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Calcul de limites :

‘ Reégle de I'Hospital

Soit et g deux fonctions continues sur un

m
intervalle [¢,d] telles que:
L. Iim f(x)=0et limg(x)=0ou ae€le.d|
2. f(x)etg'(x) sont continues en x =«
3. g'(x) %0 Vx€le.d[\{a}
Alors lim e . lim J ,(,X)
X—a g(’\‘) X—a g ( _\‘)
51 cette lumite exaste ou est infine
Exemple :
= _ -
Smeions = fonn X 28>“ Sast
32— 2 —s a CmS=-26 37
= —= ==
=2-a4 -
=>-9



héoréme de comparaison

Il est inutile d'insister sur linterét du theoreme suivant tant son usage est frequent ! Ses
denominations (théoréme sandwich ou théoréme des gendarmes) resument bien la situation.

Theoreme
Soient (u,) , (v,) et (w,) trois suites reelles verifiant :
1. (VneN) u, <v, <wy ,
2. limuy, = limw, =1 ;
n—co n—co

alors la suite (v,) converge et a pour limite [ .

héoreme de comparaison

Le theoréme suivant montre la proprieté dite de prolongement des inegalités : il exprime en
effet que si deux suites convergentes sont comparables leurs limites verifient la méme
inegalite.

Théoreme

Soient (u,) et (v,) deux suites réelles verifiant

1. (VneN) u, <v,
2. limu, =1 et limv, =05
n—oo n—oo

onaalors I, <5 .

Ps : théoreme de comparaison(gendarmes) est aussi pour les fonctions.

COS X

Exemple : Soit f (x)=—x- . Calculer lim f(x)
xX—> 40
Pour touxx € IR ,ona: -1 <cosx<1,donc —is%i

; 1 ’
Or lim (-=)= lim
X = 0 X X = +o0

E héoréeme des accroissements finis

=0 . D'apres le théoréme des gendarmes, on déduit que lim f(x)=0
X =+

1
x

Théoréme

Soit f une application de lintervalle [a,b] dans R vérifiant les conditions
suivantes :

1. f est continue sur [a, b] ,

2. f est dérivable sur la, b[ .

Alors il existe ¢ €la, bl tel que f(b)— f(a) = (b—a)f’ (¢c)




Changement de variable pour calculer les limites :

J, Genéralsaion

L mithode st donc "simple", i faut faive un changement de variable w = g{z) qui améne done f(z) = Foglu) oit Fet g
sont choisi pour avoir des nifes cones au voisiages qui nous intéresent,

L théortmede I Linite d'une fonction composée permet alors de concure, Mais quel eI exactement ?

S0t f et  deux fonctons defnis respectvement s g(1) f 1. oit € [ et b€ g([),
fimg(z) =

Ao llildl: 1|7 l@zfog(x) =
P ?

2z 2 %
- o w8
P

Exemple: =g ~

WA

On effectue ensuite le changement de variable suivant :
X= 22e

.»Qll.u X = A
R )
D ot - /Q&_e'_::*bdac_kb_z._x—:-sb daoc _/E—.ﬁa-b‘.
OU . yx3are X rHo x - -
B G- ) R €
Exemple: :-;i
_/&n" (&—/‘):O’
> —3A - —
= > .A } 5% d.uabtc O X Y
-de\l; J‘(ﬂ—“):.-b
- A
> oA
(a.-A)-LC*")- x Ao x cavec) X= 22 - A
{.L— X o OF
»w -3 A
> -

duic B dlocwo e &@A),Ec;-,«)eo

X 20
x> A



Les équivalences et le calcul de limites :

[ 3\
DEFINITION 3 : "Est équivalent a ...”
On dira que f et g sont équivalentes au voisinage du point a ssi :

f(z)

—_—

(I((‘) r—a

Notation : f(z) ~ g(x) ou f(z) ~

\

g(z) ou encore f(x) ~ g(x) s'il n'y a pas d’ambiguité.

{0

Equivalents classiques pour les suites

Sty === 0 alors :
N=+00
2
- 1y,
siNlty,  ~ Uy manuy ~ iy [T=cosuy] =~ =—
= +00 Tl—+00 fI—+00 2
In(l+un) ~ un e =1] ~ up [ +un)® =1 ~  auy faeR’),
=+ JI—=+00 N—=+00

Equivalents classiques pour les fonctions en 0

In(l+x) ~ x
x—0
siny ~ x tany ~ x shx ~ x thxy ~ x
x—0 x—0 x—0 x—0
arcsinxy ~ x arctanx ~ x argshx ~ x argthy ~ x
x—0 x—0 x—0 x—0

s Ex 1 Bl Facile I
En utilisant les équivalents, déterminez la limite de la suite de terme général

Uy, = nln

@2 1| Ecrivons pour n € N :

n 2
Unp=—In{1+
2 n—1
2 . 2 2 2
Comme —— — 0, In(1 + ~ ~ — et donc u, — 1.
n—1 n—1 n—1 n



Les Méthodes des études de la convergence :

Théoréme. Regle de d'Alembert. Soi (u, ) une suite & termes positifs. On suppose que fa suite [i‘] est définie pour n assez grand et a une limite L
L

quand n tend vers 4w . Alors

-8 L <1, la série de terme général u, est convergente ;

-8 L.>1, la série de terme général u, est divergente.

