Chapitre 9 : Suites séries de fonctions I

Exercice 1

d = 676]

Soit f_n la fonction définie sur [-1,1] par

$$f_n(x) = x^n \left(1 - x^2 \right).$$

- $\boxed{1}$ Étudier la convergence simple et uniforme de la suite (f_n) .
- 2 Étudier la convergence simple, normale et uniforme de la série de terme général f_n .
- **3** Étudier la convergence normale et uniforme de la série de terme général f_n sur $[-1, \alpha]$, lorsque α appartient à [0, 1[.

Exercice 2

[id=2]

Soit (f_n) la suite de fonctions de \mathbb{R} vers \mathbb{R} définie par :

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, f_n(x) = \frac{\sin(nx^2)}{n^2 + 1}$$

- $\boxed{\mathbf{1}}$ Démontrer que la suite (f_n) converge simplement sur \mathbb{R} vers une fonction f à préciser.
- **2** La convergence est-elle uniforme?
- **3** Quelle est la nature de la série de fonctions $\sum f_n$?

Exercice 3

[id=675]

Soit f_n la fonction définie sur $[0, \pi/2]$ par

$$f_n(x) = \sin^{2n+1} x \cos^3 x.$$

- 1 Étudier la convergence simple, normale et uniforme de la série de terme général f_n .
- $\mathbf{2}$ Étudier la convergence simple, normale et uniforme de la série de terme général nf_n .
- Étudier la convergence simple, normale et uniforme de la série de terme général nf_n sur $[0, \pi/2 \alpha]$, lorsque α appartient à $]0, \pi/2[$.

Exercice 4

[id=284]

Dans chacun des cas suivants, étudier la convergence simple et uniforme de la suite de fonction (f_n) .

- a) $f_n: \mathbb{R} \to \mathbb{R}, x \mapsto \frac{n+1}{n^2+x^2}, n \in \mathbb{N}^*$
- b) $f_n:[0,1]\to\mathbb{R}, x\mapsto \frac{nx^2}{1+nx}, n\in\mathbb{N}^*$
- c) $f_n : \mathbb{R} \to \mathbb{R}; x \mapsto \frac{x}{x^2 + n^2}, n \in \mathbb{N}^*.$

Exercice 5

Pour tout $n \in \mathbb{N}^*$, et tout $x \in \mathbb{R}_+$, on pose $f_n(x) = \frac{(-1)^n e^{-nx}}{n+x}$.

- Démontrer que la série de fonctions $\sum f_n$ converge simplement vers une application $f: \mathbb{R}_+ \to \mathbb{R}$ et que la convergence est normale sur tout intervalle de la forme $I_a = [a, +\infty[, a>0 \text{ et n'est pas normale sur }\mathbb{R}_+.$
- **2** Démontrer que f est continue sur \mathbb{R}_+ .

Exercice 6 [id=286]

Dans chacun des cas suivants étudier la convergence simple, absolue, uniforme et normale de la série $\sum f_n$.

- $\boxed{1} f_n: \mathbb{R} \to \mathbb{R}; x \mapsto \frac{\sin(nx)}{n^2 + x^2}, n \in \mathbb{N}$
- $\boxed{\mathbf{2}} f_n : [0,1] \to \mathbb{R}; x \mapsto n^2 x^n (1-x)^n, n \in \mathbb{N}.$
- $\boxed{\mathbf{3}} \ f_n : \mathbb{R} \to \mathbb{R}; x \mapsto \frac{nx^2}{n^3 + x^2}, n \in \mathbb{N}^*.$
- $\boxed{\mathbf{4}} \ f_n: [0, +\infty[\to \mathbb{R}; x \mapsto \frac{x}{n} e^{-n^2 x^2}, n \in \mathbb{N}^*.$
- $\boxed{\mathbf{5}} \ f_n : [0, +\infty[\to \mathbb{R}; x \mapsto \frac{n+x}{n^2+x^2}, n \in \mathbb{N}^*.$
- $\boxed{\mathbf{6}} \ f_n: [0, +\infty[\to \mathbb{R}; x \mapsto \frac{(-1)^n}{n^2 + x^2}, n \in \mathbb{N}^*.$
- $\boxed{7} f_n: [0, +\infty[\to \mathbb{R}; x \mapsto \frac{(-1)^n}{n+x^2}, n \in \mathbb{N}^*.$

Exercice 7 $_{[id=287]}$

Pour tout $n \in \mathbb{N}$, on pose :

$$f_n(x) = \frac{2^n x}{1 + n2^n x^2}$$
 pour $x \in \mathbb{R}$

Sur quels intervalles de \mathbb{R} , la suite de fonctions $(f_n)_{n\geq 0}$ converge-t-elle uniformèment?

