x^2} & \text{si } x \in]0, 2[\\ 1 & \text{si } x = 2\\ \frac{2x}{1+x^2} & \text{si } x \in]2, 3] \end{cases}$	
Calculer $F(x) = \int_0^x f(x) dx$ avec $x \in I$ Calculer $\int t^3 \cos t^2 dt$	
Déterminer la fonction f telle que $g \circ f(x) = 2 x $ sachant que g est la fonction définie par $g(x) = \begin{cases} e^x & \text{si } x < 0 \\ \sqrt{x+1} & \text{si } x \ge 0 \end{cases}$	
Pour quelles valeurs de $\beta \in \mathbb{R}$, l'équation $x^2 + \sqrt{x} - \beta = 0$ admet une unique racine dan l'intervalle $[0, 1]$?	s ·

Université Moulay IsmaïlEcole Nationale Supérieure d'Arts et Métiers — Meknès

CONCOURS D'ENTREE en 1ère Année

Filière : Sciences Mathématiques A et B

Epreuve de Mathématiques

Mardi 09/08/11 - Durée : 2h 10mn

Questions à réponse précise, Partie I

Questions à réponse précise, Partie I		
Répondre dans la colonne Réponses	(NB : Chaque question est notée sur (1Pt))	
Questions	Réponses	
Les propositions suivantes sont-elles vraies ou fausses ?	a) fausse. exp: IR > IR & estinjective mais pas bijective, O n'a pos d'antécédant dans IR.	
(a) Toute application injective d'un ensemble dans lui même est bijective	b) fauxe. D2-1 =]1,2[U]2,+00[
(b) $\forall x > 1$, $\frac{x-1}{\ln(x-1)} \in \mathbb{R}$	(AUB)nC = IR+ AV (BnC) = IR	
(c) Soit A , B et C trois ensembles, on a $(A \cup B) \cap C = A \cup (B \cap C)$	d) Vraie	
 (d) ∀x ∈ R, x² < 0 ⇒ x < 0 (e) La somme de deux irrationnels est un irrationnel 	e) fausse, v2, -v2 sont irrationnels mais leur somme qui est nulle n'est pas irrationnel.	
Traduire à l'aide des quantificateurs les propo- sitions suivantes :	1. La proposition se traduit par: JKeIR, Yn e [0,5]: b(n)=K	
(a) La fonction f est constante sur [0, 5]	2. La proposition se traduit par: I (a, b) e E²/ g(a)= g(b) et a + b	
(b) La fonction g n'est pas injective sur l'ensemble E	3. La proposition se traduit par:	
(c) La fonction h, définie sur IR, atteint toutes les valeurs de IN	4. La proposition se traduit pour:	
(d) Tout réel possède une racine carré dans R	Ybeir, Freir/b=a2	
(e) Etant donnés trois réels, îl y en a au moins deux de même signe	5. La proposi were se comment que	
	Y(a,b,c)=123/ob>0046630 ou a(3)	

Questions à réponse précise, Partie III

Répondre dans la colonne Réponses (1	NB : Chaque question est notée sur (2Pts))
Questions	Réponses
Donner l'ensemble S des réels appartenant à l'intervalle $[0, 2\pi[$ vérifiant l'équation : $(\sin x)^2 + \frac{\sqrt{3}}{2}\sin x = 0$	5= \ \frac{7\pi}{12} + 2\ki\frac{\ke\pi}{\ke\pi} \cdot\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Résoudre dans IR l'équation $ E(x) = 3$ avec $E(x)$ est la partie entière de x	5=]-4,-3] [3,4[
Calculer $\lim_{x \to +\infty} \frac{2x+1}{\sqrt[3]{x^3+3x}}$	
Déterminer l'équation de la droite qui est asymptote à la courbe C_f en $+\infty$ de la fonction f , définie sur \mathbb{R}^* par $f(x) = \frac{2e^x + 1}{1 - e^x}$	
Calculer la dérivée, lorsqu'elle existe, de la fonction suivante : $f(x) = x \ln x+1 $	
On considère, pour tout $n \in IV^*$, l'intégrale $I_n = \int_0^1 x^n e^{2x} dx$. Trouver une relation entre I_n et I_{n-1} avec $n > 1$	$\mathbb{T}_{n+1} = \frac{e^2}{2} - \frac{n+1}{2} \mathbb{T}_n$
Soit la fonction f définie sur $I = [0, 3]$ par	
$f(x) = \begin{cases} -1 & \text{si } x = 0\\ xe^{x^2} & \text{si } x \in]0, 2[\\ 1 & \text{si } x = 2\\ \frac{2x}{1+x^2} & \text{si } x \in]2, 3] \end{cases}$	$F(n) = \frac{e^{n^2}}{2} + \ln \frac{1+n^2}{5}$
Calculer $F(x) = \int_0^x f(x) dx$ avec $x \in I$	
Calculer $\int t^3 \cos t^2 dt$	$\int t^3 (o(t^2) dt = \frac{1}{2} t^2 \sin(t^2) + \frac{1}{2} \cos(t^2) + K$
Déterminer la fonction f telle que $gof(x) = 2 x $ sachant que g est la fonction définie par $g(x) = \begin{cases} e^x & \text{si } x < 0\\ \sqrt{x+1} & \text{si } x \ge 0 \end{cases}$	f(n)= { lm(21m) n =]-2,0[v]0, 1[4 n2-1; n =]-0,1]v[2,+
Pour quelles valeurs de $\beta \in \mathbb{R}$, l'équation $x^2 + \sqrt{x} - \beta = 0$ admet une unique racine dans l'intervalle $[0, 1]$?	β ε [0,2]

Questions à réponse précise, Partie II

Répondre dans la colonne Réponses (l	NB : Chaque question est notée sur (2Pts))
Questions	Réponses
Déterminer l'ensemble des polynômes P tels que $P\left(x^{2}\right)=\left(x^{2}+1\right)P\left(x\right)$	$\mathcal{E} = \frac{1}{2} a \left(n^2 - 4 \right) / a \in \mathbb{R}^4$
Résoudre dans \mathbb{Z}^2 l'équation : $198x + 216y = 36$	5=2(-2+12K,2-11K)/KEZ6
E, F et G étant trois ensembles finis exprimer $card(E\cup F\cup G)$ en fonction des cardinaux des ensembles $E, F, G, E\cap F, E\cap G, F\cap G$ et $E\cap F\cap G$	Card(E uFuG) = (ard(E) + (ard(F) + (ard(G) - Card(EnF) - Card(EnG)) - (ard(FnG) + (ard(EnFnG))
Exprimer à l'aide d'intervalles de $I\!\!R$ l'ensemble suivant : $A = \{x \in I\!\!R \ /\ 2 \le x < 4\}$	A = [2,4] U [-4,-2]
Comment faire 21 avec les chiffres 1 5 6 et 7 utilisés qu'une fois chacun, et en utilisant à son gré les opérateurs simples +, -, * et /	$6 \div (1-5+7) = 6 \div \frac{2}{7} = 21$
Calculer le nombre complexe $B = \left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$	B=[12, 71] = [212, 1411] = 212=4096
Calculer $\alpha = \sum_{k=1}^{n} \frac{2^k + 3^{k+2}}{5^{k+1}}$	$\alpha = \frac{2}{15} \left(1 - \left(\frac{2}{5} \right)^n \right) + \frac{27}{10} \left(1 - \left(\frac{3}{5} \right)^n \right)$
Calculer $\beta = \sum_{k=1}^{n} (2k+7)$	$\beta = \sum_{k=1}^{n} (2k+7) = h(n+8)$
Dans le plan rapporté à un repère orthonormé, on contidère les points A , B et C de coordonnées : $A(2,4)$, $B(-2,1)$ et $C(4,3)$. On note d la distance du point A à la droite (BC) . Donner la valeur de d .	$d = d(A, (BX)) = \frac{ 2-12+5 }{\sqrt{10}}$ $= \frac{\sqrt{10}}{2}.$
Calculer la limite de la suite dont le terme général est donné par : $u_1 = \sqrt{2}, u_2 = \sqrt{2\sqrt{2}}, u_3 = \sqrt{2\sqrt{2\sqrt{2}}, \cdots}$	lim Un = 2 n -> + 00

$egin{aligned} & \underline{U}$ niversité $oldsymbol{M}$ oulay $oldsymbol{I}$ smaïl $oldsymbol{E}$ cole $oldsymbol{N}$ ationale $oldsymbol{S}$ upérieure d' $oldsymbol{A}$ rts et $oldsymbol{M}$ étiers — $oldsymbol{M}$ eknès

CONCOURS D'ENTREE en 1ère Année

Filières: Sciences Mathématiques A et B

Epreuve de Mathématiques

27/07/10 - Durée : 2h 37mn

N.B. * La rédaction peut être en français ou en arabe

* La rigueur du raisonnement, la clarté de la rédaction et la qualité de la présentation seront des éléments importants d'appréciation de la copie.