Theoréme. Régle de Cauchy. Soit (u,,) une sute & termes positis. On suppose que fa sue (‘JZ ) aune fimite L quand n fend vers +co. Alors :

-81L <1, la Série de terme général u, est convergente

-§1L >1, o série de terme généralu, est dvergente.

»
Série de terme général i, = ll (xeR)
2!

; , . 5 u 1 &
Il s'agit d’'une série & termes tous strictement positifs. On a : %L = — = . On en
u, (+D)'x" an+l

»

déduit - 1

LR

La série est convergente (on retrouve le fait que le terme général u, = il {(xe R:) tend vers 0).
2!

On peut méme calculer la somme de la série : en appliquant la formule de Taylor-Lagrange (cf.

chapitre sur les fonctions de classe C”) a la fonction exponentielle sur l'intervalle [0,x]. pour tout x
réel strictement positif, on obtient I'égalité :

k +o x!!
g" = lim Z— cest-a-dire, &' =3 —.

x—)mk_o . 0 n!

On reviendra sur ce point de vue dans le chapitre sur les séries entiéres.

Série de terme général ,, _ (_»

"\n+l] (nal)

1
Ona: ( e s
2+1 1 5. l]
22
Onendéduit: m »fu, =— <1. La série est convergente.



BinOme de Newton :

BINOME DE NEWTON N°1

(I+])n s mn ]kIn—k

& OLJEN

P lived fn /M [ AMedd

(a + &))" =
G la*s P cla* bl iela*  EdE e las =

= a*b? + i~ eyl 3 BT e o 2 a®d® =
0 1 2 2z

z C:ax—kbk s Z [:Jax—kbk

L=D k=0

(a+b)? = a?+2ab +b?

| (a+b)® = a®+3a%b+3ab* +b?

(a+b)* = a‘+4a’b+6a’h? +4ab® + b

| (a+b)® = a’+5a%h +10a°b?+ 10a%b® + 5ab* + b®
(a—b)® = — 2ab + b?

(a-b)® = a®-3a’b+3ab® —b°

(a—b)* = a*—4a’b+6ab? —4ab® + b

(a—b)® — 5ab + 10a®b? — 10a?%b® + 5ab* — b°®



Fonction Arctangente :

E onction Arctangente

Definition
- - Yy = p-1 e Jr ]r
Soit f la restriction de la fonction tangente a lintervalle | — —, —[.

25
T T
f:]—-i-,-i[—-)R

X — tan x

(ST

T
La fonction f est continue et strictement croissante sur lintervalle | — —, —2-[.

D'aprés le théoréme dit " des fonctions réciproques " on peut affirmer que

T T - = —
fA=3.35D =1 lim f(o. lim f(ol=R

A —— —

2
> T T
et que f établit une bijection de ]| — 5> 5[ sur R,
La fonction réciproque de f est appelée Arctangente et notée x +— arctan x. C'est
T T
une bijection de R sur lintervalle | — 5 5[.
T T
arctan : ® 5| — —. —
1 > 2[

X — arctan x

- iz e T 5
Pour tout réel x arctan x est donc l'unique élément de lintervalle ]| — E’ —[ quia

2

pour tangente le réel x.

= Dérivée

o
La fonction f est dérivable sur | — > —2-[ et f/(x) =1 +tan’x. La dérivée de f ne

“ n. Ll -
s'annule pas sur | — =, =[. la fonction Arctangente est donc déerivable sur

252
1 B 1 o
Fi(f~'(x)) 1+tan2(arctanx) 1+ x2°

et Yxe R (arctan)’(x) =

On a donc

Yx e R (arctan)’(x) = T

Remarque

= 2 ”. ] s Jr ]r
La notation y = arctan x peut se lire : "y est l'arc (de lintervalle ] — 3’ -5[) dont
la tangente vaut x”

Par definition

a n

E_—’—

rER =) yEl 25
y = arctan x tany = x




Partie Entiere :

Proposition 3.
Soit x € R, il existe un unique entier relatif, la partie entiere notée E(x), tel que :

E(x) < x<E(x)+1

Exemple 1.
» E(2,853)=2, E(n) =3, E(—3,5)=—4.
¢ E(x)=3 ¢ 3<x<4.

