1 Rappels

1.1 Deéfinitions, généralités

E.P.H.R. : Espace préhilbertien réel.

3 E.P.H.R. = couple (E,(,)) o {,) : > = R forme bilinéaire symétrique positive définie.

45 E.P.H.R. de dimension finie= espace euclidien.

5 Tnégalité de Cauchy Scshwarz :

Va,y € E,|(z,y)| < ||z||||ly|| avec égalité <= la famille (z,y) liée.
#3 Norme associée : Vo € F, ||lz|| = v/(z, ), appelée norme euclidienne.
#3 Tdentités remarquables, Vz,y € E

Iz + ylI* = Il + [|lylI* + 2(z, )

lz = ll* = ll=l* + [[ylI* = 2(z, y)

(@+y,2—y) = |zl* - [lyl

#5 Qu parallélogramme, Vz,y € F

2+ ylI? + llo = ylI* = 2(/|=[* + llylI*)

5 Tdentités de polarisation, Vz,y € E :

(z,y) = (= +y[> — [z — ylI*)

(2, y) = 5(lz +ylI? = [l=]* = [lyl1*)

2 Orthogonalité

On note (£, (.)) un E.P.H.R. Le sigle s.e.v. pour sous-espace vectoriel et s.e.v.s. pour sous-espaces vecto-

riels.

Bz yc B oly <= (2,y) =0.

£y y e ENa, B R, xly = axlpy.

By e B oxles < =0,

ENy e BE,x10

#3ABCE, ALB < Y(a,b) € Ax B,alb

By ACE At ={zc E/VNac A xla}.

£ At est un s.e.v. fermé de E.

£ AL = (Vect(A))*:, A C (AL,

#£3 8i F,G des s.e.v.s de E alors (F +G)t = F- nG*.

#5 Théoréme de Pythagore :

Vo,y € B xly < [z +y|* = |l=l* + [lyl*. N
Généralement si (2)1<p<m est une famille orthogonale alors || Y x|

k=1
proque quand m > 2.

2.1 Bases orthonormée

s.s.s. est un sigle pour si et seulement si.

&5 Une famille (2;);e; de vecteurs de E est dite

e orthogonale s.s.s. Vi, j € I,i # j = (x;,2;) =0,

e orthonormée s.s.s. Vi, j € I, (z;,z;) = 0; ;.

#5 Toute famille orthogonale de vecteurs non nuls est libre.

5 Toute famille orthonormée est libre.

45 Une base orthonormée est une famille orthonormée qui est une base

m
= > ||lzx]|?, mais on n’a pas la réci-
k=1

de E.

3 Procédé de Gramm-Schmidt : Soit (£, (,)) est un espace préhilbertien. Si £ = (uy, ..., u,) est une famille



libre de E, il existe une et une seule base orthonormeée & = (ey,...,e,) tel que

Vect(uy, ..., ux) = Vect(ey, ..., ex)
Vk € [[1,”]]7{ <Uk;6k> >0

k

_ , Cht1 = Upsr = D (Uit €5)€;
#5 Algorithme : e = IIEH’ Vk € [1,n] si k <netey,..., e connus alors =1 )
k+1

_Ck+1
ll€k+1ll

€k+1 =

£ Tout espace euclidien non nul admet au moins une B.O.N.
n

£ Si & = (e1,...,6,) est une B.O.N. de E et x = Y mpep et y = > yrer de vecteurs et X = (x) et
k=1 k=1

Y = (yx) les colonnes de coordonnées de z et y alors

[ <l‘,y> = XTY = YTX = kz_:l LYk,

n n
o|z|P=X"TX = kzlxz, donc [|z]| = | /kzlxi

2.2 Projection orthogonale

45 Théoréme de représentation des formes linéaires dans un espace euclidien : Pour toute forme
linéaire ¢ de E il existe un et un seul vecteur a € E tel que ¢ = (a,.) c’est-a-dire Vo € E, p(z) = (a, ).

3 Si F est un s.e.v. de E alors FNF+ = {0} et si F+ F* = E alors F @ F* = E on dit que F admet un
supplémentaire orthogonal. Si c’est la cas alors F*+ = F.