Toutes les réponses doivent figurer sur les feuilles de l'épreuve

	5				
				•••••	
	••••••				
	***************************************	***************************************			
••••••			***************************************		

fontrer que E	$\left(\frac{E\left(nx\right)}{n}\right) \le x \ \forall x$	$c \in I\!\!R$ et $\forall n \in I\!\!N$	* avec $E(.)$ est la	partie entière (3	3Pts)
$\hbox{fontrer que E}$	$\left(\frac{E\left(nx\right)}{n}\right) \le x \ \forall x$	$c \in IR \text{ et } \forall n \in IN$	* avec $E\left(.\right)$ est la	partie entière (3	3Pts)
fontrer que E	$\left(\frac{E\left(nx\right)}{n}\right) \le x \ \forall x$	$x \in IR$ et $\forall n \in IN$	* avec $E(.)$ est la	partie entière (3Pts)
Iontrer que E	$\left(\frac{E\left(nx\right)}{n}\right) \le x \ \forall x$	$x \in I\!\!R$ et $\forall n \in I\!\!N$	* avec $E(.)$ est la	partie entière (3	3Pts)
Iontrer que E	$\left(\frac{E\left(nx\right)}{n}\right) \le x \ \forall x$	$x \in I\!\!R$ et $\forall n \in I\!\!N$	* avec <i>E</i> (.) est la	partie entière (3Pts)
Iontrer que E	$\left(\frac{E\left(nx\right)}{n}\right) \le x \ \forall x$	$x \in I\!\!R$ et $orall n \in I\!\!N$	* avec <i>E</i> (.) est la	partie entière (3Pts)
fontrer que E	$\left(\frac{E\left(nx\right)}{n}\right) \le x \ \forall x$	$x \in I\!\!R$ et $orall n \in I\!\!N$	* avec <i>E</i> (.) est la	partie entière (3Pts)
lontrer que E	$\left(\frac{E\left(nx\right)}{n}\right) \le x \ \forall x$	$x \in I\!\!R$ et $orall n \in I\!\!N$	* avec <i>E</i> (.) est la	partie entière (3Pts)
lontrer que E	$\left(\frac{E\left(nx\right)}{n}\right) \le x \ \forall a$	$x \in I\!\!R ext{ et } orall n \in I\!\!N$	* avec <i>E</i> (.) est la	partie entière (3Pts)
Iontrer que E	$\left(\frac{E\left(nx\right)}{n}\right) \le x \ \forall a$	$x \in I\!\!R ext{ et } orall n \in I\!\!N$	* avec $E(.)$ est la	partie entière (3Pts)
Iontrer que E	$\left(\frac{E\left(nx\right)}{n}\right) \le x \ \forall a$	$x \in I\!\!R ext{ et } orall n \in I\!\!N$	* avec $E\left(.\right)$ est la	partie entière (3Pts)
Iontrer que E	$\left(\frac{E\left(nx\right)}{n}\right) \le x \ \forall a$	$x \in I\!\!R ext{ et } orall n \in I\!\!N$	* avec $E\left(.\right)$ est la	partie entière (3Pts)
Iontrer que E	$\left(\frac{E\left(nx\right)}{n}\right) \le x \ \forall a$	$x \in I\!\!R ext{ et } orall n \in I\!\!N$	* avec $E(.)$ est la	partie entière (3Pts)
ontrer que E	$\left(\frac{E\left(nx\right)}{n}\right) \le x \ \forall a$	$x \in I\!\!R ext{ et } orall n \in I\!\!N$	* avec $E(.)$ est la	partie entière (3Pts)
fontrer que E	$\left(\frac{E\left(nx\right)}{n}\right) \le x \ \forall x$	$x \in I\!\!R$ et $orall n \in I\!\!N$	* avec $E(.)$ est la	partie entière (3Pts)
Iontrer que E	$\left(\frac{E\left(nx\right)}{n}\right) \le x \ \forall a$	$x \in I\!\!R ext{ et } orall n \in I\!\!N$	* avec $E(.)$ est la	partie entière (3Pts)
Iontrer que E	$\left(\frac{E\left(nx\right)}{n}\right) \le x \ \forall x$	$x \in I\!\!R$ et $orall n \in I\!\!N$	* avec $E(.)$ est la	partie entière (3Pts)

8981	A erei	de de)	
			allianam mineral mare				
	,				*****************		
				***************	************		
							• • • • • • • • • • • • • • • • • • • •
varange i o							
	Andrew Control of the						
					9 900 191700	nah XX. a n	Jruid I

it z ∈ Ø; mont	er que $ z-i $	$= z + i \operatorname{si} i$	et seulement	si z ∈ IR. (3)	Pts)		
oit $z \in \mathbb{C}$, mont	er que $ z-i $	$= z + i \operatorname{si}$	et seulement	si $z \in \mathbb{R}$. (3)	Pts)		
sit $z \in \mathbb{C}$, mont	rer que $ z-i $	$= z+i \operatorname{si}$	et seulement	si $z \in \mathbb{R}$. (3)	Pts)		
pit $z \in \mathcal{C}$, mont	rer que $ z-i $	$= z+i \operatorname{si}$	et seulement	si $z \in \mathbb{R}$. (3)	Pts)		
pit $z \in \mathcal{C}$, mont	fer que $ z-i $	= z+i si	et seulement	si $z \in \mathbb{R}$. (3)	Pts)		
pit $z \in \mathcal{C}$, mont	rer que $ z-i $	$= z + i \operatorname{si}$	et seulement	si $z \in IR$. (3)	Pts)		
pit $z \in \mathbb{C}$, mont	rer que $ z-i $	$= z+i \operatorname{si}$	et seulement	si $z \in \mathbb{R}$. (3)	Pts)		
pit $z \in \mathcal{C}$, mont	fer que $ z-i $	$= z+i \operatorname{si}$		si $z \in \mathbb{R}$. (3)			
pit $z \in \mathbb{C}$, mont	rer que $ z-i $	$= z+i \operatorname{si}$					
	rer que $ z-i $						pole 2
							pole.
(378)						V. 800. 1901	
(a19E)	recine or truct					5.500.0001	
(a19E)						5.500.0001	
(a19E)	recine or truct					5.500.0001	
(a19E)	recine or truct					5.500.0001	

ó.	Montrer	que	$\frac{\ln 2}{\ln 3}$	est	un	irrationnel.	(3Pts)	
----	---------	-----	-----------------------	-----	----	--------------	--------	--

 •••••	

6. On considère les suites $(u_n)_{n\in I\!\!N^*}$ et $(v_n)_{n\in I\!\!N^*}$ définies comme suit :

$$\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{u_n + v_n}{2} \end{cases} \text{ et } \begin{cases} v_0 = 5 \\ v_{n+1} = \sqrt{u_{n+1}v_n} \end{cases}$$

Montrer que $\forall n \in IN, u_n \leq v_n$. (3Pts)

=	
1	
-	
-	

7.	On	considère	trois	ensembles	A,	B et	C.	Mont	rer	que (3Pts	s)			
					(A	$\cup B$	$\subset \mathcal{A}$	$A \cup C$	et 🛽	$4 \cap B$	$\subset A$	$\cap C)$	\Longrightarrow	B	$\subset C$

8.

	······································

	ctement monotone, dérivable et à dérivée continue sur $[a, b]$. Montrer que (3Pts)
	$\int_{a} \int_{a} \int_{a$
	$\int_{a}^{b} f(x) dx = bf(b) - af(a) - \int_{f(a)}^{f(b)} f^{-1}(x) dx$
	$\int_a \int_a \int_a \int_a \int_a \int_a \int_a \int_a \int_a \int_a $
	J_a , $J_{f(a)}$
	J_a (a) $J_{f(a)}$
	J_a (a) $J_{f(a)}$
	J_a (a) $J_{f(a)}$
	J_a (a) $J_{f(a)}$
	J_a (a) $J_{f(a)}$
	J_a (7) $J_{f(a)}$
	J_a (7) $J_{f(a)}$
	J_a (*) $J_{f(a)}$ (*)
	J_a (*) $J_{f(a)}$ (*)
	J_a (*) $J_{f(a)}$
	J_a
	J_a
	J_a
	J_a (7) $J_{f(a)}$
	J_a (7)
	J_a $J_{f(a)}$
	J_a $J_{f(a)}$
	J_a $J_{f(a)}$
	J_a (w) $J_{f(a)}$
	J_a (%) $J_{f(a)}$