Nombres complexes et la formule de Moivre/Euler :

FORMULE de MOIVRE et d'EULER

Formule de Moivre (vers 1730)

vn (cosB + i.sinB®)™ = cosn.0 +i.sinn.6

n étant un nombre entier

Note: parfois cos @ + sin 8 est noté cis @

Ecriture avec parenthéses, si confusion possible
(cosO +i.sin@)™ = cos(n.O) +i.sin(n. )

Ecriture exponentielle

(ei.e)" — eni®

Formules d'Euler (Rappel)

eia = e—ia
2

cosax —

eia = e—ia
sinaa=——"—
273

La formule de De Moivre serait plutét due a Euler (1748) qui I'a énoncée sans
vraiment la démontrer.



Ll = r (cos 6 +isin )

| = r®(cosn6+i sinn6)
(cos® +isin®)* = cos (n 0) + isin (n 6)
Inz = Inr+i6
(eie)" — el m0)

(cosO +isin0) ( cosO' +isinb') = cos(0 + 0') +isin(0 + 0')

Téléscopages et les sommes usuelles :

Sommes et produits téléscopiques

Actualisé: 6 février 2017
vers. 1.0.0

Souvent on peut transformer une somme ou un produit pour leur donner une structure simple.
Une somme de la forme

Y F(k+1) - F(k)
k=1

est appelée somme téléscopique. évidemment la majorité des termes s’annule et la somme vaut
F(n + 1) = F(1). De méme un produit de la forme

" Flk+1)
H F(k)

k=1

est un produit téléscopique. Sa valeur est F'(n + 1)/F(1). La difficulté majeure dans ces cas-la
est la transformation de 1'expression donnée dans la forme souhaitée. Voici quelques exemples.

gn(nl—l—l)zg(%_nlj)
G- G-p -
=1+(—%+%)+(—%+%)+---=1.

9




cl\’]t'
I

> l

(k+ a)( k+a+1) g( +a+1)
-l
a

+a
__1_) (1 5 1)+...
a+1 +2
1
o+

Exemple
Calculons
-~ 1
11 (1 + E)
k=1
Ona
5 1 Tk+1l 5 3 nil
H(1+E) :HT:TXEX”'XT
k=1 k=1
Apres simplification
H(1+%) =2 —n+1
k=1

Remarque
On vient en fait de croiser un produit télescopique :

n

u .
I I —Etl _ Ben (rapport des extrémes)
=0 Uk "

Exemple

Calculons P = H (1+ a2k) pour a € C\ {1}.

P=(1+4a)(1+a®)(1+a*)(1+4a%...(1+a*)
En exploitant (1 — a)(1 4+ a) = 1 — a2, on obtient
(1—a)P=(1—a?)(1+a®)I+a?)...(1+a%)
En répétant le procédé
(1—a)P=1—a*"

et finalement
gni 1

P: 1-a

1-a

cara # 1.

10



Sommes usuelles :

Dans tout ce qui suit, on considére n € N.

1. somme des premiers entiers naturels : ki=

2. somme des premiers carrés d’entiers naturels : E k?

k=0

(n+1)(2n+1)

3. somme des premiers cubes d’entiers naturels : E k=

k=0

]

Proposition (lien somme/produit)

eln Huk =Zln(uk);
® cxp Zuk =Hexp(uk).

k=0

Proposition

ZukJerk —Z ug + Vg);
k=0

n n n
[T e x Lo = T v
k=0 k=0 F=0

Proposition

n n
Z Al = )\Z Uk
k=0 k=0

n T

H Ay = A H e
k=0 k=0

Soient (u,,) et (v, ) deux suites d'éléments de K. Alors :

Soient (u,,) et (v,) deux suites d'éléments de K et A € K. Alors :

11



Dénombrement et les permutations :

Permutation avec répétition : Soit £ un ensemble de cardinal k.

Une permutation de n éléments de F avec ny,...,n; ré-
pétitions est un n-uplet d’éléments de E dans lequel cha-
cun des éléments x1,. ..,z de E apparait respectivement
ni,...,ny fois tels que ny + ...+ np = n.

Proposition : Le nombre de permutations de n éléments avec nq,...,ny

P R e ’ 1y n
répétitions est égal a P, (ny, na, ..., ng) = < )
ni,Nay.e..,Nk
n!

ningl..ng!

Exemple : Combien de mots de 3 lettres peut-on former avec deux

lettres de A et une seule lettre de B ?

3l 3-21 3 _ 3/ AABBAA ABA
1121 1121 1

12



Probabilité conditionnelles et I’arbre :

Qt::‘?des —— Evénements{ On a alors : P (B) =p (B)
non impossibles.p () B B mA
’ p (BNA)
A or: py(B)="—
vy, AN p (A)
BB Bﬁé Donc, B est indépendant de A est équivalent a
N B pfq(é) B B(\A p (BﬁA)
p (A) p (B) o
A
p (A)
BB BAA
RSB BOA L o p (B)xp (A)=p (BA)
D
0,08 Probabilité totale -
- A p(D) = P(An D)+ P(B N D)

= 0,92 20,65 + 0,95x0,35 #:0,930'55_!
Probabilité conditionnelle :
. P(an D) _ 0,65x0,92