3 Soit F un s.e.v. de E. Si F est de dimension finie alors F @ F+ = F et '+ = F.

#3 Soit F un s.e.v. de E tel que F @ F+ = E. La projection de E sur F parallélement a F- s’appelle la
projection orthogonale de F sur F', notée pp.

#5 Caractérisation :

(Vz € E), { I;.F_(?FG(;;E Pl

ye

r—ye€Ft-

&5 Caractérisation métrique du projeté orthogonal :
yeF '
o —yll = d(z, F)

Ve,y € E,pr(z) =y < {

en particulier, on a :

Ve e E,d(z,F) = ||z — pr(x)].
£ Si dim(F) =p € N* et € = (ey,...,e,) est une base de F alors Vo € E,pp(z) = 3 (z, e1)ex.
k=1
3 Matrice orthogonale, endomorphisme orthogonal, groupe ortho-
gonal

Dans tout ce paragraphe (E, (,)) est un espace euclidien de dimension non nulle.

3.1 Matrices orthogonales

MTM = ((C;, Cj))1<ij<m
MM = ({L, L) )1<i j<n
culier la famille (Cy) est orthonormée dans M,, ;(R) muni de son produit scalaire canonique si et seulement

Soit M € M,R de colonnes C4,...,C,, et de lignes L4,..., L, alors { . En parti-
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si la famille (L) des lignes est orthonormée dans M, (R) muni de son produit scalaire canonique si et seule-
ment si MM = I, si et seulement si MM " = I,,. Si c’est le cas on dit que M est une matrice orthogonale.
£ ) est une matrice orthogonale si et seulement si M est inversible et M~ = M.

3 ) est une matrice orthogonale si et seulement si M est la matrice de passage entre deux bases orthonormée
& et &

45 On note O, (R) I'ensemble des matrices orthogonale, alors O, (R) est un sous-groupe de GL,(R), appelé
groupe orthogonal.

3 Pour toute matrice M € O,(R) on a det(M) € {—1,1}. On note OF (R) = {M € O,(R)/det(M) = 1},
on le note aussi SO, (R), c’est un sous-groupe du groupe orthogonal, appelé groupe orthogonal spécial. On
note aussi O, (R) = {M € O,,(R)/det(M) = —1}, mais ce n’est pas un sou-groupe de O,(R).

43 Deux matrices A et A’ sont orthogonalement semblables si et seulement si 3P € O, (R), A’ = PAP".

3.2 Automorphisme orthogonal ou isometrie

u € L(F) est un automorphisme orthogonale <= Vz,y € E, (u(z),u(y)) = (z,y) <= Vx € E,|ju(x)| =
][
5 On note O(F) I'ensemble des automorphismes orthogonaux.

£y ¢ O(E) <= VY& BON de E, la matrice M = matgs(u) € O,(R) <= 3& BON de E, la matrice
M = matg(u) € O,(R) <= V& BON de FE, u(&) est une BON de F <= 3& BON de FE, u(&) est une
BON de F.

3 O(E) est un sous-groupe de GL(E) isomorphe a O, (R) et Yu € O(E), det(u) = £1 et SO(E) = O*(E) =
{u € O(F)/det(u) = 1} est un sou-groupe de O(F) isomorphe a O; (R), appelé le groupe orthogonal spécial.

3.3 Réduction

Dans tout ce paragraphe (F, (,)) est un espace euclidien de dimension non nulle.

#3 Pour tout automorphisme orthogonal u de E on a Sp(u) € {—1,1}, méme chose pour toute matrice
orthogonale M on a Sp(M) C {—1,1}.

#3 Si F est un sev stable par un endomorphisme orthogonal u alors F'* est stable par u.

#5 Si pour tout nombre réel 6 on note :

Ry = ( cosf —sinf )et Sy = ( cost/  sinf ); alors O2(R) = {Ry, 5 /60 € R}. On nomme Ry et Sy

sinf  cosf sinff —cosf
respectivement la rotation et la symétrie d’angle 6. On a Ot (R) = {Ry/0 € R} et O~ (R) = {Sy/0 € R}.
5 Toute matrice M € O, (R) est orthogonalement semblable & une matrice diagonale par blocs

a (0)

avec p,q,s E Net p+q+2s=netsis#0,Viel[l,s],0; £ 0[r] avec la convention p = 0(resp. ¢ = 0(resp.
s = 0)) veut dire 'absence du bloc I,(resp du bloc —I, (resp(des blocs Ry,, ..., Ry,)).