$\|$ Questions à réponse précise, Partie I $\|$

Répondre dans	la colonne réponse
Question	Réponse
Définir à l'aide d'une valeur absolue les encadrements suivants : $x \in [-3, 5]$ et $x \in [2, 7]$ (2Pts)	determine the stale at both a role que pour tout. (a.) A constant of the con
On considère la fonction $f(x) = \min(x^2, 3)$, donner $f(\mathbb{R})$, $f([-1, 1])$ et $f^{-1}([-1, 4])$ (3Pts)	Calceton in discrete de 1990 oj $\left(\frac{2\pi}{3},\frac{2\pi}{3},\frac{2\pi}{3},\frac{2\pi}{3},\frac{2\pi}{3}\right)$
Soit $x \in [-2, 1]$ et $y \in [2,3]$, donner des encadrements des quantités suivantes : $x - y$, $-2x + y$ et xy (3Pts)	
Déterminer la valeur de $A = E(x) + E(-x)$ avec $E(.)$ est la partie entière (2Pts)	$\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ of these is positioned as $\frac{1}{2}$.
A l'aide des quantificateurs, écrire les propositions suivantes et préciser celles qui sont vraies:	
(a) Aucun entier n'est supérieur à tous les autres. (2Pts)	
(b) Il existe un entier multiple de tous les autres. (2Pts)	
(c) Certains réels sont supérieurs à leurs carrés. $(\mathbf{2Pts})$	
Les propositions suivantes sont-elles vraies ou fausses?	and the second s
(a) $(\forall x \in \mathbb{R}, x < 0) \implies (\sqrt{x^2} = -x).$	
(b) $\exists x \in \mathbb{R}^*, \ \forall y \in \mathbb{R}^*, \ \forall z \in \mathbb{R}^* \ z = xy.$ (1Pt)	
(c) $\forall x > 0$, $\forall n \in \mathbb{N}^*$ on a $\frac{1+nx}{\ln(nx)} \in \mathbb{R}$.	
$f(x) = \frac{x}{1+ x }$ avec $x \in \mathbb{R}$, la fonction f est une bijection de \mathbb{R} sur $]-1,1[$. Déterminer f^{-1} . (2Pts)	

Questions à réponse précise, Partie II

	la colonne réponse
Question	Réponse
Déterminer les réels a , b et c tels que pour tout réel $x \neq -1$, on a $\frac{x^2}{x+1} = ax+b+\frac{c}{x+1}$ (2Pts)	Captur 3 Padda d'une valeur quadud les re- alcements submitte : r = [-3,3] et
Calculer la dérivée de (2Pts) $g(x) = \sin\left(\ln\left(\frac{\exp(2x) + 1}{\exp(2x) + 3}\right)\right)$	Al Commence of the second of t
On considère la fonction f définie par $f(x) = -x + 7 + 6 \ln (2x + 1) - 6 \ln (2x + 2).$ sur $\left[\frac{-1}{2}, +\infty \right[$, étudier la position de la courbe (C_f) de f par rapport à la droite (Δ) d'équation $y = -x + 7$ (1Pt)	page (n - file (n) in the file of the control of th
Soit $f:[0, 1] \longrightarrow \mathbb{R}$ dérivable vérifiant $f(0) = f(1)$. On définit g sur $[0, 1]$ par $g(x) = \begin{cases} f(2x) & \text{si } 0 \le x \le \frac{1}{2} \\ f(2x-1) & \text{si } \frac{1}{2} < x \le 1 \end{cases}$ Quelles hypothèses faut-il rajouter pour que g soit dérivable sur $[0, 1]$? (2Pts)	en e
Calculer $\int_0^1 \frac{x^2}{x+1} dx$. (2Pts)	
Résoudre dans \mathbb{R} l'équation : $x^{\sqrt{x}} = (\sqrt{x})^x$. (2Pts)	
Soit p et q deux réels non nuls, on considère l'équation $x^2 + px + q = 0$ (*). Trouver les valeurs de p et q pour lesquelles p et q sont soutions de l'équation (*). (2Pts)	
Eliminer 13 chiffres sur 21 de telle sorte que la comme des 8 chiffres restant soit égale à 41	
3 3 3 3 3 3 3 4 4 4 4 4 4 4 8 8 8 8 8 8 8	

Concours d'accès en Première année Epreuve de Mathématiques

Séries Sciences Mathématiques A et B et Sciences & Techniques

Durée: 3 heures 30 min

Exercice 1 (10 pts):

Pour chacune des questions qui suivent, dire, sans justification, si elle est vraie ou fausse. Pour chacune des questions, il est compté un point si la réponse est exacte et zéro sinon.

1. Soient les expressions logiques

(*)
$$p \Rightarrow (q \Rightarrow (non(r)))$$
.
(**) $(non(q))$ ou $(non(r))$ ou $(non(p))$.

1.1. On a: $(*) \Leftrightarrow (**)$.

1.2. L'expression (*) est vraie dans le cas où l'on a l'expression : $(p \ ou \ r)$ est fausse.

2. Soient les quantificateurs Q_1, Q_2 et $Q_3 \in \{\exists; \forall\}$ et l'expression

$$(***) Q_1x \in \mathbb{N}, Q_2y \in \mathbb{N}, Q_3z \in \mathbb{N}, x = yz.$$

(***) n'est vraie que dans un seul cas.

3. Soient A, B et C trois ensembles quelconques.

3.1. On a toujours $(A \cup B) \setminus (A \cup C) \subset A \cup (B \setminus C)$.

3.2. On n'a jamais $(A \cup B) \setminus (A \cup C) = A \cup (B \setminus C)$.

4. Soit $P(x) = x^3 - 6x^2 + 13x - 10$

4.1. (2 - x) divise P(x).

4.2. (2-i) et (2013-i) sont des racines de P(x).

5. Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0 et en 1 et telle que $f(x^2) = f(x)$, alors f est constante.

6. Soit $f: \mathbb{R} \to \mathbb{R}$ continue et périodique alors f n'est pas bornée.

7. Soit $f: [0, +\infty[\to \mathbb{R} \text{ continue et telle qu'il existe } k \in \mathbb{R} \text{ t.q.} : 0 \le f(x) \le k \int_0^x f(t) dt \text{ alors } f \equiv 0.$

Exercice 2 (10 pts):

A (8 pts).. « Deux fonctions continues qui commutent se recoupent forcément. »

Soient f et g deux fonctions continues de $[0,1] \rightarrow \mathbb{R}$ et commutant par composition c.à.d. : $f \circ g = g \circ f$.

1. Soit la fonction h(x) = f(x) - x. Montrer qu' $\exists a \in [0,1] \ t. \ q.$ h(a) = 0. On dit alors que a est un point fixe de la fonction f.

Hypothèse H: On suppose qu'il n'existe aucun $l \in [0,1]$ t.q. f(l) = g(l).

2. Soit $\varphi: [0,1] \to \mathbb{R}$ t. q. $\varphi(x) = f(x) - g(x)$. Montrer que φ est de signe constant.

3. Soit la suite $(u_n)_n$ définie par la donnée $u_0 = a$ et $u_{n+1} = g(u_n)$.

3.1. Montrer que $(u_n)_n$ est bornée.

3.2. Montrer que $\forall n \in \mathbb{N} \ u_n$ est un point fixe de f.

3.3. Montrer que $(u_n)_n$ est monotone et en déduire l'existence d'un certain $l \in [0,1]$ tel que $\lim_{n\to\infty} u_n = l$

Page 1 sur 3

Université My Ismail ENSAM-Meknès

4.

4.1. Montrer que f(l) = l et que g(l) = l

4.2. Conclure.

B (2 pts). « On ne peut être dépassé par moins rapide que soi »

Soient deux fonctions continues et dérivables f et g de $[0,1] \to \mathbb{R}^+$ décrivant les trajectoires de deux corps désignés par M_1 et M_2 dans le plan (0, x, y), le temps étant représenté par la variable x. On suppose qu'à l'instant initial x = 0 les deux corps partent du même endroit c.à.d. f(0) = g(0) et que M_2 se déplace en tout instant plus vite que M_1 c.à.d. $f'(x) \le g'(x) \ \forall x \in [0,1]$. Montrer alors que M_1 ne peut jamais dépasser M_2 c.à.d. $f(x) \leq g(x) \ \forall x \in [0,1]$.

Exercice 3 (9 pts):

Notations: Soient a et b deux entiers dans \mathbb{N}^* , on note b a si b est un diviseur de a et on définit $D_a =$ $\{d \in \mathbb{N}^* : d \mid a \}$ l'ensemble des diviseurs de a. On note, enfin, $a \land b$ le plus grand commun diviseur de a et b qui vaut le plus grand élément de l'ensemble $D_a \cap D_b$.

 Montrer que D_{a∧b} = D_a ∩ D_b.
 Montrer que ∀a, b, c ∈ N* $(a \wedge b) \wedge c = (a \wedge b) \wedge (b \wedge c)$.

3. Soit $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=1}^n k^3$. Montrer que $S_n = (\sum_{k=1}^n k)^2 = \left(\frac{n(n+1)}{2}\right)^2$.