\035 po05_— P > _
g o4 = 8D

0,643
0,9305 ﬂ——l
0,95 D
Probabilités conditionnelles et arbre pondérd
Uy A e se propage dans we population. On sait gue )
ey Vs AM7

L UMy A ot Vostama

[

L vt e L.!L BTSSP

v/ Al f 2 )
AV )zC L D M)z

NS n(M
\ 0,92 )
N

- 0.0
Tt

]
-/ / e raa\.
J opsva G Jouvwuh Ao DA UL AJ) A

PR bbe 420
b in : reumuly [ ™ 773*"-:‘».\’V) U%

- — " 3 -

¥ = 0,08 P 0\1' s = D

0 o
-
4
>
O
o
N N N
agle o
Q ¢ O
o\ n o
¢
0
()
¥
f
»! >
“o\e
@l g @

PR axh+ AxL
2L
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Les matrices et le calcul de déterminant :

Une matrice n  m est un tableau de nombres a n lignes et m colonnes :

120
Exempleavecn=2,m=3: A=
4 3 -1

IL.A. Addition, soustraction

L'addition et la soustraction des matrices se font terme a terme. Les matrices dotvent avoir les mémes dimensions :

1 2 0 7[5 2 3] [6 4 3
4 3 -1| (13 4] |56 3

120752 3][40 -3
43 -1 13430 -5

IL.B. Multiplication par un nombre

Chaque terme de la matrice est multiplié par le nombre :

12 0| (2 4 0
2% =
4 3 -1 |8 6 -2

[L.D. Multiplication des matrices

Ce produit est appelé produit scalaire des vecteurs x et y, noté x * . Les vecteurs doivent avoir |a méme dimension,

Le produit matrictel s'en dgpduit : le produst de la matice A (n * m) par [a matrice B (m * p) est lamatrice C (n x p) telle que [élément C jeu ¢gal au produit scalaire de la ligne 1 de la matnice A par la
colonne ) de la matrice B

Gy ;A,,,B,J i=ln j=Llp

Exemple :

14



by b1z b3 €11 c12 c13
az; azp az| x [bay by bu| = |cu c2 cxn
a3y (g az bay bz b33 €31 €32 €33

& Matrice inversible et sa matrice inverse

Soit A une matrice camée de taille n x n. Lorsqu'elle existe, on appelle inverse de A, et fon note A ", une matrice telle

que: AA™ = A7 A =1, Cette matrice inverse (nécessairement de taille n x n) est alors unique, et A est dite
inversible.

= Une matrice carrée A, d'ordre n est inversible si et seulement s'il existe

une matrice notée A~ telle que AA~! = A"1A =,

= A inversible = det(AA™!) = det(A)det(A~ ') = det(l,) = 1
A inversible=—> det(A) # 0

= On démontrera dans les modules suivants que:
det(A) # (0 = A est inversible

A inversible <= det(A) # 0

Calul de déterminant :

=] E& 9

2 3 1 1
1, 2 3|==1 ol F 3

g8 10 =2 10 i B
-2 8 10

-1{2x10-3x8)-2{(1x10-3x(-2))+5(1x8-2x(-2))
= 1(=4) = 2(16) +5(12) =4 — 32+ 60 = 32

15



Fonction Injective/Surjective :

Linjectivité
Définition: Une fonction f de E vers F est injective si et seulement si tout élément de F posséde au plus un antécédent dans E.

2.surjectivité

Définition: une fonction f de E vers F est surjective si et seulement si tout élément de F posséde au moins un antécédent dans E.

3.Bijectivité

Définition: une fonction f de E vers F est bijective si et seulement si tout élément de F posséde exactement un antécédent dans E (ce
qui équivaut a dire que f est a la fois injective et surjective),

Mathématiquement, en prenant E lensemble de départ et F [ensemble d'arrivée, on dira
quunefonction f : B — Fest surjective si et seulementsi:

YyeFdzekE: flz)=y
La vraie définition est la suivante :

f: E — Festinjectivesi et seulementsi V(z, y) € B,z £y = f(z) # f(y).

16



[SURJECTION| § | INJECTION | i [ BIJECTION |

X—'L -y 9 .Yy @ XY

Exercice 3
Soit f ¢ [1,+e0[-» [0, 4o telle que f(x) =x* - 1. f est-elle bijective?
Indication ¥  Correction¥  Vidéo M (000202]

Correction de I'exercice 3 A
o festinjective : soient x,y € |1, +eo tels que fx) = f(y):

./ o/ 1 b
f)=fy)=x-1=y-1
= x=yorx,y € |1, +e done x,y sont de méme signe
Hr=),

o f estsurjective :soit y € [0, +oo[. Nous cherchons un élément x € I, +oo] tel que y = f(x) =~ 1. Le
téel x = /y+ 1 convient!

