
1 Rappels

1.1 Définitions, généralités

E.P.H.R. : Espace préhilbertien réel.
� E.P.H.R. = couple (E, ⟨, ⟩) où ⟨, ⟩ : E2 → R forme bilinéaire symétrique positive définie.
� E.P.H.R. de dimension finie= espace euclidien.
� Inégalité de Cauchy Scshwarz :
∀x, y ∈ E, |⟨x, y⟩| ≤ ∥x∥∥y∥ avec égalité ⇐⇒ la famille (x, y) liée.
� Norme associée : ∀x ∈ E, ∥x∥ =

√
⟨x, x⟩, appelée norme euclidienne.

� Identités remarquables, ∀x, y ∈ E :
∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2⟨x, y⟩
∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2⟨x, y⟩
⟨x+ y, x− y⟩ = ∥x∥2 − ∥y∥2
� du parallélogramme, ∀x, y ∈ E :
∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2)
� Identités de polarisation, ∀x, y ∈ E :
⟨x, y⟩ = 1

4
(∥x+ y∥2 − ∥x− y∥2)

⟨x, y⟩ = 1
2
(∥x+ y∥2 − ∥x∥2 − ∥y∥2)

2 Orthogonalité
On note (E, ⟨.⟩) un E.P.H.R. Le sigle s.e.v. pour sous-espace vectoriel et s.e.v.s. pour sous-espaces vecto-
riels.
� x, y ∈ E, x⊥y ⇐⇒ ⟨x, y⟩ = 0.
� ∀x, y ∈ E, ∀α, β ∈ R, x⊥y ⇒ αx⊥βy.
� ∀x ∈ E, x⊥x ⇐⇒ x = 0,
� ∀x ∈ E, x⊥0
� A,B ⊂ E, A⊥B ⇐⇒ ∀(a, b) ∈ A×B, a⊥b

� A ⊂ E, A⊥ = {x ∈ E/∀a ∈ A, x⊥a}.
� A⊥ est un s.e.v. fermé de E.
� A⊥ = (Vect(A))⊥, A ⊂ (A⊥)⊥,
� Si F,G des s.e.v.s de E alors (F +G)⊥ = F⊥ ∩G⊥.
� Théorème de Pythagore :
∀x, y ∈ E, x⊥y ⇐⇒ ∥x+ y∥2 = ∥x∥2 + ∥y∥2.
Généralement si (xk)1≤k≤m est une famille orthogonale alors ∥

m∑
k=1

xk∥2 =
m∑
k=1

∥xk∥2, mais on n’a pas la réci-

proque quand m > 2.

2.1 Bases orthonormée

s.s.s. est un sigle pour si et seulement si.
� Une famille (xi)i∈I de vecteurs de E est dite
• orthogonale s.s.s. ∀i, j ∈ I, i ̸= j =⇒ ⟨xi, xj⟩ = 0,
• orthonormée s.s.s. ∀i, j ∈ I, ⟨xi, xj⟩ = δi,j.
� Toute famille orthogonale de vecteurs non nuls est libre.
� Toute famille orthonormée est libre.
� Une base orthonormée est une famille orthonormée qui est une base de E.
� Procédé de Gramm-Schmidt : Soit (E, ⟨, ⟩) est un espace préhilbertien. Si L = (u1, . . . , un) est une famille
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libre de E, il existe une et une seule base orthonormée E = (e1, . . . , en) tel que

∀k ∈ [[1, n]],

{
Vect(u1, . . . , uk) = Vect(e1, . . . , ek)
⟨uk, ek⟩ > 0

.

� Algorithme : e1 = u1

∥u1∥ , ∀k ∈ [[1, n]] si k < n et e1, . . . , ek connus alors

 êk+1 = uk+1 −
k∑

j=1

⟨uk+1, ej⟩ej

ek+1 =
êk+1

∥êk+1∥

.

� Tout espace euclidien non nul admet au moins une B.O.N.

� Si E = (e1, . . . , en) est une B.O.N. de E et x =
n∑

k=1

xkek et y =
n∑

k=1

ykek de vecteurs et X = (xk) et

Y = (yk) les colonnes de coordonnées de x et y alors

• ⟨x, y⟩ = X⊤Y = Y ⊤X =
n∑

k=1

xkyk,

• ∥x∥2 = X⊤X =
n∑

k=1

x2
k, donc ∥x∥ =

√
n∑

k=1

x2
k.

2.2 Projection orthogonale

� Théorème de représentation des formes linéaires dans un espace euclidien : Pour toute forme
linéaire φ de E il existe un et un seul vecteur a ∈ E tel que φ = ⟨a, .⟩ c’est-à-dire ∀x ∈ E,φ(x) = ⟨a, x⟩.
� Si F est un s.e.v. de E alors F ∩ F⊥ = {0} et si F + F⊥ = E alors F ⊕ F⊥ = E on dit que F admet un
supplémentaire orthogonal. Si c’est la cas alors F⊥⊥ = F .
� Soit F un s.e.v. de E. Si F est de dimension finie alors F ⊕ F⊥ = E et F⊥⊥ = F .
� Soit F un s.e.v. de E tel que F ⊕ F⊥ = E. La projection de E sur F parallèlement à F⊥ s’appelle la
projection orthogonale de E sur F , notée pF .
� Caractérisation :
(∀x ∈ E),

{
pF (x) ∈ F
x− pF (x) ∈ F⊥

∀x, y ∈ E, pF (x) = y ⇐⇒
{

y ∈ F
x− y ∈ F⊥ .