4. Soit un entier $p \in \mathbb{N}^*$ quelconque.

4.1. Calculer $S_{2p} \wedge S_{2p+1}$.

4.2. Calculer $S_{2p+1} \wedge S_{2p+2}$.

4.3. Calculer $S_{2p} \wedge S_{2p+1} \wedge S_{2p+2}$.

4.4. Calculer $S_{2p+1} \wedge S_{2p+2} \wedge S_{2p+3}$.

5. Calculer $(S_n \wedge S_{n+1}) \wedge S_{n+2}$ $\forall n \in \mathbb{N}^*$.

Problème 1 (22 pts):

Partie A: Questions préliminaires (7 pts)

1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite dans \mathbb{Z} supposée convergente vers $l\in\mathbb{R}$.

 $|u_n-l|<1/4.$ 1.1 Montrer qu'il existe $m \in \mathbb{N}$ t.q. $\forall n \geq m$

1.2 Montrer que $\forall n \geq m$ $|u_n - u_{n+1}| < 1/2$.

1.3 En déduire que $(u_n)_{n\geq m}$ est constante.

« On a montré que si $(u_n)_{n\in\mathbb{N}}$ est une suite dans \mathbb{Z} convergente alors elle est stationnaire. »

2. Soient f une fonction continue et positive et F sa primitive sur [a,b] c.à.d: $\int_a^x f(t)dt = F(x)$.

2.1 Montrer que F est croissante.

2.2 Supposons qu' $\exists x_0 \in [a, b]$ t.q. $f(x_0) > 0$, montrer alors qu'il existe un intervalle $I \subset [a, b]$ tel que $x_0 \in I$ et vérifiant $f(x) > 0 \quad \forall x \in I$.

2.3 Déduire de 2.1 et 2.2 que si $f \ge 0$ telle que $\int_a^b f(t)dt = 0$ alors $f \equiv 0$.

2.4 Soit $M \in \mathbb{R}^+$ t.q. $f \leq M$ et g une autre fonction continue et positive sur [a, b]. Montrer que $\int_{a}^{b} f(t)g(t)dt \le M \int_{a}^{b} g(t)dt.$

Partie B (7 pts):

Soient p, q et $n \in \mathbb{N}^*$. On définit $P_n(X) = \frac{1}{n!} (qX - p)^n X^n$ et $I_n = \int_0^\pi P_n(x) \sin(x) dx$.

- 1. Montrer que $P_n(0)$ et $P_n\left(\frac{p}{a}\right)$ sont dans \mathbb{Z} .
- 2. Montrer que

$$(X^n)^{(i)}(0) = \begin{cases} 0 & \text{si } i \neq n \\ n! & \text{si } i = n, \end{cases}$$

et que

$$((qX - p)^n)^{(i)} \left(\frac{p}{q}\right) = \begin{cases} 0 & \text{si } i \neq n \\ n! \ q^n & \text{si } i = n \end{cases}$$

- 3. En déduire que $(P_n)^{(k)}(0)$ et $(P_n)^{(k)}(\frac{p}{p}) \in \mathbb{Z}$ $\forall k \in \mathbb{N}^*$.
- 4. Vérifier qu' $\exists M \in \mathbb{R}^+$ $\sup_{[0,\pi]} |X(qX-p)| \leq \pi M$.
- $\forall p, q \in \mathbb{N}^*$ $I_n \xrightarrow[n \to \infty]{} 0.$ 5. Montrer que

Partie C (8 pts):

Supposons qu' $\exists p, q \in \mathbb{N}^*$ tels que $\pi = \frac{p}{q}$.

- $\begin{array}{ll} 1. & \text{Montrer que } \forall n \in \mathbb{N}^* & I_n \in \mathbb{Z} \\ 2. & \text{Montrer qu'il existe } N \in \mathbb{N} & \forall n \geq N & I_{2n} = 0 \; . \end{array}$
- 3. En déduire que $P_{2n}(\pi/2) = 0 \quad \forall n \geq N$.
- 4. Savez-vous ce que vous avez démontré?

Problème 2 (9 pts):

Soient u_0 , u_1 donnés dans $\mathbb{R}^{+,*}$ et $u_{n+2} = \frac{2}{1/u_{n+1}+1/u_n}$, $\forall n \in \mathbb{N}$.

On pose
$$v_n = \frac{1}{u_n}$$
 et $A = \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$

- 1. Montrer que $u_n > 0$, $\forall n \ge 2$.
- 2. Est ce que la suite $(u_n)_n$ peut être strictement croissante ou strictement décroissante?
- 3. On pose $V_n = \begin{pmatrix} v_{n-1} \\ v_n \end{pmatrix}$, $\forall n \geq 2$ et $V_1 = \begin{pmatrix} v_0 \\ v_1 \end{pmatrix}$. Montrer, alors, que $V_n = A^{n-1} \cdot V_1$.
- 4. Soient $P = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}$ et $D = \begin{pmatrix} 1 & 0 \\ 0 & -1/2 \end{pmatrix}$.
 - 4.1. Calculer P^{-1} .
 - 4.2. Calculer $P.D.P^{-1}$ et D^n .
 - 4.3. Calculer $(P. D. P^{-1})^n$.
- 5. Déduire de ce qui précède que $V_n = P.D^{n-1}.P^{-1}.V_1$ et trouver l'expression de v_n .
- 6. Trouver $\lim_{n\to\infty} u_n$.

$oldsymbol{U}$ niversité $oldsymbol{M}$ oulay $oldsymbol{I}$ smaïl

$oldsymbol{E}$ cole $oldsymbol{N}$ ationale $oldsymbol{S}$ upérieure d' $oldsymbol{A}$ rts et $oldsymbol{M}$ étiers — $oldsymbol{M}$ eknès

CONCOURS D'ENTREE en 1ère Année

Filière: Sciences Mathématiques A et B

Epreuve de Mathématiques

Mardi 22/07/08 - Durée : 3h 03mn

N.B. * La rédaction peut être en français ou en arabe

* La rigueur du raisonnement, la clarté de la rédaction et la qualité de la présentation seront des éléments importants d'appréciation de la copie.

Exercice I, Barème: 10 Pts (chaque question est notée sur 2Pts)

Q1.1 Résoudre le système des équations linéaires suivant : x + 2y + 3z = 0, 3x + y + 2z = 1 et 2x + 3y + z = 2

Q1.2 Soit A, B et C trois ensembles non vide et on suppose que $A \cap B = A \cap C$ et $A \cup B = A \cup C$. Que peut-on dire de B et C? (avec justification)

Q1.3 Dans le plan rapporté à un repère orthogonal, on considère les points A, B et C de coordonnés respectives $\overline{(-1,0)}$, (2,4) et (3,3). Calculer l'aire du triangle ABC.

Q1.4 On considère l'énoncé \mathcal{P} : "Si le carreau est vert alors il est en marbre ". Donner la négation de \mathcal{P} .

Q1.5 Soit $x \in \mathbb{R}$ et on considére l'équation : $x^2 + 1 = 0$. Nous pouvons encore l'écrire : $(x+1)^2 - 2x = 0$ ou $(x+1)^2 = 2x$. Comme un carré est toujours positif ou nul, on en déduit : $x \ge 0$. Mais notre équation de départ peut également s'écrire : $(x-1)^2 + 2x = 0$ ou $2x = -(x-1)^2$. Comme un carré est toujours positif ou nul, on en déduit : $x \le 0$. On a vu que $x \ge 0$ et $x \le 0$, donc x = 0. Pourtant 0 ne vérifie pas l'équation de départ. Où est l'erreur ? (avec explication)

Exercice II, Barème: 10 Pts (chaque question est notée sur 2Pts)

 $\underline{\mathbf{Q2.1}}$ Calculer $\int_{0}^{100} E(x) dx$

Q2.2 Soit f une fonction dérivable et sa dérivée est continue sur [a, b] avec a < b. On suppose que $\int_a^b f^4(x)dx = \int_a^b f^3(x)dx = \int_a^b f^2(x)dx, \text{ montrer que } f \text{ est constante sur } [a, b]. \text{ (N.B. } f^2(x) = f(x)f(x))$

 $\underline{\mathbf{Q2.3}}$ Soit f la fonction définie pour $x \neq 1$ par $f(x) = \frac{\sin(x-1)}{|x-1|(x-1)^p}$ avec $p \in \mathbb{Z}$. Quelle valeur faut-il donner à f(1) pour rendre f continue en 1?

Q2.4 Une petite fille compte sur ses doigts : 1 sur le pouce, 2 sur l'index, 3 sur le majeur, 4 sur l'annulaire, 5 sur l'auriculaire, 6 sur l'annulaire, 7 sur le majeur, 8 sur l'index, 9 sur le pouce et ainsi de suite ...