17



Géometrie spatiale :

Comme en 2 dimensions, un vecteur a une direction, un sens et une norme. Ses coordonnées
se calculent de la méme facon, saauf quiilyena 3 :

Haut de page

Tu te souviens comment on calcule le produit scalaire dans le plan ? Et bien pour I'espace
c’est quasiment pareil | )
Exemple :

()

Comme dans le plan, on multiplie less x entre eux, les y entre eux, les z entre eux, et on
additionne tout !

18



S1u.9=0,uet

Un petit exemple :

()
(3)

—18
DE(_l
11
On suppose que I'on a montré que A—B. et A_C" n'étaient pas colinéaires, donc A, BetC
forment un plan.

Nous allons montré que ) E“ est un vecteur normal au plan (ABC), il faut donc montrer qu'il
est orthogonal aux 2 autres vecteurs, donc on calcule le produit sclaire :

AB.DE = (g)(fﬁf) =3x(—18)+1x(—1)+5x11=0

Haut de page

Tu te souviens que dans le plan, une équation de droite est de la forme : ax + by + ¢ = 0.
Et bien I'équation d'un plan dans I'espace ressemble beaucoup, il suffit de rajouter z :

ax + by

La encore il y a un avantage a I'écrire sous cette forme, car on sait qu'alors, un vecteur
NORMAL au plan est :

Que I'équation du plan soit ax + by + cz + d = 0 signifie que tous les points du plan vérifient
cette équation.
Par exemple, si le point A appartient au plan, ses coordonnées vérifient :

ar 4 +by +czy4+d=0

19



Haut de page

On attaque ici quelque chose de complétement nouveau par rapport a la géométrie dans le
plan.

Dans le plan, une équation de droite était de la forme ax + by + ¢ = 0. Dans I'espace, on fait
complétement differemment, on fait un systéme avec un paramétre, que I'on notera t.

Si (D) est la droite de vecteur directeur ﬂ =(a; b c)passant par A, 'équation paramétrique
de (D) est:

En faisant varier le t, on obtient tous les points de la droite.

Exemple : |a droite de vecteur directeur "u" =(2;7;5)passant par A(6 ; 8 ; 3) a pour égquation
paramétrique :

r=2t+6

y=7t+8 tcR
z=56t+3

Haut de page

Dans le plan, nous avons vu comment calculer la distance d’'un point a droite et comment
construire le projeté orthogonal.

Dans l'espace, on calcule la distance d’'un point 2 un PLAN et on projette le point sur ce plan.
Pour cela, on trace le vecteur normal au plan passant par le point :

-bA

> H est le projeté

orthogonal de A sur le plan

La distance du point au plan, notée d(A,P), est la longueur AH, et est donnée par :

20



Haut de page

Dans l'espace, I'équation d’un cercle est quasiment la méme que dans le plan |

Nous te donnerons donc directement la formule sans démonstration, c’'est la méme que celle
dans le chapitre précédent, mais il y a une coordonnée en plus : z.

Tu peux toujuors tamuser a refaire la démonstration pour 3 dimensions @

L'équation d'un cercle de centre A et de rayon R est :

Exemple : donner I'équation du cercle de centre B (4 ; -6 ; 3) et de rayon 8.
Il suffit de remplacer :

(x—4)°+(y—(-6))>+(2—3)* =8
(z—4)*+(y+6)*+(2—3)* =64

Produit vectoriel de deux vecteurs

Soient & et ¥ deux vecteurs de I'espace, on appelle produit vectoriel des vecteurs i et ¥ le vecteur
noté
MV tel que:

- R -+ =+ =
o si# et ¥ sontcolinéaires A v =0
© sii et ¥ ne sont pas colinéaires alors
*# My estorthogonalazeta v
x -oA - - - -oA - i
MV esttelquelabase(w;v;u v )estdirecte.

“Ngasl=Nzllsl|sin@a )

21



Intégrales :

Changement de variable pour le calcul des intégrales f: f(x)dx
La fonction f est définie et continue sur [a, b].
= Changement de variable u = '¥(x) Methode (1)

Dans le cas ou lélément différentiel f(x)dx peut se mettre sous la forme
gl¥(x) ¥ (x)dx, en posant u = W(x) nous obtiendrons :

I fdx = [ glYON (dx = [ glupdu

= Changement de variable x = ¢(1) Methode (2)

La fonction ¢ admet une dérivée continue sur un intervalle [f,;16]
définipar: t; = ¢ (a) et 1 = ¢~ (b).

L'élément différentiel etant f(x)dx = fle(n)]e’ (H)dt, lintégrale s'exprimera par :

! feodx = [ flele' (s

Exemple

Intégration avec changement de variable # = W(x) methode (1)

Calculer I = _E 2 cos x sin xdx

u =cos0=1
Posons u = COS X < du = —sinxdx et x 1 ,dou
U =CoOST ==
32
1/2 ll3 1/2 7
= P(—d == _————1_
b wdw = =51, GG=D=z
Exemple
Intégration avec changement de variable x = (1)
Calculer I = fes = (x >0) methode (2)
¢ xlnx

ti =lne=]

Posons x=¢ & t=Inx et
10} =lne3=3

avec dx = é'dt d'ou :
1= . ff Z =B =13



Intégrales des fonctions trigonometriques :

Primitivation des fonctions polynémes en sin x, COS X.

