Chapitre 7 : Suites vectorielles et familles sommables

Exercice 1 [id=253]

Soit \mathcal{A} une \mathbb{K} -algèbre normée de dimension finie. On note e son élément neutre pour la multiplication et $\mathcal{U}(\mathcal{A})$ l'ensemble de ses inversibles. Soit $a \in \mathcal{A}$. On appelle valeur spectrale de a tout scalaire $\lambda \in \mathbb{K}$ tel que $a - \lambda e$ n'est pas inversible. On note $\mathrm{Sp}(a)$ l'ensemble des valeurs spectrales de a.

- $\boxed{\mathbf{1}}$ Démontrer que $\forall \lambda \in \operatorname{Sp}(a), |\lambda| \leq ||a||$
- $\boxed{\mathbf{2}}$ Démontrer que $\mathscr{U}(\mathcal{A})$ est un ouvert de \mathcal{A} .
- **3** Démontrer que Sp(a) est un compact de A.

Exercice 2 [id=254]

Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{K})$. Démontrer qu'il existe un polynôme $P \in \mathbb{K}[X]$ tel que $\exp(A) = P(A)$

Exercice 3 [id=255]

Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{K})$.

Determiner $\exp(A)$ dans chacun des cas suivants :

- \blacksquare A est la matrice d'un projecteur , c'est-à-dire $A^2=A$.
- $\begin{tabular}{c} \begin{tabular}{c} \begin{tabu$
- $\fbox{\bf 3}$ A est la matrice dont tous les coefficients valent 1.

Exercice 4 [id=256]

1 (a) Démontrer que :

$$\forall w \in \mathbb{C}^*, \exists z \in \mathbb{C}, \exp(z) = w.$$

- **(b)** Que peut on dire de $z_1, z_2 \in \mathbb{C}$ si $\exp(z_1) = \exp(z_2)$?
- © Soit $n \in \mathbb{N}^*$ et $A, B \in \mathcal{M}_n(\mathbb{R})$ deux matrices tel qu'il existe $P \in \mathbf{GL}_n(\mathbb{C})$ tel que $B = P^{-1}AP$. Démontrer qu'il existe $Q \in \mathbf{GL}_n(\mathbb{R})$ tel que $B = Q^{-1}AQ$. On exprime ça en disant que deux matrices réelles semblables dans $\mathcal{M}_n(\mathbb{C})$ sont semblables dans $\mathcal{M}_n(\mathbb{R})$.
- (d) Soit $z = a + ib \in \mathbb{C}$. Démontrer que les matrices $M = \begin{pmatrix} z & 0 \\ 0 & \overline{z} \end{pmatrix}$ et $M' = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ sont semblables dans $\mathcal{M}_2(\mathbb{C})$.
- 2 a Soit $A \in \mathbf{GL}_2(\mathbb{C})$ tel que A est diagonalisable. Démontrer que :

$$\exists B \in \mathcal{M}_2(\mathbb{C}), \exp(B) = A.$$

- (b) Soit $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et $S = \{\alpha I_2 + \beta N/(\alpha, \beta) \in \mathbb{C}^2\}$. Démontrer que S est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{C})$ et que $\forall M \in S, \exp(M) \in S$.
- (c) En déduire que : $\forall A \in \mathbf{GL}_2(\mathbb{C}), \exists B \in \mathcal{M}_2(\mathbb{C}), \exp(B) = A.$
- **3** Soit $A \in \mathbf{GL}_2(\mathbb{R})$ une matrice diagonalisable de valeurs propres λ_1 et λ_2 .
 - (a) Démontrer que si $\lambda_1 > 0$ et $\lambda_2 > 0$ alors $\exists B \in \mathcal{M}_2(\mathbb{R}), \exp(B) = A$.
 - (b) Que peut on dire si $\lambda_1 \lambda_2 < 0$.
 - © Soit $K = \begin{pmatrix} 0 & -\pi \\ \pi & 0 \end{pmatrix}$. Diagonaliser K dans $\mathcal{M}_2(\mathbb{C})$ et en déduire que $\exp(K) = -I_2$.
 - (d) En déduire que : $\forall \lambda \in \mathbb{R}^*, \exists B \in \mathcal{M}_2(\mathbb{R}), \exp(B) = \lambda I_2$.
- Soit $A \in \mathbf{GL}_2(\mathbb{R})$ une matrice trigonalisable non diagonalisable. On note u l'endomorphisme canoniquement associé à A.
 - (a) Démontrer qu'il existe une base $\mathcal{C} = (V_1, V_2)$ de \mathbb{R}^2 tel que la matrice T de u relativement à \mathcal{C} est de la forme $T = \begin{pmatrix} \lambda & \mu \\ 0 & \lambda \end{pmatrix}$ où $\lambda, \mu \in \mathbb{R}^*$.
 - **b** Démontrer que si $\lambda > 0$ alors $\exists B \in \mathcal{M}_2(\mathbb{R}), \exp(B) = A$.
 - © On suppose que $\exists B \in \mathcal{M}_2(\mathbb{R})$, $\exp(B) = A$ et on note v l'endomorphisme canoniquement associé à B. Montrer qu'il existe $\alpha \in \mathbb{R}$ tel que $v(V_1) = \alpha V_1$.
 - d Déduire de ce qui précède que l'on a :