Son père lui demande ce qu'elle fait. "Je veux savoir sur quel doigt tombera 9999" répond-elle. Pouvez-vous lui donner la réponse?

Q2.5 Il y a un an, Youssef avait l'âge " à l'envers " de sa mère (les mêmes chiffres lus dans l'autre sens). L'an prochain, Youssef aura l'âge " à l'envers de son père ". Cette année la somme des âges des parents est égale à 102. Quel est l'âge actuel de Youssef?

Les réponses doivent figurer sur cette feuille de l'épreuve

|| Exercice III : QCM , Barème : 14Pts ||

<u>Attention</u>: Afin de pénaliser les réponses basées sur le hasard, l'exercice est noté en entier de la manière suivante : Notons par n et m respectivement le nombre de réponses justes et fausses. La note attribuée à l'exercice sera :

 $\begin{array}{c|c} n+2 & \text{si } n \ge 10 \\ \hline n & \text{si } m < 5 \\ \hline 0 & \text{si } m \ge 5 \end{array}$

"La vie est complexe car nous avons tous une partie réelle et une partie imaginaire"

Part BY Land Part Ball Land Land	
Les propositions suivantes sont-elles vraies ou fausses ?	V ou F
$\mathbf{Q3.01}: \forall x \in \mathbb{N}, \forall y \in \mathbb{N}, \exists z \in \mathbb{N}, x = yz$	
$\mathbf{Q3.02}: \forall x \in \mathbb{N}, \exists y \in \mathbb{N}, \forall z \in \mathbb{N}, x = yz$	
Q3.03 : Sept cars (identiques) pleins aux deux tiers partent de Meknès à Fès, un quart des touristes descend de chaque car. Les trois quarts des touristes restants sont rassemblés dans trois cars.	
Q3.04 : Le produit de deux fonctions négatives décroissantes est une fonction croissante	
Q3.05 : Si a est un nombre réel quelconque et f une fonction définie et strictement décroissante sur $]a, +\infty[$, alors $\lim_{x\longrightarrow +\infty} f(x)=-\infty$	
Q3.06 : Une fonction ni continue ni monotone peut être bijective	
Q3.07: Soient les fonctions $u(x) = \ln x$ et $v(x) = \frac{x+1}{x-1}$, on note par $\mathcal{D}_{u\circ v}$ et $\mathcal{D}_{v\circ u}$ les ensembles de définition respectifs de $u\circ v$ et $v\circ u$. On a $\mathcal{D}_{u\circ v} = \mathcal{D}_{v\circ u}$	
${\bf Q3.08}$: On note F l'ensemble des applications f continues de $I\!\!R$ dans $I\!\!R$ vérifiant	
$\begin{cases} \forall (x, y) \in \mathbb{R}^2 \ f(x+y) f(x-y) = (f(x) f(y))^2 \\ f(0) \ge 0 \end{cases}$	
La fonction $x \longmapsto 2^{-x^2}$ appartient F	
Q3.09: La fonction $f: x \longmapsto x-1+\frac{\sqrt{(x-1)^2}}{x-1}$ si $x \neq 1$ et telle que $f(1)=1$ admet une tangente en tout point de \mathbb{R}	
Q3.10: On considère $I_1 = \int_{\pi/6}^{\pi/3} \frac{\cos x}{\sin x} dx$ et $I_2 = \int_{\pi/6}^{\pi/3} \frac{\sin x}{\cos x} dx$, on a $I_1 = I_2$	
Q3.11: L'équation $10x^3 + x - 1 = 0$ admet au moins une solution dans l'intervalle $]0,1[$	
Q3.12 : La fonction f définie sur \mathbb{R} par $f(x) = -(x^2 + 3x + 1)e^x$ est une solution sur \mathbb{R} de l'équation différentielle $y' - y = (2x + 3)e^x$	

Exercice IV : Questions à réponse précise, Barème : 12Pts

	Répondre dans la colonne réponse	
Barème	Question	Réponse
2Pts		
1Pt		
1Pt	$\underline{\mathbf{Q4.03}}$: Calculer $\lim_{n \longrightarrow +\infty} \sqrt{x^2 + x + 1} - x$	i i a
2Pts	 Q4.04: On considère l'ensemble E = {a, b, c, d, e, f, g}. a) Déterminer le cardinal de l'ensemble P(E) des parties de E. b) Soient A = {a, b, d, f} un des sous ensembles de E, calculer le nombre d'applications de E dans A. 	
0Pt	Q4.05 : Soit g la fonction définie sur l'intervalle]1, $+\infty$ [$g(x) = (x+1)\ln(x+1) - (x-1)\ln(x-1)$ Calculer $g'(x)$	
1Pt	$\underline{\mathbf{Q4.06}}$: Calculer l'intégrale $\int_2^3 \ln\left(\frac{x+1}{x-1}\right) dx$	
2Pts	Q4.07 : Déterminer l'ensemble $f(I)$ dans les cas suivants : a) $f(x) = \frac{1}{x^2 - 1}$ et $I =]0, 1[$ b) $f(x) = \sin x$ et $I =]0, \pi]$	
1Pt	Q4.08 : Soit A le point de coordonnées $(1, -2)$ et \mathcal{D} la droite d'équation $3x + 4y - 1 = 0$. Calculer la distance de A à \mathcal{D} .	
1Pt	$\frac{\mathbf{Q4.09:}}{\left(1+i\sqrt{3}\right)^9}$ Calculer la partie réelle et imaginaire du complexe	e e
1Pt	$Q4.10$: Au fond d'un puits de $12\ m$ se trouve un escargot. Pendant la journée, il grimpe de $3\ m$. Mais chaque nuit, il glisse de $2\ m$. Il commence son ascension le 1er juin à 8 heures. Quel jour et quelle heure sortira-t-il du puits?	

Concours d'entrée en 1^{ève} année des années préparatoires de l'ENSAM Casablanca-Meknès

Epreuve de physique

20 juillet 2018

Physique II (Electricité) :

Exercice 1. On considère le montage électrique représenté sur la figure ci-dessous, il

- Un générateur de tension continue (E=12V).
- Un condensateur C.
- Une bobine d'inductance L et de résistance interne $r=I\Omega$.
- Un conducteur obmique de résistance R=5Ω.
- Deux interrupteurs K1 et K2.
- Dans toutes les parties on note :
 - iL(t) le courant dans la bobine.
 - uL(1) la tension aux bornes de la bobine.
 - in(t) le courant dans R.
 - uR(1) la tension aux bornes de R.

Partie A : A l'instant t=0 on ferme K, et on ouvre K. Sachani que $u_R(0) = 10V$ et $i_L(0) = 2A$.

- 1.1. Calculer les intensités des courants $i_R(0)$ et $i_R(\infty)$
- 1.2. Déterminer l'équation différentielle à laquelle obéit $u_{R}(t)$. 1.3. Calculer C sı à t=0.5ms u_R(t)= 3,7V.

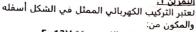
La solution de l'équation différentielle à laquelle obeit $i_L(t)$ est de la forme $i_L(t)=A+Be^{-\frac{t}{\tau}}$

- 1.4. Calculer A, B et L.
- 1.5. Donner l'expression de la tension u_L(t) en fonction de L

Partie B : on ferme Kz et on ouvre Ki.

- 1.6. Déterminer l'équation différentielle à laquelle obéit $i_L(t)$.
- Calculer i_L(∞) et u_R(∞).

Exercice 2 : On considère le même montage électrique de l'exercice précèdent, en remplaçant la bobine L par une autre bobine d'inductance L_0 et de résistance interne négligeable. U_R (tension aux bornes de R) est supposée constante.


Partie A : A l'instant t=0 on ferme K1 et on ouvre K1.

- 2.1. Donner l'équation différentielle à laquelle obeit iu(t) (courant dans la bobine Lo). 2.2. Sachant que $i_L(0)=I_m$, calculer la valeur $I_M=i_L(\alpha T)$ (avec $0<\alpha<1$ et T en s).
- 2.3. En déduire l'expression de $\Delta l = l_{M^+} l_{m}$ en fonction de E, L_0 , α et T.

Partie B : A l'instant t= aT on ferme K2 et on ouvre K1.

- 2.4. Exprimer iL(t) en fonction de UR, E, Lo, a, T et t
- 2.5. Sachant que $I_L(T)=I_{in}$ donner l'expression de U_R en fonction de E et α .

يزياء 2 (الكبرياء) التمرين 1:

- مكثف سعته C,
- وشيعة معامل تحريضها L ومقاومتها الداخلية α r=1.
 - موصل أومي مقاومته R=5 Ω.
 - قاطعين للتيار K₁ وK.

- ίι(t) شدة التيار المار في الوشيعة.
- u،(t) التوتر بين مربطي الوشيعة
- i_R(t) شدة التيار المار في الموصل الأمي R .
- un(t) التوتر بين مربطي الموصل الأمي R.