Forme: [ = f P(sin x,cos x)dx = f sin” x cos? xdx (p,q € N)

=si p est impair, on peut poser i = COS X

=si g est impair, on peut poser u = sin x

=si p et g sont impairs, on peut poser u# = SiN.X oU ¥ = COS X OU U = COS 2X
=si p et g sont pairs, on pourra lineariser, puis primitiver.

Exemple

Iy = [ sin® xcos® xdx

I) = [sin® xcos? xsin xdx = [(1 = cos? x) cos” xsin xdx

Posons u = €0S X & du = — sin xdx

d'ou I, =—f(l —uz)uzdu=—f(u2—u“)du=—-l§+§-+C

1

|
3x+ gcossxﬁ-C

Iyi= —E cos

Exemple

L= fsin3 Xcos xdx

1-cos2x_1
13=fsinzxsinxcosxdxzf(%)isinz:cdx

Posons u = cos 2x ¢ du = =2 sin 2xdx
d'ou

1 1 u?
13_—§f(1 —udi=-su——)+e

|
I;= —g(cosz 2 — 5 cos® 0+C

Exemple

ot
Iy = [ sin® xcos® xdx

lf 1 —cos4xd

|
I = [sin® xcos® xdx = Zfsin2 2xdx = 5 = X

= %[fdx— fcos 4xdx]

1 |
dou: Iy = §x—3—2sin4x+C



Si m et n sont pairs on utilise la methode dite (de fagon incorrecte) de linéarisation.

On utilise les formules connues (sinon les revoir dans le module fonctions classiques)

5 I +cos2t ., 1 —cos 2t , L R )
COS$" f = =——_8In" f = = | qui ne linearisent pas les monomes en sinus et

2 2

cosinus mais en abaissent le degre.

Exemple

n
2 S L
Calcul de cos~ fsin” tdt
0

Ona:

cos2tsin*t = cos? tsin® tsin’t = % sin 2 sin’ t = 11—6(1 —cos 41)(1 = cos 21)

= 11_6(1 — o8 41 — cos 2t + cos 41 cos 2t) = %(1 —cos 4t — cos 2t + %(Col

- f%cosztsin“tdt— 1 ; sindt  sin2t +sin6t sin 2t §— n
o T 16 4 2 12 4 L 2

Méethode particuliere : Régles de Bioche

Posons w(x) = F(sin x, cos x) dx l'elément différentiel a primitiver.

ssi w(—x) = w(x) alors f F(sin x, cos x)dx se calcule par le changement de variable
[ =Cosx

=si w(mr — x) = w(x) alors f F(sin x, cos x)dx se calcule par le changement de variable
{ =sinx

=si w(r + x) = w(x) alors f F(sin x, cos x)dx se calcule par le changement de variable
{ =tlanx

Cette methode est a privilegier car elle simplifie "bien souvent” les calculs.

Exemple

sin x
= =t Hr) keZ
A f“_cosxdx (x# (2k+ D) ke

sin x L i
Posons w(x) = _l oo dx l'element differentiel.
X

sin(—x)d(-x) _ sin xdx
1 +cos(—x) 1 +cosx
Posons f = cosx dou df = —sin xdx alors :
dt
Ig= | ——— ==In|l+4+C
8 1 +¢ 4
Ig=—In|l +cosx|+ C

Comme w(—x) = = w(x)
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Exemple

Sin X COS X 3n
Iy = | ——— — +kn) keZ
2 f sinx + 1 aE e 2 4

SIN X COS X
Posons w(x) = —————dx l'élément différentiel
sinx+ 1
Comme
sin(mr — x)cos(mr — x)d(m — x)
sin(r—x)+ 1
sin x(— cos x)d(—x)

= 3 = w(x)

sinx+ 1
Posons f = sinx d'ou df = cos xdx alors :

t t+1-1

Iy= | —dt = dt
4 / r+1

dt

= [dt- [—
t+1

=t-Injt+1|+C

w(r—x) =

dou Iy =sinx—In(l +sinx)+ C

Exemple

dx
lig= | —————
o f I 4 sin® x

dx
Posons w(x) = ———— l'élément différentiel
1 +sin~x

Comme
d(m + x)
1 +sin’(n + x)

w(mr+x) =

TR

Posons t = tanx dou df = (1 + tan® x)dx = (1 + £)dx alors :

dt dt
fo=J > =fl+2t2’
(1+12)[1+1+’2]
1
= —arctant V2 + C
V2

|
Iy = —= arctan( \/flanx) +C

V2



ntégration des fonctions comprenant des radicaux

adx

f Vax2 + bx + ¢

Forme /|, =

ssia=0 :poser t =bx+c

ssi a # (0 : Mettre le trindme sous forme canonique :