� Caractérisation métrique du projeté orthogonal :

∀x, y ∈ E, pF (x) = y ⇐⇒
{

y ∈ F
∥x− y∥ = d(x, F )

;

en particulier, on a :
∀x ∈ E, d(x, F ) = ∥x− pF (x)∥.

� Si dim(F ) = p ∈ N∗ et C = (e1, . . . , ep) est une base de F alors ∀x ∈ E, pF (x) =
p∑

k=1

⟨x, ek⟩ek.

3 Matrice orthogonale, endomorphisme orthogonal, groupe ortho-
gonal

Dans tout ce paragraphe (E, ⟨, ⟩) est un espace euclidien de dimension non nulle.

3.1 Matrices orthogonales

Soit M ∈ MnR de colonnes C1, . . . , Cn, et de lignes L1, . . . , Ln alors
{

M⊤M = (⟨Ci, Cj⟩)1≤i,j≤m

MM⊤ = (⟨Li, Lj⟩)1≤i,j≤n
. En parti-

culier la famille (Ck) est orthonormée dans Mn,1(R) muni de son produit scalaire canonique si et seulement
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si la famille (Lk) des lignes est orthonormée dans M1,n(R) muni de son produit scalaire canonique si et seule-
ment si M⊤M = In si et seulement si MM⊤ = In. Si c’est le cas on dit que M est une matrice orthogonale.
� M est une matrice orthogonale si et seulement si M est inversible et M−1 = M⊤.
�M est une matrice orthogonale si et seulement si M est la matrice de passage entre deux bases orthonormée
E et E ′.
� On note On(R) l’ensemble des matrices orthogonale, alors On(R) est un sous-groupe de GLn(R), appelé
groupe orthogonal.
� Pour toute matrice M ∈ On(R) on a det(M) ∈ {−1, 1}. On note O+

n (R) = {M ∈ On(R)/ det(M) = 1},
on le note aussi SOn(R), c’est un sous-groupe du groupe orthogonal, appelé groupe orthogonal spécial. On
note aussi O−

n (R) = {M ∈ On(R)/ det(M) = −1}, mais ce n’est pas un sou-groupe de On(R).
� Deux matrices A et A′ sont orthogonalement semblables si et seulement si ∃P ∈ On(R), A′ = PAP⊤.

3.2 Automorphisme orthogonal ou isometrie

u ∈ L(E) est un automorphisme orthogonale ⇐⇒ ∀x, y ∈ E, ⟨u(x), u(y)⟩ = ⟨x, y⟩ ⇐⇒ ∀x ∈ E, ∥u(x)∥ =
∥x∥.
� On note O(E) l’ensemble des automorphismes orthogonaux.
� u ∈ O(E) ⇐⇒ ∀E BON de E, la matrice M = matE (u) ∈ On(R) ⇐⇒ ∃E BON de E, la matrice
M = matE (u) ∈ On(R) ⇐⇒ ∀E BON de E, u(E ) est une BON de E ⇐⇒ ∃E BON de E, u(E ) est une
BON de E.
� O(E) est un sous-groupe de GL(E) isomorphe à On(R) et ∀u ∈ O(E), det(u) = ±1 et SO(E) = O+(E) =
{u ∈ O(E)/ det(u) = 1} est un sou-groupe de O(E) isomorphe à O+

n (R), appelé le groupe orthogonal spécial.

3.3 Réduction

Dans tout ce paragraphe (E, ⟨, ⟩) est un espace euclidien de dimension non nulle.
� Pour tout automorphisme orthogonal u de E on a Sp(u) ⊂ {−1, 1}, même chose pour toute matrice
orthogonale M on a Sp(M) ⊂ {−1, 1}.
� Si F est un sev stable par un endomorphisme orthogonal u alors F⊥ est stable par u.
� Si pour tout nombre réel θ on note :

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
et Sθ =

(
cos θ sin θ
sin θ − cos θ

)
; alors O2(R) = {Rθ, Sθ/θ ∈ R}. On nomme Rθ et Sθ

respectivement la rotation et la symétrie d’angle θ. On a O+(R) = {Rθ/θ ∈ R} et O−(R) = {Sθ/θ ∈ R}.
� Toute matrice M ∈ On(R) est orthogonalement semblable à une matrice diagonale par blocs

U =


Ip

−Iq (0)
Rθ1

(0)
. . .

Rθs


avec p, q, s ∈ N et p + q + 2s = n et si s ̸= 0, ∀i ∈ [[1, s]], θi ̸≡ 0[π] avec la convention p = 0(resp. q = 0(resp.
s = 0)) veut dire l’absence du bloc Ip(resp du bloc −Iq (resp(des blocs Rθ1 , . . . , Rθs)).