الحزء A: عند لحظة t=0 نغلق K₁ ونفتح K₂. علما أن 10V = (0) u_R(0) علما أن

1.1. أحسب (0)، و(∞)،i،

عدد المعادلة التفاضلية التي يحققها التوتر (u_R(t) .

 $u_R(t)$ =3,7V t=0.5ms إذا علمت أنه عند C إذا علمت المكثف المكثف

A حيث $I_L(t) = A + Be^{-\frac{1}{t}}$ حيث معادلة الثفاضلية التي يحققها التيار المعادلة الثفاضلية التي يحققها التيار

, B و τ=0.5ms قيم ثابتة

1.4. أحسب A B و L 1.5. أحسب التوتر (u،(t بدلالة t .

<u>الحزء B:</u> لغلق د K₂ ونفتح

1.6. حدد المعادلة التفاضلية التي تحققها شدة التيار (t)

1.7. أحسب (∞) وأر∞.

التمرين2:

لعتبر التركيب الكهربائي السابق بحيث لعوض الوشيعة L بوشيعة أخرى تحريضها مـا ومقاومتها الداخلية مهملة.

للعتبر أن التوتر عU له قيمة ثابتة

الحاء A: علد لحظة c=0 نغلق K1 ونفتح ي

21. حدد المعادلة التفاضلية التي يحققها التيار (١٤(٤) (النيار المار من ٤٥)

22. علما أن الدراع)، أحسب اω= ار(ατ) أحسب أر(0)=ام أن ألماد على الثانية)

23. استنتج ۱۰۰-۱۸۱ بدلالة م E.La و T

الحزء Β عند لحظة t= αT نغلق κ ونفتح

24 كتب (t) بدلالة E. U.La a.T و E. U.La

E و α قالم اله المسب أن(T)=ام ن الملا و E

QCM Physique II (Electricité) :

1. On réalise le montage représenté sur la figure suivante : Le condensateur C2 de capacité 10µF est chargé sous une tension de 20V. Lorsque K est ouvert un fréquencemètre indique la valeur 356Hz comme fréquence des oscillations.

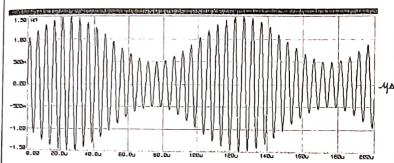
1.1. Calculer €0 l'énergie stockée dans C2

a. 2.10⁻³ J b. 4.10⁻³ J

À l'instant t=0 on ferme K le fréquencemètre indique 290,7Hz

1.2. Calculer la valeur de Ci a. 10µF b. 20μF c. 30µF d. 40nF

1.3. Si on garde K fermé pendant très longtemps, l'énergie électrique totale dans le circuit :


c. 10-3 J

b. diminuc a. est égale à Eo

c. augmente

10-4 J

2. On donne le chronogramme d'un signale modulé en amplitude

2.1. Quelle est la fréquence de la porteuse

10kHz

الى 356Hz

a. 10μF

نس*ار ی* a. εo

b. 20kHz c. 200kHz

d. 400kHz

2.2. Quelle est la fréquence du signale modulant a. 10kHz b. 20kHz c. 200kHz

2.3. Que vaut l'indice de modulation a. 100% b. 200%

d. 50%

d. 400kHz

فيزياء 2 (الكهرباء) QCM 1. نعتبر التركيب الكهربائي الممثل في الشكل بحيث: قمنا بشحن المكثف ذي السعة **C₂** تحت توتر V20 عندما كان قاطع التيارK مفتوحا اشار مقياس التردد

(a.) 2.10⁻³ J

b. 4.10⁻³ J

1.1. أحسب الطاقة وa المخزنة في المكثف C₂ c. 10-3 J d. 10-4)

عند تُحِظة t=0 نغلق K. يشير مقياس التردد الب 290,7Hz 1.2. أحسب سعة المكثف C₁

b. 20µF c. 30µF

d. 40µF

1.3. إذا تركنا K مثلثا لنثرة زمنية طريلة، فإن الطاقة الاحسالية

تتزايد .c (d.) منعنة

2. يشير الشكل اسفله الى منحني

a. 10kHz b. 20kHz

b. 200%

a.) 10kHz b. 20kHz

a. 100%

(c.) 200kHz c. 200kHz

c. 25%

2.1. أوجد تردد الموجة الحاملة d. 400kHz

2.2. أوجد تردد الإشارة المضمِّنة 400kHz

2.3. أحسب نسبة التضمين 50%

20 Juillet 2018

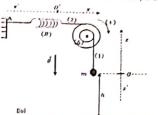
Durée 2h30

Physique I (Micenique) :

On se propose d'étudies dans cet exercice le mouvement d'une bille ponctuelle de masse III. On note g la nerme du champ de pesanteur eupprob constante. La bille est attachée à une poulle à deux genges de rayons t_1 et $t_2(t_1 < t_2)$, de noment d'inettie J_A , pouvant tournet autour d'un axo (A) horizontal, fixe of passant par son centre d'incrite. Les fils (1) et (2) sont indilatables, de masses regligeables et ne glissent pas sur les gorges de la poulie. Une extrémité du resort (II) de raideur k, de longueur à vide l_0 et de masse régligeable est fixe au point Λ . On pose $\Delta l_0 = l_0 - l_0$ avec l_0 in Longueur du vide l_0 et de masse régligeable est fixe au point Λ . On pose $\Delta l_0 = l_0$ avec l_0 in Longueur du vide l_0 et de masse régligeable est fixe au point Λ . On pose $\Delta l_0 = l_0$ avec l_0 in l_0 longuesar du ressort à l'équilibre Le système (bille, poulle, ressort) considéré est représenté sur la Cartlel :

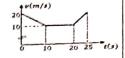
Epreuve de physique

On néglige les frottements dans cette partie


- Déterminer l'allongement ΔI₆ du ressort à l'équilibre du système.
- On écarte la bille de sa position d'équilibre vers le bas d'une distance de 5 cm et on l'abaratonne sans vilesse initiale. L'instant initial correspond su passage de la bille par la position d'équilibre pour la première fois vers le bas avec une vilesse de 0.25 m.s⁻¹. Determiner
- 2.1. L'expression de l'énergie cinétique (E_c) du système
- **2.2.** L'expression de l'énergie potentielle (E_p) du système. **2.3.** L'équation différentielle du mouvement de la bille en se basant sur l'étude énergétique.
- **2.4.** Les grandeurs z_m et φ sachant que l'équation horaire du mouvement de la bille s'écrit comme suivant : $z(t) = z_m cos(\omega_0 t + \varphi)$ Calculer la période propre T₀ du mouvement de la bille. A.N.

Partle 2:

A l'instant 1, correspondant su passago de la bille par sa position d'équilibre pour la douxième fuie vers le has, celle-ci se détache du fit (1) en chutant vers le soil d'une hauteur h. On se limite au cas où la poussée d'Archimède est négligenble. Au coura de son mouvement, la bille est sonmise à une force de frottement visqueux


de type $l = -\alpha \vec{v}$ avec α constante positivo. Déterminer

- 4. L'instant 12
- 5. L'équation différentielle en vitesse du mouvement de la bille
- La vitesse limite de la bille (vi). (Régime permanent)
- L'instant t, lorsque la bille touche le sol.
- La durée de chute de la bille
- L'équation hornire z(t) mouvement de la bille

(M l'hysique l (Mécanique) !

- 1. Le diagramme des vitesses d'un mobile en mouvement rectiligne est le suivant :
- L'équation du mouvement durant la 3 étape [20s, 25s]

- v = 2t b. v = 2t + 10 c. v = 2t 30 d. v = 2t + 30
- 2. Le système des équations hornires d'un point matériel en mouvement est le suivant : $\begin{cases} x = -1 + 2\sin(4t) \\ y = 2 + 3\sin(4t) \end{cases}$
- . La trajectoire du mouvement du point matériel est :
- c. Droite d. Parabole a. Cercle b. Ellipso
- 3. On considere un mobile arrivant avec une vitesse constante VA sur un rail de forme d'un quart de cercle (AB) de rayon r se trouvant dans un plan vertical. Les frottements sont négligeables.
- 3.1. L'intensité de la force T exercée par le rail sur le mobile en M

فيزياء | (الميكانيك) OCM

 $d.\ v=2t+30$

مسار حركة النقطة المادية هو:

 $y = 2 + 3\sin(4t)$

a.
$$T = m\left(g + \frac{v_A^2}{r}\right)$$
 b. $T = m\left(3g\cos\theta + \frac{v_A^2}{r}\right)$
c. $T = m\left(g(3\cos\theta - 2) - \frac{v_A^2}{r}\right)$ d. $T = m\left(g(3\cos\theta - 2) + \frac{v_A^2}{r}\right)$