A
ax"+br+c—a[(x+£)-——] avec A = b* —4dac

4a7
o >0,D<0 t il
ercas: a 5 , poser f =
V-A
I lf i —In(t+ Vi2+ 1)+ C
l:— —_— &
7 =T
. 2ax +
2éemecas: a>0, D>0 , poser t = b
VA
I ]f a lln|t+\/t” |+C It > 1
1= —F= Sie— o . avec
Va© NE=1 +a
. 2ax+b
3émecas a<0 , D>0 , poser t = - X
VA
|
Iy= arcsint + C avec |f| < 1
\/—af\/l—t- V-a
d Exemple
Iy =
f\/3x+
Posonst=3x+2<=dt-3dx
th=)—== C— \/3 +2+C
i 3{ 3‘/- "
d Exemple

I “f dx
l —_—
T NEE —3x+5

Forme canonique du trinéme :

N 3.5 35 Vil
4x2—3x+5—4(x2-—zx+z)-4[(x-—§) (=71
en posant f = b = 2 nous trouvons :

v-a VT '

L= —1:1(8‘:/7_]3 ‘/8':/7_3)2+1)+K
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Exemple

119=IL
Forme canonique du trindme :

P=4x=x>-4x+4-4=(x-2>-22
2ax+b 2x-4
\/K 4
13=1n|2x;4+,/(2x4’4)2+1|+x

L=In(x-2+ Va2 —-4x)+ C

en posant f =

Exemple

I ‘f dx
¥ V5 +2x —4x2

Forme canonique du trinome :

—4x2+2x+5=-4(.12—§—§)
N 15 V2T,
= 4[3_4) ( 2 )]
— 21 2 12
= dl(——) = (x= )]
en posant [ 2ax+b 4x _l nous trouvons
= — = u S
VA V21
| 4x -1
[y = — arcsin +C
L V2t

nous trouvons :
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[ '] intégration des fonctions rationnelles

Le calcul d'une intégrale f R(t)dt ou R est une fonction rationnelle qui na aucun pole
a

dans l'intervalle [a, b] comporte des calculs des types suivants:

: f E(t)dt ou E est une fonction polynomiale,

a

-f dt .
—rEN",
a (t—a)r

u tdt dt %
e e—— | e . B O .
j:(t2+pt+q)"e j:(t“qu)’ Pr=a<

Les deux premiers ne posent aucun probléme. Pour résoudre les deux autres, qui présentent
au dénominateur un trinome du second degré sans racine réelle, on commence, suivant une
démarche trés fréquente dans ce cas a metire le trinome sous forme canonique; ainsi

2 2

2 P P
r+pt+g=t+=| +g-—

preg ( 2) =%
En posant alors :

P’ 4
——=lett+==21
77 g~

le changement de variable ainsi defini conduit a se ramener a des calculs d'intégrales du
type :

j‘” udu 5t f’ du SEN®
. (W2 +1) . 2+ 1)

Or nous avons déja rencontre des intégrales de ces deux types :

“le calcul de f 2 ])‘,s € N° se fait en remarquant que le numérateur est au
u

facteur 1/2 prés la dérivée de (i® + 1) .

n dll . ’ ,
celui de f ( i s € N° a été fait en application de la méthode d'intégration par
u-

parties, par récurrence.

b dr
Rassurez vous, on n'a pas l'habitude de demander de calculer : f m . Le calcul est
o (2

trés ennuyeux bien avant 25!
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El Intégration des fonctions rationnelles - Exemple

: dt
Calcul de —_—
o E+D@E+1D
: dt bodr U tde Vodr )
Ona: 2 —_—= - = + , soit
o (t+D=+1) o (t+1) o (t=+1) o (B+1)

: dt = 1 1 2 1 1
2£ m = [In(r + D]y - -2-[1n(t + 1)]; + [arctan 7]

Donc, finalement

f U Ailes
o (t+)(2+1) 8 4
Formes particuliéres

dx dx
P et J, = f -

sin” x

ne N’

Formes I, = f

= 1er cas : N est pair poser / = lanx

= 2éme cas : 11 est impair poser / = lan(x/2)

Exemple

dx
I=fcos2x

n =2 est pair :
Posons ¢ = tanx & dt = (1 + tan® x)dx = dx/ cos” x
dou /= [dt=1+C=tanx+C

Exemple

dx

sin x

n =1 est impair :

Posons ¢ = tan(x/2) & x = 2arctant et dx = 2dt/(1 + %)
Sachant que sin x = 2¢/(1 +*), nous obtenons :

Jo= f—u‘ = ﬂ

2t t
2
(IH)IH‘-'

=1n|:|+c=|n|um§|+c
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Intégration des fonctions trigonométriques

Forme: [ = f sin pxcosqxdx ; J = f sin pxsingxdx ;K = f cos pxcos gxdx (p.q € R)

Transformer les produits en sommes par l'utilisation des formules trigonométriques :
‘= L., :

sin pcos g = 5[sm(p +q) +sin(p —q)]
. il 1

sinpsing = 5[cos(p -q) —cos(p+q)]