$$\exists B \in \mathcal{M}_2(\mathbb{R}), \exp(B) = A \Leftrightarrow \lambda > 0.$$

- $\boxed{\mathbf{5}} \text{ Soit } A \in \mathcal{M}_2(\mathbb{R}) \text{ tel que } \operatorname{Sp}(A) = \emptyset.$
 - f a Justifier pourquoi A est inversible.
 - (\mathbf{b}) Démontrer que A est semblable, dans $\mathcal{M}_n(\mathbb{C})$, à une matrice de la forme $\exp(\Delta)$ avec $\Delta = \begin{pmatrix} \lambda & 0 \\ 0 & \overline{\lambda} \end{pmatrix}$ tel que $\lambda \in \mathbb{C}$.
 - © Démontrer que Δ est semblable, dans $\mathcal{M}_2(\mathbb{C})$ à une matrice de la forme $B = rR_{\theta}$ avec $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$ et $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.
 - **d** En déduire qu'il existe une matrice $M \in \mathcal{M}_2(\mathbb{R})$ tel que $\exp(M) = A$.

Exercice 5 [id=257]

Soit K une partie compacte de $\mathcal{M}_n(\mathbb{C})$ tel que :

$$\begin{cases} (i) & K \subset \mathbf{GL}_n(\mathbb{C}) \\ (ii) & \forall A, B \in K, AB \in K \end{cases}$$

Montrer que K est un sous-groupe de $\mathbf{GL}_n(\mathbb{C})$.

Indication : Commencer par prouver que $I_n \in K$.

Exercice 6

id=258]

n est un entier naturel non nul et \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

- Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. Démontrer que si A et B sont semblables alors il en est de même de P(A) et P(B), pour tout polynôme $P \in \mathbb{K}[X]$. En déduire que $\exp(A)$ et $\exp(B)$ sont semblables.
- Soit $n \in \mathbb{N}^*$ et $A, B \in \mathcal{M}_n(\mathbb{R})$ deux matrices tel qu'il existe $P \in \mathbf{GL}_n(\mathbb{C})$ tel que $B = P^{-1}AP$. Démontrer qu'il existe $Q \in \mathbf{GL}_n(\mathbb{R})$ tel que $B = Q^{-1}AQ$. On exprime ça en disant que deux matrices réelles semblables dans $\mathcal{M}_n(\mathbb{C})$ sont semblables dans $\mathcal{M}_n(\mathbb{R})$.
- Soit $A \in \mathbf{GL}_2(\mathbb{R})$ tel que A n'a aucune valeur propre réelle. Démontrer qu'il existe $B \in \mathcal{M}_2(\mathbb{R})$ tel que : $\exp(B) = A$.

Exercice 7

[id=259]

Soit $\theta \in \mathbb{R}$ et les matrices de $\mathcal{M}_2(\mathbb{C})$:

$$A_{\theta} = \begin{pmatrix} 0 & -\theta \\ \theta & 0 \end{pmatrix}$$
 et $B_{\theta} = \begin{pmatrix} i\theta & 0 \\ 0 & -i\theta \end{pmatrix}$.

- 1 Prouver que A_{θ} et B_{θ} sont semblables dans $\mathcal{M}_2(\mathbb{C})$.
- **2** Comment déterminer le plus rapidement possible une matrice $P \in \mathbf{GL}_2(\mathbb{C})$ tel que la relation :

$$A_{\theta} = PB_{\theta}P^{-1}$$

soit vérifiée?

- **3** Calculer $\exp(A_{\theta})$.
- $\boxed{\mathbf{4}}$ Soit $a, b \in \mathbb{R}$ et $M = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$. Calculer $\exp(M)$.