- 3.2. La condition nécessaire pour que le mobile arrive au point B est :
- $a.v_A \le \sqrt{2gr}$ b. $v_A \ge \sqrt{2gr}$ c. $v_A \ge \sqrt{3gr}$
- 4. Une balle de tennis de rayon r'est lâchée en chute libre sans vitesse initiale d'une hauteur z₀. Après chaque percussion (Choc) avec le sol, la balle remonte à une certaine hauteur et redescend. On note que la balle perd la moitié de son énergie cinétique qu'avait juste avant la percussion.
- 4.1. L'altitude z_n atteint par la balle après n percussions avec le sol est :

b. v = 2t + 10

. مستقيم

يصل متحرك بسرعة آل الى سكة عبودية على شكل ربع دائرة مركزها c و شعاعها ج نهمل الاحتكاكك.

b. $z_n = \frac{z_0}{2^n}$ $a. \quad z_n = 2^n z_0$

20 25

ل ثلجم

- d. $z_n = \frac{2}{z_n^n}$ $c. z_n = 2 z_0^n$ 4.2. Sachant que $z_0 = 2.56$ m et r = 2 cm, le nombre de percussions au bout duquel la balle

خلال المرحلة الثالثة [20s, 25s] للمعادلة للزمنية للمتحرك هي :

1. التمثيل المبياتي لسرعة متحرك في حركة مستقيمية على الشكل الاتي :

2t + 10 (c. p = 2t - 30) 2t + 10 (c. p = 2t - 30) 2t - 3t (d. 2t - 2t) (d. 2t - 2t) (d. 2t - 2t) (e. 2t - 2t)

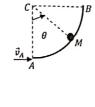
c. v = 2t - 30

(ل) المليلج

s'arrête de rebondir (remonter) est : a. n = 2b n = 4c. n = 7d n = 10

فرزياء (الميكانيك)

φν(m/s)


 $a. \quad v = 2t$

من خلال هذا التمرين سنتم دراسة حركة نفطة سادية كالنها 171, نسمي إز شدة مجال الثقالة الدي فعتبره ثابنا, المكرية مرتبطة ببكرة مكونة من حاتكون شماعيهما $_{T}$ و $_{T}$ $_{T}$ $_{T}$ عرم الحسور ها $_{A}$ أقابلة الدوران حول محور ثابت و الخي يمو بمركز نظها. الخيطان (1) و (2) دوا كتلة مهملة و غير فالبون للاحتداد و V ينزلقان حول محوريا البكرة طرف الدارس (1) دو التابة M وطول اصلي $_{B}$ و كتلة مهملة ملبت في النقطة M بضمن $_{B}$ M حول M حول المنابض عند توازن المجموعة M وطول اصلي $_{B}$ و كتلة مهملة ملبت في النقطة M منسنع M حول M حول حول المجموعة M والمتحدود عند توازن المجموعة Mالمجموعة المدروسة (المنابض البكرة الكرية) ممثلة في الشكل 1.

- الجزء [لهمل الاحتكاكات في هذا الجزء.
- 1. اوجد اطلة النامض Δl₀ عند توازن المجموعة. 2. نزيع الكرية عن موصع توازنها الى الأسئل بمسافة 5 cm و نطلقها بدون سرعة بدئية. نعتير اللحطة البدنية لعطة 2. نزيع الكرية عن موصع توازنها الى الأسئل بمسافة اله مزوز الكرية بموضع توازنها لأول مرة تُحَوّ الأمثل بسر عة قدر ها أ = 0.25 711, 8 أرجد ٪
 - ي المجموعة (E_c) للمجموعة 2.1
- 2.2 تعير طاقة الرصح $\binom{7}{2}$ المجموعة. 2.3 المعادلة التغاضاية لحركة الكرية من غلال الدراسة الطاقية. 2.4 المغاربة χ χ علما أن المعادلة الزمنية لحركة الكرية نكتب على الشكل المنافقة المراجعة الكريد الكريد الكريد المنافقة المراجعة المراجعة المراجعة الكريد الكريد المراجعة المراجعة المراجعة الكريد الكريد المراجعة المراجعة الكريد الكريد الكريد الكريد الكريد الكريد المراجعة الكريد الكريد الكريد الكريد المراجعة الكريد ال $z(t) = z_m cos(\omega_0 t + \varphi)$
 - 3. احسب الدور الخاص To لحركة الكرية. (ت.ع)

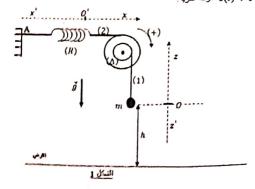
لمي لعظة 2₂ العناسبة لعزوز الكزية بعوضت تواؤنها للعزة الثانية نعو الأسنل ينقطع القيسل *(1) افت*صفط الكزية من لزنتاج 1/ نعيز دافعة ارخميدس مهملة في هذه الدراسة. خلال حركتها تكون الكرية تحت تاثير فرة لحنكك مائعة تعبير ما لاي = أر (ع) ثابلة موجبة) اوجد :

- 4. اللحظة 2. 5. المعادلة التفاصلية لسرعة الكرية.
- - المعادلة الزمنية (z(t) لحركة الكرية.

3.1. شدة القرة التي تطبقها السكة على المتحرك هي :

a.
$$T = m\left(g + \frac{v_A^2}{r}\right)$$
 b. $T = m\left(3g\cos\theta + \frac{v_A^2}{r}\right)$ c. $T = m\left(g(3\cos\theta - 2) - \frac{v_A^2}{r}\right)$
(d. $T = m\left(g(3\cos\theta - 2) + \frac{v_A^2}{r}\right)$

3.2 لكي يصل المتحرك الى النقطة B وجب ان يتحقق الشرط الاتي :


a.
$$v_A \le \sqrt{2gr}$$
 b) $v_A \ge \sqrt{2gr}$ c. $v_A \ge \sqrt{3gr}$ d. $v_A \le \sqrt{3gr}$

لطلق كرة تتس شعاعها ٣ بدون سرعة بدنية من ارتفاع 20 في سقوط حر بحد كل اصطحام الكرة نرتفع الى
مسئوى معين ثم تنزل بعد كل اصطحام تفقد الكرة نصف الطاقة الحركية المنوفرة لديها قبيل الإصطدام.
 ١ ١٠ الاستخار على الله على المسئول الإصطدام.

$$a. z_n = 2^n z_0$$
 $b. z_n = \frac{z_0}{z^n}$ $c. z_n = 2 z_0^n$ $d. z_n = \frac{2}{z_0^n}$

4.2. علما ان
$$z_0=2.56\,m$$
 و $z_0=7$ عدد الإصطدامات التي من خلالها تتوقف الكرة عن الإرتفاع عن معلم الأرض هو :

a.
$$n = 2$$
 b. $n = 4$ (c) $n = 7$ d. $n = 10$

FORM ANY PROPERTY OF ANY AT DEFINES OF CHARLES OF CASABLANCE	NOM	DURS D'ENTREE EN T ^{URE} ANNÉE DES ANNE L'ENSAM	ES PREPARATOIRES DE Epreuve de Mathématique 20 Juillet 2018 Durée : 2h00	الله المواجعة المرادة المواجعة	A COLLEGE OF STREET
DIRECTIVES:				-	

- L'épreuve de mathématique = questions à réponses précises (1/2 et 2/2)
- Répondre sur la feuille « fiche des réponses » (2/2)

