Chapitre 6 : Séries numériques et intégrales impropres

Exercice 1

Quelle est la nature de la série numérique $\sum u_n$ où $u_n = \int_0^{\frac{\pi}{n}} \frac{\sin^3(t)}{1+t} dt$ pour tout $n \in \mathbb{N}^*$?

Exercice 2

[id=3]

Soit $a \in]0,1[$ et (u_n) la suite définie par

$$\begin{cases} u_0 = a \\ \forall n \in \mathbb{N}, u_{n+1} = \frac{u_n + u_n^2}{2} \end{cases}$$

Démontrer que la série $\sum u_n$ est convergente.

Exercice 3 [id=67]

On se propose de démontrer que $S=\sum\limits_{n=1}^{+\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$ et de calculer $S'=\sum\limits_{n=0}^{+\infty}\frac{1}{(2n+1)^2}$.

- Soient deux réels a < b et une fonction g de classe C^1 sur le segment [a, b]. Montrer que $\lim_{\lambda \to +\infty} \int_a^b g(t) \sin(\lambda t) dt = 0.$ (Utiliser une intégration par parties.)
- **2** Soit un entier non-nul $n \in \mathbb{N}^*$. On définit la fonction S_n sur $[0, \pi]$ par

$$S_n(t) = 1 + 2\sum_{k=1}^{n} \cos(2kt)$$

Montrer sans utiliser de récurrence que $\forall t \in]0, \pi[$ $S_n(t) = \frac{\sin(2n+1)t}{\sin t}$. et calculer $S_n(0), S_n(\pi)$.

- **3** Calculer l'intégrale $J_n = \int_0^{\frac{\pi}{2}} \frac{\sin(2n+1)t}{\sin t} dt$
- On définit la fonction ϕ sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ par : $\phi(t) = \begin{cases} \frac{1}{t} \frac{1}{\sin t} & \text{si } t \neq 0 \\ 0 & \text{si } t = 0 \end{cases}$. Montrer que la fonction ϕ est dérivable en 0 et préciser $\phi'(0)$. Montrer ensuite que la fonction ϕ est de classe \mathcal{C}^1 sur le segment $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- $\boxed{\mathbf{5}} \text{ Déterminer } \lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} \phi(t) \sin(2n+1)t \ \mathrm{d}t \text{ et en déduire } \lim_{n \to +\infty} I_n \text{ où }$

$$\forall n \in \mathbb{N}, I_n = \int_0^{\frac{\pi}{2}} \frac{\sin(2n+1)t}{t} dt.$$

- **6** Déterminer deux réels α et β tels que $\forall n \in \mathbb{N}^*$, $\int_0^{\pi} (\alpha t + \beta t^2) \cos(nt) dt = \frac{1}{n^2}$
- 7 En déduire que

$$2\sum_{k=1}^{n} \frac{1}{k^2} - \int_0^{\pi} (\alpha t + \beta t^2) S_n\left(\frac{t}{2}\right) dt$$

est un réel indépendant de n que l'on précisera.

- 8 On définit la fonction h sur $]0,\pi]$ par $h(t)=\frac{\left(\alpha t+\beta t^2\right)}{\sin\frac{t}{2}}$. Montrer que h se prolonge en une fonction de classe C^1 sur $[0, \pi]$.
- **9** Montrer que les séries $\sum \frac{1}{n^2}$ et $\sum \frac{1}{(2n+1)^2}$ sont convergentes et calculer leur sommes respectives : $S = \sum_{n=1}^{+\infty} \frac{1}{n^2}$ et $S' = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}$.

Exercice 4

Etudier la convergence des intégrales suivantes :

$$\boxed{\mathbf{1}} \int_0^1 t^{\alpha} \ln t \, dt$$
, avec $\alpha \in \mathbb{R}$.

$$2 \int_0^1 t^{\alpha} (1-t)^{\beta} dt, \text{ avec } \alpha, \beta \in \mathbb{R}.$$

$$\begin{array}{c|c} \hline \mathbf{2} & \int_0^1 t^{\alpha} (1-t)^{\beta} \mathrm{d}t, \text{ avec } \alpha, \beta \in \mathbb{R}. \\ \hline \mathbf{3} & \int_0^1 \frac{t^{\alpha} + (1-t)^{\beta}}{t^{\alpha} (1-t)^{\beta}} \mathrm{d}t, \text{ avec } \alpha, \beta \in \mathbb{R}. \\ \hline \mathbf{4} & \int_0^1 \frac{|\ln(t)|^{\gamma}}{t^{\alpha} (1-t)^{\beta}} \mathrm{d}t, \text{ avec } \alpha, \beta, \gamma \in \mathbb{R}. \\ \hline \end{array}$$

$$\boxed{\mathbf{4}} \int_0^1 \frac{|\ln(t)|^{\gamma}}{t^{\alpha}(1-t)^{\beta}} dt$$
, avec $\alpha, \beta, \gamma \in \mathbb{R}$.

$$\boxed{\mathbf{5}} \int_0^{+\infty} t^{\alpha} e^{-t^2} dt., \text{ avec } \alpha \in \mathbb{R}.$$

$$\boxed{\mathbf{6}} \int_0^{+\infty} x(\sin x) e^{-x} \mathrm{d}x.$$

$$\boxed{7} \int_0^{+\infty} (\ln t) e^{-t} dt.$$

$$\boxed{8} \int_0^1 \frac{1}{(1-t)\sqrt{t}} dt.$$

$$\boxed{\mathbf{9}} \int_0^{+\infty} \frac{1}{e^t - 1} \mathrm{d}t.$$

$$\boxed{\mathbf{10}} \int_0^{+\infty} \frac{te^{-\sqrt{t}}}{1+t^2} dt.$$

$$11$$
 $\int_0^1 \cos^2\left(\frac{1}{t}\right) dt$.