Exercice 8 $_{[id=288]}$

Etudier la convergence simple et uniforme de la suite de fonctions $(f_n)_{n\geq 1}$ définie par $f_n(x)=\frac{x}{n(1+x^n)}$ pour tout $x\in [0,+\infty[$

Exercice 9 $_{[id=289]}$

Pour tout $n \in \mathbb{N}^*$, on note : $f_n : [0, +\infty[\to \mathbb{R}; x \mapsto (-1)^n \frac{e^{-nx}}{n+x}]$.

1 Etudier la convergence de la série de fonctions $\sum f_n$.

2 Montrer que la somme $S = \sum_{n=1}^{+\infty} f_n$ est continue sur $[0, +\infty[$.

Exercice 10 [id=290]

Pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}$, on pose $f_n(x) = \prod_{k=1}^n \cos\left(\frac{x}{2^k}\right)$.

- Démontrer que la suite de fonctions (f_n) converge simplement sur \mathbb{R} vers une fonction f à préicser.
- Pour tout $n \in \mathbb{N}$, calculer $f_n(2^n \pi)$. En déduire que la convergence n'est pas uniforme sur \mathbb{R} .
- **3** Démontrer que (f_n) converge uniformèment vers f sur tout ségment [a,b] de \mathbb{R} .

Exercice 11 [id=291

On considère la fonction réelle de variable réelle définie par $f(x) = \sum_{n=1}^{+\infty} \frac{1}{n+n^2x}$.

- 1 Déterminer l'ensemble de définition D_f de f.
- **2** Démontrer que f est continue sur D_f .
- 3 Déterminer $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to +\infty} f(x)$.
- **4** Démontrer que : Quand x tends vers 0 à droite, on a $f(x) \sim -\ln(x)$ et quand x tends vers $+\infty$, on a $f(x) \sim \frac{\pi^2}{6x}$.

Exercice 12 [id=292]

Dans tout ce qui suit $(E, \|.\|)$ est un espace vectoriel normé de dimension finie sur \mathbb{K} avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On considère un vecteur $x_0 \in E$ tel que $\|x_0\| \le 1$ et $\gamma : \mathbb{R}_+ \to \mathbb{R}_+$ une application tel que $\gamma(t) \le kt$ où $k \in [0, 1]$. On considère une suite de fonctions $(f_n)_{n \in \mathbb{N}}$ de \mathbb{R}_+ vers E tel que :

$$\begin{cases} \forall t \in \mathbb{R}_+, f_0(t) = x_0 \\ \forall n \in \mathbb{N}, \forall t \in \mathbb{R}_+, f_{n+1}(t) = x_0 + \int_0^t f_n(\gamma(s)) ds \end{cases}$$

- $\boxed{1}$ Prouver que la suite (f_n) est bien définie.
- **2** Démontrer que : $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}_+, \quad \|f_{n+1}(x) f_n(x)\| \le \frac{x^{n+1}}{(n+1)!}$.
- Prouver que la suite (f_n) converge simplement vers une application $f: \mathbb{R}_+ \to E$ et que la convergence est uniforme sur tout compact K inclus dans \mathbb{R}_+ .
- 4 Démontrer que f est dérivable sur \mathbb{R}_+ et que $\forall x \in \mathbb{R}_+, f'(x) = f(\gamma(x))$.

Exercice 13 [id=

Pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}_+$, on pose $f_n(x) = \arctan(x+n) - \arctan(n)$.

- 1 Démontrer que la série de fonctions $\sum f_n$ converge simplement sur \mathbb{R}_+ .
- **2** Démontrer que f est continue sur \mathbb{R}_+ .
- $\boxed{\mathbf{3}} \text{ Démontrer que } \lim_{x \to +\infty} f(x) = +\infty.$
- 4 En déduire que la convergence de $\sum f_n$ n'est pas uniforme sur \mathbb{R}_+ .

Exercice 14

[id=294]

Soit, pour $n \in \mathbb{N}$, f_n la fonction definie sur \mathbb{R}_+ par

$$f_n(x) = \left(1 - \frac{x}{n}\right)^n$$
 si $x \in [0; n]$ et $f_n(x) = 0$ si $x \ge n$

Démontrer que la suite (f_n) converge uniformèment sur \mathbb{R}_+ vers f définie par $f(x) = e^{-x}$.