Exercice 8

[id=260]

On considère le suite double $(u_{n,p})$ définie par : $u_{n,p} = \begin{cases} 1 & \text{si} & n=p \\ 0 & \text{si} & n>p \\ -\frac{1}{2^{p-n}} & \text{si} & n$

- $\boxed{\mathbf{1}} \text{ Calculer } \sum_{n=0}^{\infty} \left(\sum_{p=0}^{\infty} u_{n,p} \right)$
- $\boxed{\mathbf{2}}$ Calculer $\sum_{p=0}^{\infty} (\sum_{n=0}^{\infty} u_{n,p})$
- **3** Que remarquez vous? Explication?

Exercice 9

[id=261

On donne pour tout nombre réel x tel que x > 1, $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$ et $\gamma = \lim_{n \to +\infty} (H_n - \ln(n))$ où

 $H_n = \sum_{k=1}^n \frac{1}{k}$, pour tout $n \in \mathbb{N}^*$. On considère la suite double $(u_{n,k})_{\substack{n \geq 2 \\ k \geq 2}}$ définie par $u_{n,k} = \frac{(-1)^k}{kn^k}$

- $\boxed{\mathbf{1}}$ Montrer que $(u_{n,k})$ est sommable.
- **2** En déduire que $\sum_{k=2}^{+\infty} \frac{(-1)^k}{k} \zeta(k) = \gamma$.

Exercice 10 [id=262]

Soit λ un nombre réel tel que $0 < \lambda < 1$.

- 1 Pour tout $n \in \mathbb{N}$, calculer la somme : $\sum_{k=n}^{+\infty} {k \choose n} (1-\lambda)^{k-n}$.
- Soit $(u_n)_{n\in\mathbb{N}}$ une suite sommable. Pour $n\in\mathbb{N}$, on pose $v_n=\sum_{k=n}^{+\infty} \binom{k}{n}(1-\lambda)^{k-n}\lambda^k u_k$. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est sommable et calculer sa somme.

Exercice 11 [id=263]

On note $\ell^1(\mathbb{Z})$ l'ensemble des familles de nombres complexes $u=(u_n)_{n\in\mathbb{Z}}$ qui sont sommables. On définit sur $\ell^1(\mathbb{Z})$ une norme en posant ||u|| la somme de la famille $(|u_n|)_{n\in\mathbb{Z}}$

- 1. Soit $u, v \in \ell^1(\mathbb{Z})$. Démontrer que, pour tout $n \in \mathbb{Z}$, la famille $(u_k v_{n-k})_{k \in \mathbb{Z}}$ est sommable.
- 2. Pour $u, v \in \ell^1(\mathbb{Z})$, on définit la famille $u \star v$ par $(u \star v)_n = \sum_{k \in \mathbb{Z}} u_k v_{n-k}$ où $n \in \mathbb{Z}$. Démontrer que $u \star v \in \ell^1(\mathbb{Z})$, puis calculer $||u \star v||$ en fonction de ||u|| et de ||v||
- 3. Démontrer que la loi \star agissant sur $\ell^1(\mathbb{Z})$ est une loi associative, commutative, et possédant un élément neutre.
- 4. On définit $u \in \ell^1(\mathbb{Z})$ par $u_0 = 1, u_1 = -1$ et $u_n = 0$ sinon. Démontrer que u n'est pas inversible dans $\ell^1(\mathbb{Z})$ pour \star

Exercice 12 [id=264

Soient $r \in [0;1[$ et $\theta \in \mathbb{R}.$ Justifier l'existence et calculer

$$\sum_{n\in\mathbb{Z}} r^{|n|} e^{\mathrm{i}n\theta}$$

Exercice 13

Convergence et calcul, pour z complexe tel que |z| < 1, de

$$\sum_{n=0}^{+\infty} \frac{z^{2^n}}{1 - z^{2^{n+1}}}$$

Exercice 14 [id=266]

Soit σ une permutation de \mathbb{N}^* . Quelle est la nature de

$$\sum \frac{\sigma(n)}{n^2 \ln n}?$$

Exercice 15 [id=26]