5 1
Cos peosq = Elcos(p +4q) +cos(p-q))

s Exemple
Iy = f sin2.xcos 3xdx

| |
sin 2x¢os 3x = E[Sin(Zx + 3x) +sin(2x - 3x)] = E(Sin 5x - sin x)

1 | |
dols 15 = -z-f(sinSx-sinx)d.x B —T6c0s5x+ -z-cosx+C

Exemple
fe= f sin 3.xsin 2xdx

1 1
sin 3xsin 2x = 5[cos(3x —2x) = cos(3x + 2x)] = E(cos X —Cos 5x)

| | |
dotl I = -2-f(oosx-cos5x)dx= 5 sinx = — sin S+ C

d Exemple
I; = [ cos 3xcos 4xdx

cos 3xcosdx = %[cos(Bx +4x) + cos(3x —4x)]

|
= -2-(cos 7x + €08 X)

1 | |
doll I; = Ef(cos7x+cosx)dx= Esinx+ 71 sin7x+C
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Intégration des fonctions trigonométriques

>rimitivation des fractions rationnelles en sin x, cos x
orme: [ = f F(sin x, cos x)dx

>Yar changement de variable, on se raméne a la recherche de primitives d'une fraction
-ationnelle d'une variable t.

Méthode générale
2dt
| +12

X
Poser t=lan§ (pour teER et —mr<x<nm) ©x=2arclant dx =

2t 1-£ 2t

; COS X planx =
1+’ 142’ | -
% 1-¢

1 y——dt qui est une fraction
1R e e 0

rationnelle en ¢ (dont la primitivation demande souvent de longs calculs).

sachant que sin x =

Nous obtenons [ = f F(sin x,cos x)dx = f F(

Exemple

sin x
Is_chosxdx (x#2Qk+ 1)) keZ

Posons 1 = tan(x/2) d'ou
2dt

x=2arctant & dx =

1+

sint = tcoes:-ﬁ
e SRS T 1+
et

2t 2
Ia =
s f(1+:2)(1+"'2)'”2d‘
1+

=fidt=ln(l+tz)+c

1+

Is = In(1 + tan® §)+C, (avec C; =C +1In2)

Autres expressions :

1
l+tan2£=—x=lg=—lncos2£+c
2 coszi 2
I+ cos
ou Ig=-ln¥+c ou Ig=—=In|l +cosx|+C
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Forme K, = f tan" xdx, neZ'

*1er cas : n est pair poser [ =lanx (si n est positif, ajouter et retrancher 1 pour
faire apparaitre la différentielle de tan x)

* 2éme cas : 1 est impair poser [ =SiNX ou [ =COSX ou { = lanx
(on préférera t =cosx sin >0, et t =sinx si n<0)

Exemple

K = [1an® xdx

n =2 est pair et positif:
Ajoutons et retranchons 1 :
K = [(tan® x + 1 = 1)dx
= [(tan®x + 1)dx - [ dx
K=tanx-x+C

Exemple
1
L= | ——dx
f lan x
n = —1 est impair et négatif:

Posons 1 = sinx & dt = cos xdx

L=In|ltanx]+C



Formules d’addition

cos(a + b) = cos(a) cos(b) — sinfa) sin(b)
cos(a —b) = cos(a) cos(b) + sin(a) sin(b)
sin(a+ b) = sin(a) cos(b) + cos(a) sin(b)
sin(a —b) =sin(a) cos(b) — cos(a) sin(b)

Formules de duplication

cos(2x) = cos?(x) — sin?(x) = 2cos?(x) — 1 =1 —2sin?(x) sin(2x) = 2sin(x) cos(x).

Formules de linéarisation

1 + cos(2x) e 1 —cos(2x)
—_— sy = —————

2 2

cos? (x)i=

Formules de factorisation

sin(x) cos(x) = % sin(2x).

1+ cos(x) = 2 cos? (1> 1 — cos(x) = 2sin? (%)

2

Tour complet Angle opposé Demi-tour
1 1
_ cos(x + 2m) = cos(x) _ cos[—x) = cos(x) cos(x + 1) = —cos(x)
sin(x + 27t) = sin(x) A sin(—x) = —sin(x) sin(x + ) = —sin(x)
1 I 1
Angle supplémentaire Angle complémentaire Quart de tour direct

1
t cos (% E x) = sin(x)

sin (g - \) = cos(x)

1
TFX
cos(m—x) = —cos(x)
1 sin{mr—x) = sin(x)

s oo
Cos (x - —) = —sin(x)

A ro

sin (x - —> = cos(x)

[ o)

Des sources supplémentaires :

-http://uel.unisciel.fr/

-http://exo7.emath.fr/

«Le monde pourra devenir plus mieux si on ne cesse pas a partager
le savoir, N'oublier pas de partager avec vos amis. la connaissance

de 'lhomme est a la base tout succes »
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