4 Endomorphisme symétrique

Dans tout ce paragraphe (E, (,)) est un espace euclidien de dimension non nulle.



4.1 Adjoint d’un endomorphisme

#5 Soit v un endomorphisme de E. Il existe un et un seul endomorphisme u* de E tel que :

Vo, y € B, (u(x),y) = (r,u(y)), appelé 'adjoint de u.

£y = u* <= mateg(v) = (mate(u))" pour toute & B.O.N. de E.

£ 8i A € M,(R) alors, pour tous X,Y € M, 1(R): (AX,Y) = (X, ATY) =YTAX = XTATY.
£y € L(E), (u)* = u,

£3Ya, B € R Yu,v € L(E), (au+ Bv)* = au* + Bu*

£ L(F) — L(E);u — u* est un automorphisme involutif, c’est-a-dire ® o ® = Id,(g), c’est-a-dire que ® est
une symétrie vectorielle de L(E).

#3 Pour tout en domorphisme u € £(F) on a :

ker(u*) = (Im(u))* et Im(u*) = (ker(u))*

et rg (u*) =rg (u) et det(u*) = det(u).

5 Soit u € L(E), et F un s.e.v. de E, alors :

F est u—stable <= F* est u*—stable.

£y € L(E) alors u € O(E) <= Z*EzcjﬁgE> <= wou*=Idg <= wu*ou = Idg. On dit alors que u

est une isométrie vectorielle de E.

4.2 Endomorphisme symétrique ou autoadjoint

u € L(FE) est un endomorphisme autoadjoint si et seulement si u* = wu si et seulement si Va,y € E, (u(z),y) =
(x,u(y)) si et seulement si mate(u) est une matrice symétrique pour toute B.O.N. & de E. On note S, (F)
I’ensemble des endomorphismes symétriques de FE.

4.3 Réduction des endomorphismes symétriques

£ Lemme : Soit E un espace vectoriel sur K = R ou C. Pour tout endomorphisme u € L(E), il existe au
moins un sous-espace vectoriel F' u—stable tel que 1 < dim(F) < 2.

#5 Si y est symétrique alors :

(i) Sp(u) # 0.

(ii) VA, i € Sp(u), A # p = Ex(u)LE,(u).

(iii) Pour tout F' s.e.v. de E on a :

F est u—stable <= F* est u— stable

#5 Théoréme spectral :

(i) Soit u € L(E) alors :

u est symétrique s.s.s. E' admet une base orthonormée formée de vecteurs propres de E. On dit aussi u est
diagonalisable dans une base orthonormée de E.

(i) Soit M une matrice de M,,(R), alors :

M est symétrique s.s.s. M est orthogonalement diagonalisable, c¢’est-a-dire :

dP € 0,(R),M = PAPT ou A = diag(\;,...,\,) est une matrice diagonale.

4.4 Endomorphisme symétrique positif, défini positif
Dans tout ce qui suit le sigle L.A.S.S.E veut dire : Les assertions suivantes sont équivalentes.

£5 Soit u € S, (E) un endomorphisme symétrique,
(i) L.A.S.S.E. :

— (1) Vz € E, (u(x),x) >0,
— (2) Sp(u) C Ry.



Si (1) ou (2) est vrai on dit que u est un endomorphisme symétrique positif de E. On note S;(E) leur
ensemble.

(ii) L.A.S.S.E. :

— (1) Yz € E\{0}, (u(x),z) > 0,

— (2") Sp(u) C R
Si (1) ou (2’) est vraie on dit que u est un endomorphisme symétrique défini positif. On note S;F*(E) leur
ensemble.

#£5 Soit A € S,(R) une matrice symétrique,
(i) L.A.S.S.E. :

— (1) VX € M,,1(R), XTAX >0,
Si (1) ou (2) est vrai on dit que A est une matrice symétrique positive de M, (R). On note S;(R) leur
ensemble.

(ii) L.A.S.S.E. :

— (") VX € M, 1(R)\{0}, XTAX >0,

— (2) Sp(A) C Ry
Si (1) ou (2’) est vrai on dit que A est une matrice symétrique définie positive de M,,(R). On note S, (R)
leur ensemble.