4 Endomorphisme symétrique
Dans tout ce paragraphe (E, ⟨, ⟩) est un espace euclidien de dimension non nulle.
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4.1 Adjoint d’un endomorphisme

� Soit u un endomorphisme de E. Il existe un et un seul endomorphisme u⋆ de E tel que :
∀x, y ∈ E, ⟨u(x), y⟩ = ⟨x, u(y)⟩, appelé l’adjoint de u.
� v = u⋆ ⇐⇒ matE (v) = (matE (u))

⊤ pour toute E B.O.N. de E.
� Si A ∈ Mn(R) alors, pour tous X,Y ∈ Mn,1(R) : ⟨AX, Y ⟩ = ⟨X,A⊤Y ⟩ = Y ⊤AX = X⊤A⊤Y .
� ∀u ∈ L(E), (u⋆)⋆ = u,
� ∀α, β ∈ R, ∀u, v ∈ L(E), (αu+ βv)⋆ = αu⋆ + βv⋆

� L(E) → L(E);u 7→ u∗ est un automorphisme involutif, c’est-à-dire Φ ◦ Φ = IdL(E), c’est-à-dire que Φ est
une symétrie vectorielle de L(E).
� Pour tout en domorphisme u ∈ L(E) on a :
ker(u⋆) = (Im(u))⊥ et Im(u⋆) = (ker(u))⊥

et rg (u⋆) = rg (u) et det(u⋆) = det(u).
� Soit u ∈ L(E), et F un s.e.v. de E, alors :
F est u−stable ⇐⇒ F⊥ est u⋆−stable.

� u ∈ L(E) alors u ∈ O(E) ⇐⇒
{

u ∈ GL(E)
u⋆ = u−1 ⇐⇒ u ◦ u⋆ = IdE ⇐⇒ u⋆ ◦ u = IdE. On dit alors que u

est une isométrie vectorielle de E.

4.2 Endomorphisme symétrique ou autoadjoint

u ∈ L(E) est un endomorphisme autoadjoint si et seulement si u∗ = u si et seulement si ∀x, y ∈ E, ⟨u(x), y⟩ =
⟨x, u(y)⟩ si et seulement si matE (u) est une matrice symétrique pour toute B.O.N. E de E. On note Sn(E)
l’ensemble des endomorphismes symétriques de E.

4.3 Réduction des endomorphismes symétriques

� Lemme : Soit E un espace vectoriel sur K = R ou C. Pour tout endomorphisme u ∈ L(E), il existe au
moins un sous-espace vectoriel F u−stable tel que 1 ≤ dim(F ) ≤ 2.
� Si u est symétrique alors :
(i) Sp(u) ̸= ∅.
(ii) ∀λ, µ ∈ Sp(u), λ ̸= µ =⇒ Eλ(u)⊥Eµ(u).
(iii) Pour tout F s.e.v. de E on a :
F est u−stable ⇐⇒ F⊥ est u− stable
� Théorème spectral :
(i) Soit u ∈ L(E) alors :
u est symétrique s.s.s. E admet une base orthonormée formée de vecteurs propres de E. On dit aussi u est
diagonalisable dans une base orthonormée de E.
(ii) Soit M une matrice de Mn(R), alors :
M est symétrique s.s.s. M est orthogonalement diagonalisable, c’est-à-dire :
∃P ∈ On(R),M = P∆P⊤ où ∆ = diag(λ1, . . . , λn) est une matrice diagonale.

4.4 Endomorphisme symétrique positif, défini positif

Dans tout ce qui suit le sigle L.A.S.S.E veut dire : Les assertions suivantes sont équivalentes.

� Soit u ∈ Sn(E) un endomorphisme symétrique,
(i) L.A.S.S.E. :

— (1) ∀x ∈ E, ⟨u(x), x⟩ ≥ 0,
— (2) Sp(u) ⊂ R+.
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Si (1) ou (2) est vrai on dit que u est un endomorphisme symétrique positif de E. On note S+
n (E) leur

ensemble.
(ii) L.A.S.S.E. :

— (1′) ∀x ∈ E\{0}, ⟨u(x), x⟩ > 0,
— (2’) Sp(u) ⊂ R∗

+.
Si (1’) ou (2’) est vraie on dit que u est un endomorphisme symétrique défini positif. On note S++

n (E) leur
ensemble.
� Soit A ∈ Sn(R) une matrice symétrique,
(i) L.A.S.S.E. :

— (1) ∀X ∈ Mn,1(R), X⊤AX ≥ 0,
— (2) Sp(A) ⊂ R+.

Si (1) ou (2) est vrai on dit que A est une matrice symétrique positive de Mn(R). On note S+
n (R) leur

ensemble.
(ii) L.A.S.S.E. :

— (1’) ∀X ∈ Mn,1(R)\{0}, X⊤AX > 0,
— (2’) Sp(A) ⊂ R∗

+.
Si (1’) ou (2’) est vrai on dit que A est une matrice symétrique définie positive de Mn(R). On note S++

n (R)
leur ensemble.
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