1		une réponse fausse ou pas de réponse : Opts	-		
Q1	$Q1 = \lim_{n \to +\infty} \left(\frac{n}{n^3 + 1} + \frac{2n}{n^3 + 2} + \frac{3n}{n^3 + 3} + \dots + \frac{n \cdot n}{n^3 + n} \right)$	$Q1 = \lim_{n \to +\infty} \left(\frac{n}{n^3 + 1} + \frac{2n}{n^3 + 2} + \frac{3n}{n^3 + 3} + \dots + \frac{n \cdot n}{n^3 + n} \right)$			
02	Soit $n \in \mathbb{N}$. On pose $u_n = \frac{1}{(2n+1)(2n-1)}$ et $S_n = u_0 + u_1 + \dots + u_n$. Calculer $Q_2 = \lim_{n \to \infty} S_n$	$S_n = u_0 + u_1 + \dots + u_n$ و $u_n = \frac{1}{(2n+1)(2n-1)}$ می اال نصع $Q_2 = \lim_{n \to \infty} S_n$			
Q 3	Soit g définie par $g(x) = \ln\left(\frac{2\sqrt{2}x}{1+x^2}\right)$. Est-ce que la courbe de la fonction g admet un point d'inflexion ? si oui, déterminer son abscisse.	بعثير الدالة g المعرفة بما بلي: $g(x) = \ln\left(\frac{2\sqrt{x}x}{1+x^2}\right)$. هل منحتى الدالة g يقبل نقطة المطاف g إذا كان الحوات بعم، يجب تجديد أفضولها.	-		
Q4	Soit f la fonction définie par $f(x)=\ln\frac{e^x-3}{e^{xx}+7}$ et de courbe (C_f) . Déterminer la nature de la branche Infinie de (C_f) au volsinage de $+\infty$?	نعتبر الدالة f المعرفة بما بلي: $\frac{e^{x}-3}{\log x}$ $f(x)=\ln\frac{e^{x}-3}{\log x}$. حدد طبيعة الغرع اللانهائي ل (C_f) بحوار (C_f) بحوار (C_f)			
Q5	Solt h la fonction définie par $h(x) = \ln(x + \sqrt{x^2 + 1})$. Calculer $h^{-1}(0)$. Calculer la limite :	$h^{-1}(0)$ عنبر الدالة h المعرفة بما يلي: $h(x) = \ln(x + \sqrt{x^2 + 1})$.	+		
Q6	$Q_6 = \lim_{x \to 0} \frac{\sqrt[3]{x+8} - 2}{x}$	$Q_6 = \lim_{x \to 0} rac{\sqrt[3]{x+8}-2}{x}$			
27	Soient $a \in \mathbb{R}$ et a une solution de l'équation $z^2 - 2\cos(a)$ $z = -1$. Pour tout $n \in \mathbb{N}$, calculer $Q_7 = a^n + \frac{1}{a^n}$ Soient $a = i\sqrt{3}$ et $b = \sqrt{3}\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$ et soit $\lambda = r(\cos\theta + i\sin\theta)$ avec $\theta \in]0, \pi[$ et $r > 0$. Déterminer r et θ cours and $\theta = 1$.	لبكى α عددا حقيقيا و a حلا للمعادلة a $z^2-2\cos(\alpha)$ المعادلة a عددا حقيقيا و a حلا للمعادلة $Q_7=a^n+\frac{1}{a^n}$			
	ordre, les 3 termes consécutifs d'une suite géométrique.	$c>0$ رو $a=i\sqrt{3}$ بحيث $a=i\sqrt{3}$ رو $b=\sqrt{3}$ ($a=i\sqrt{3}$ بحيث $a=i\sqrt{3}$ بحيث $a=i\sqrt{3}$ حدد $a=i\sqrt{3}$ حدد $a=i\sqrt{3}$ و من الاعداد العقدية $a=i\sqrt{3}$ و $a=i\sqrt{3}$ بحيث الاعداد العقدية $a=i\sqrt{3}$ و $a=i\sqrt{3}$			
9	Calculer la limite : $Q_{9} = \lim_{x \to +\infty} \left(\tan \frac{\pi x}{2x + 1} \right)^{\frac{1}{x}}$	لمتنالية هندسية. أحسب النهاية: $Q_g = \lim_{x \to +\infty} \left(\tan \frac{\pi x}{2x+1} \right)^{\frac{1}{x}}$			
10	En utilisant l'intégration par parties, calculer l'intégrale suivante : $Q_{10} = \int_0^{\frac{\pi}{2}} x \cos^4 x \sin x dx$	استعمال المكاملة بالأجزاء، أحسب النكامل النالي: $Q_{10} = \int_{0}^{\frac{\pi}{2}} x \cos^4 x \sin x dx$	1		
	Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^1 t^n \tan t \ dt$. Calculer $Q_{11} = \lim_{n \to \infty} n I_n - 1$. On considere l'équation différentielle suivante :	$Q_{11}=\lim_{n o\infty}nI_n-1$ لكل $n\in\mathbb{N}$ ، نضع: $I_n=\int_0^1t^n\tan t\ dt$ أحسب النهاية	1		
2	$y'' - 4y' + 20y = 0 \text{ avec } y(0) = 2 \text{ et } \int_0^\pi y(t)dt = 0$ Calculer $y\left(\frac{n}{2}\right)$. (On donne $\int_0^\pi e^{at} \sin bt' dt = -\frac{be^{a\pi}\cos(b\pi) - ae^{a\pi}\sin(b\pi) - b}{a^2 + b^2}$)	نعتىر المعادلة التفاصلية التالية: $\int_0^\pi y(t)dt = 0$ و $y(0) = 2$ و $y'' - 4y' + 20y = 0$ $y'' - 4y' + 20y = 0$	1		
3 S	oit \mathcal{S} l'ensemble des solutions de l'équation : $\sin(9x) + \sin(5x) + 2\sin^2 x = 1$ éterminer $card(\mathcal{S} \cap]-\pi, 0[)$.	$(\int_0^\pi e^{at} \sin bt \ dt = -\frac{be^{a\pi} \cos(b\pi) - ue^{a\pi} \sin(b\pi) - b}{a^2 + b^2}$. $y\left(\frac{\pi}{2}\right)$. $y\left(\frac{\pi}{2}\right)$ نعتبر المعادلة النالية: $\sin(9x) + \sin(5x) + 2\sin^2 x = 1$	1		
R	ésoudre, dans $\left]0, \frac{\pi}{2}\right[$, l'inéquation suivante : $2(\sin x)(\tan x) - 3 > 0$	حدد عدد حلول هذه المعادلة في المحال] $-\pi$, 0 حدد عدد حلول هذه المعادلة في المحال] $-\pi$, 0 المتراجحة التالية:	1		
le b	ne boite A contient 3 jetons numérotés $1,2,4$. Une boite B contient 6 jetons unérotés $0,3,3,5,5,5$. On tire au hasard un jeton de A , on lit le nombre a porté sur jeton, puis on remet ce jeton tiré dans A . On effectue la même opération pour B , soit le numéro du jeton tiré de B . A ce couple (a,b) on associe le point $M(a,b)$. Quelle	$2(\sin x)(\tan x) - 3 > 0$ تحنوي علية A على B بيدقات مرقمة B ، B ونحتوي علية B على B بيدقات مرقمة B ، B ، B ونحتوي علية B . B	1		
So	t la probabilité pour que $M(a,b)$ soit situé sur l'ellipse d'équation $\frac{x^2}{16} + \frac{y^2}{12} = 1$. It n un nombre entier naturel impair supérieur ou égal à 3 . Une boite contlent n ules blanches numérotées de 1 à n et elle contlent $n+1$ boules noires numérotées	$\frac{x^2}{16} + \frac{y^2}{12} = 1$ الإهليلج ذو المعادلة $1 = \frac{1}{16} + \frac{y^2}{16} = 1$ كرة بيضاء			
de Soi est	$1 \ a \ n+1$. On tire au hasard et simultanément deux boules de la boite. It p la probabilité de l'évènement : « obtenir deux boules dont la somme des numéros n ». Quelle est la valeur de n pour laquelle p est maximale.	مرقمة من 1 إلى n وعلى $1+n$ كرة سوداء مرقمة من 1 إلى $1+n$ كلي مرقمة من 1 إلى $1+n$ كلي وآنيا كرتين من العلبة.			
	ent a et b des entiers. Déterminer tous les couples (a,b) tels que : $7^a - 3 \times 2^b = 1$	البكن q اختصار المحدد المح	1		
droi l'int	considère, dans l'espace, les points $A(1,0,1)$, $B(0,1,0)$, $C(0,1,1)$ et $D(1,1,0)$ et la ite (Δ) qui passe par D et dont le vecteur directeur est $\vec{u}(1,1,-1)$. Déterminer ersection du plan (ABC) avec la droite (Δ) .	نعتبر في الفضاء النقط: $A(1,0,1)$ و $B(0,1,0)$ و $B(0,1,0)$ و المستقيم $\Delta(1,0,1)$ و المستقيم $\Delta(1,0,1)$ من $\Delta(1,0,1)$ و المستقيم $\Delta(1,0,1)$ من $\Delta(1,0,1)$ و المستقيم $\Delta(1,0,1)$	1		
	considère, dans l'espace, les points $A(2, -3, -3)$, $B(3, -2, 2)$, $C(1, 1, 0)$ et $(1, 0, -1)$. Calculer le volume de $DABC$.	نعتبر في الفضاء النقط: $A(2,-3,-3)$ و $B(3,-2,2)$ و $C(1,1,0)$ و $C(1,1,0)$. احسب $A(3,-3,-3)$. احسب $A(3,-3,-3)$. احسب $A(3,-3,-3)$	1		
Le pe 15 a Quell	ectangle représenté est formé de 9 carrés. est t carré noir a 1,5 cm de côté et le carré hachuré cm de côté. es sont les deux dimensions L (longueur) et (eur) du rectangle ?	يتكون المستطيل الممثل جانبه من 9 مربعات. L طول هذا المستطيل وليكن L عرصه. طول ضلع الأسود الصغير هو L وطول ضلع الأسود الصغير هو L وطول صلع المربع المحدش هو L .	20		