Exercice 15 [id=2]

Soit $f_n: \mathbb{R}_+ \to \mathbb{R}$ définie par

$$f_n(x) = \left(1 + \frac{x}{n}\right)^{-n}$$

a) Etudier la limite simple de (f_n) et montrer que

$$\forall x \in \mathbb{R}_+, f_n(x) \ge \lim f_n(x)$$

b) En partant de l'encadrement suivant valable pour tout $t \in \mathbb{R}_+$

$$t - \frac{t^2}{2} \le \ln(1+t) \le t$$

justifier que la suite (f_n) converge uniformément sur tout intervalle [0; a] (avec a > 0) c) Etablir qu'en fait, la suite de fonctions (f_n) converge uniformément sur \mathbb{R}_+ .

Exercice 16 [id=296]

Pour tout $(n, x) \in \mathbb{N} \times \mathbb{R}$, on pose :

$$f_n(x) = \frac{nx}{x^2 + n^3 + 1}.$$

- 1 Vérifier que la série de fonctions $\sum f_n$ converge simplement sur \mathbb{R} .
- **2** La convergence est-elle uniforme sur \mathbb{R} ?
- $\boxed{\mathbf{3}}$ Étudier la convergence uniforme de la série $\sum f_n$, sur tout compact K inclus dans \mathbb{R} .
- 4 Soit $\alpha \in \mathbb{R}$ tel que $\alpha > \frac{1}{2}$, et $(g_n)_{n \geq 0}$ la suite de fonctions définie par :

$$\forall (n,x) \in \mathbb{N} \times \mathbb{R}, \quad g_n(x) = \frac{1}{n^{\alpha}} f_n(x).$$

Démontrer que la série de fonctions $\sum g_n$ converge normalement sur \mathbb{R} .

Exercice 17 [id=297]

- 1 Soit $x \in]0, +\infty[$. Démontrer que $\lim_{n \to +\infty} \sum_{k=1}^{n} \ln(1 + \frac{x}{n}) = +\infty$.
- 2 En utilisant le théorème de convergence dominée, démontrer que :

$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{n!}{\prod\limits_{k=1}^n (x+k)} dx = 0$$

Exercice 18 [id=298]

On considère la suite réelle $(u_n)_{n\geq 0}$ définie par :

$$\forall n \in \mathbb{N}, \quad u_n = \int_0^{+\infty} \frac{\sin(nx)}{1 + n^4 x^3} dx.$$

- **1** Justifier que (u_n) est bien définie.
- **2** Démontrer que, quand n tend vers $+\infty$, on a $u_n \sim \frac{c}{n^{\frac{5}{3}}}$.

Exercice 19 [id=299]

- Soit $\alpha \in]0,1]$. Démontrer que la fonction $u: x \mapsto (1+x)^{\alpha}$ est concave sur \mathbb{R}_+ . En déduire que pour tout nombre réel $x \in \mathbb{R}_+$, on a $0 \le (1+x)^{\alpha} \le 1 + \alpha x$.
- **2** Démontrer que la suite de fonctions (f_n) définie par $f_n(x) = \frac{1}{(1+x)^{\frac{1}{n}}}$ pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}_+$ est simplement convergente vers une fonction f à préciser.
- $\boxed{\bf 3}$ Démontrer que la convergence est uniforme sur \mathbb{R}_+ .

Exercice 20 [id=661

On considère la suite de fonction (f_n) définie de l'intervalle $\left[0, \frac{\pi}{2}\right]$ dans \mathbb{R} par :

$$\forall n \in \mathbb{N}, f_n(x) = (\cos(x))^n \sin(x).$$

- 1 Montrer que (f_n) convergence uniformément vers la fonction nulle sur $\left[0, \frac{\pi}{2}\right]$.
- **2** Soient (g_n) la suite de fonction définie par $g_n = (n+1)f_n$ et γ un réel de $\left[0, \frac{\pi}{2}\right]$.
 - (a) Montrer que sur $\left[\gamma, \frac{\pi}{2}\right]$, la suite (g_n) converge uniformément vers la fonction nulle.
 - (b) La suite de fonction (g_n) converge-t-elle uniformément sur $\left[0,\frac{\pi}{2}\right]$ vers la fonction nulle.