- $\fbox{1}$ Soit s un nombre réel tel que $s \geq 1$
 - (a) Démontrer que pour tout nombre réel x positif, on a : $(1+x)^s \ge 1 + sx$.
 - (b) Prouver que la fonction $t \mapsto t^s$ est convexe sur $]0, +\infty[$.
 - (c) En déduire que pour tous nombre réels strictement positifs x et y, on a :

$$2^{1-s}(x+y)^s \le x^s + y^s.$$

2 Soit α un nombre réel et on considère la famille $a=(a_{p,q})_{(p,q)\in\mathbb{N}^*\times\mathbb{N}^*}$ définie par :

$$\forall (p,q) \in \mathbb{N}^* \times \mathbb{N}^*, a_{p,q} = \frac{1}{(p+q)^{\alpha}}.$$

- (a) Démontrer que si $\alpha \leq 1$ alors la famille a n'est pas sommable.
- (b) Démontrer que la famille a est sommable si et seulement si $\alpha > 2$.
- **3** Soit $\alpha \in \mathbb{R}$ tel que $\alpha > 1$ et on considère la famille $(b_{p,q})_{(p,q) \in \mathbb{N}^* \times \mathbb{N}^*}$ tel que :

$$\forall (p,q) \in \mathbb{N}^* \times \mathbb{N}^*, b_{p,q} = \frac{1}{p^{\alpha} + q^{\alpha}}.$$

(a) Démontrer que :

$$\forall p,q \in \mathbb{N}^*, 2^{1-\alpha}(p+q)^{\alpha} \le p^{\alpha} + q^{\alpha} \le (p+q)^{\alpha}$$

- (\mathbf{b}) En déduire que la famille b est sommable si et seulement si $\alpha > 2$.
- 4 Soit $\alpha \in \mathbb{R}_+^*$ et pour tout $(p,q) \in \mathbb{N}^* \times \mathbb{N}^*$, on pose $c_{p,q} = \frac{1}{(p^2+q^2)^{\alpha}}$. Démontrer que la famille $(c_{p,q})$ est sommable si et seulement si $\alpha > 1$.

Exercice 16 $_{[id=268]}$

Soit $x \in]-1,[1\ 1.\ Démontrer que la famille <math>(x^{kl})_{(k,n)\in(\mathbb{N}^*)^2}$ est sommable. 2. En déduire que

$$\sum_{k=1}^{+\infty} \frac{x^k}{1 - x^k} = \sum_{n=1}^{+\infty} d(n)x^n$$

où d(n) est le nombre de diviseurs positifs de n.

Exercice 17

[id=269]

Pour $n \ge 0$, on pose :

$$w_n = 2^{-n} \sum_{k=0}^n \frac{4^k}{k!}.$$

 $\boxed{\mathbf{1}}$ Montrer que la série de terme général w_n converge.

2 Calculer sa somme en utilisant le produit d'une série géométrique par une autre série classique.

Exercice 18

[id=270

Soient $(a, b) \in \mathbb{C}^2$ tels que |a| < 1 et |b| < 1. Prouver que

$$\begin{cases} \frac{1}{(1-a)(1-b)} = \sum_{n=0}^{+\infty} \frac{a^{n+1} - b^{n+1}}{a-b} & \text{si } a \neq b \\ \frac{1}{(1-a)^2} = \sum_{n=0}^{+\infty} (n+1)a^n & \text{si } a = b \end{cases}$$

Exercice 19 [id=271]

On considère $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites positives, telles que $\sum a_n^2$ et $\sum b_n^2$ convergent. Prouver que $\sum_n \sum_p \frac{a_n b_p}{n+p}$ converge.

INDICATION: On montrera la lemme suivant: $\sum_{k=1}^{n} \frac{\sqrt{m}}{(m+k)\sqrt{k}} \leq \pi$ pour tout $m, n \in \mathbb{N}^*$.

Exercice 20

[id=272]

Pour tout $(n,p) \in \mathbb{N}^* \times \mathbb{N}^*$, on pose $u_{n,p} = \begin{cases} \frac{(-1)^p}{p^2} & \text{si} \quad p \ge n > 0 \\ 0 & \text{si} \quad 1 \le p < n \end{cases}$

 $\boxed{\mathbf{1}}$ Est ce que la suite double $(u_{n,p})$ est sommable?

2 Étudier l'existence des sommes $\sum_{n=1}^{+\infty} \left(\sum_{p=1}^{+\infty} u_{n,p}\right)$ et $\sum_{p=1}^{+\infty} \left(\sum_{n=1}^{+\infty} u_{n,p}\right)$, et en cas d'existence, les comparer.

Exercice 21

[id=273]

Soit $\theta \in \mathbb{R}$. Calculer la somme $\sum_{p,q>0} \frac{\cos((p+q)\theta)}{p!q!}$.