$$\boxed{12} \int_0^{+\infty} \frac{\ln t}{t^2 + 1} dt.$$

$$\boxed{13} \int_1^{+\infty} \frac{\sqrt{\ln x}}{(x-1)\sqrt{x}} dx.$$

$$\boxed{14} \int_{1}^{+\infty} e^{-\sqrt{nt}} dt, n \in \mathbb{N}.$$

$$\boxed{\mathbf{15} \quad \int_0^1 \frac{1}{1-\sqrt{t}} \mathrm{d}t.}$$

$$\boxed{\mathbf{16}} \int_0^{+\infty} \left(1 + t \ln \left(\frac{t}{t+1} \right) \right) dt.$$

17
$$\int_{2}^{+\infty} (\sqrt{x^4 + x^2 + 1} - x\sqrt[3]{x^3 + ax}) dx \text{ où}$$
 $a \in \mathbb{R}$.

$$\boxed{\mathbf{18}} \int_0^{+\infty} e^{-t} \left(\frac{1}{1 - e^{-t}} - \frac{1}{t} \right) \mathrm{d}t.$$

Exercice 5 [id=232]

Discuter, suivant la valeur de $\alpha \in \mathbb{R}$, la convergence des intégrales suivantes :

$$\boxed{\mathbf{1}} \int_0^{+\infty} \frac{t \ln t}{(1+t^2)^{\alpha}} dt$$

$$2$$
 $\int_0^{+\infty} x^{\alpha} \ln(x + e^{\alpha x}) dx$

Exercice 6

Étudier la convergence des intégrales suivantes :

$$\boxed{1} \int_0^{+\infty} \frac{\sin x + \cos x}{\sqrt{x^3 + 1}} dx$$

$$\int_{-\infty}^{+\infty} \frac{1+x^2e^{-x}}{x^2+x^2-2x} dx$$

$$\boxed{\mathbf{4}} \int_0^1 \frac{\ln x}{x^3 + x^2} \mathrm{d}x$$

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^6}} \, \mathrm{d}x.$$

$$\boxed{\mathbf{6}} \int_{-\infty}^{+\infty} \frac{\operatorname{ch} x}{\operatorname{ch} 2x} \, \mathrm{d}x$$

$$\boxed{7} \int_0^{+\infty} \sqrt{\frac{2x+3}{5x^3+3x^2+7}} \, \mathrm{d}x$$

$$\boxed{8} \int_0^{+\infty} \frac{x-5}{x^2+4x+4} dx$$

$$\boxed{9} \int_0^{+\infty} \frac{\ln x}{x^2 + 1} \, \mathrm{d}x$$

$$\boxed{\mathbf{10}} \int_0^{+\infty} e^{-u^2} \mathrm{d}u$$

$$\boxed{11} \int_0^{+\infty} \frac{2 + \ln x}{x + 4} \, \mathrm{d}x$$

$$\boxed{\mathbf{12}} \int_1^2 \frac{1}{t^2 - t} \, \mathrm{d}t$$

$$\boxed{13} \int_0^1 \frac{1}{\sqrt{t^3 + 3t^2 + t}} \, \mathrm{d}t$$

$$\boxed{14} \int_1^{+\infty} \ln\left(1 + \frac{1}{x^2}\right) \, \mathrm{d}x$$

$$\boxed{\mathbf{15}} \int_0^{+\infty} e^{-x} \, \mathrm{d}x$$

$$\boxed{\mathbf{16} \int_{-\infty}^{+\infty} e^{-|x|} \, \mathrm{d}x,}$$

$$\boxed{17 \int_0^1 \ln(x) \, \mathrm{d}x}$$

$$18 \int_1^{+\infty} \frac{\ln(x)}{x^2} \, \mathrm{d}x.$$

$$\mathbf{19} \int_{1}^{\infty} \frac{\arctan(x)}{x \ln(2+x^2)} \, \mathrm{d}x,$$

$$\boxed{20 \quad \int_0^\infty e^{-\sqrt{t}} \, \mathrm{d}x,}$$

$$\boxed{\mathbf{21} \quad \int_0^1 \frac{\cosh x - \cos x}{x^{5/2}} \, \mathrm{d}x,}$$

$$\boxed{22} \int_0^\infty \frac{\sqrt{x} \sin(1/x^2)}{\ln(1+x)} \, \mathrm{d}x.$$

Exercice 7 [id=23]

Étudier le convergence de la série $\sum u_n$ dans chacun des cas suivants :

$$\boxed{\mathbf{1}} \ u_n = \frac{3^n + n^4}{5^n - 3^n}$$

$$\boxed{2} u_n = \frac{\operatorname{ch}(2n)}{\operatorname{ch}(3n)}$$

$$\boxed{\mathbf{3}} \ u_n = \left(\frac{1}{2} + \frac{1}{2n}\right)^n$$

$$\boxed{\mathbf{4}} \ u_n = \tanh(n+a) - \tanh(n), \ a \in \mathbb{R} \ \text{donn\'e}.$$

$$\boxed{5} \ u_n = \frac{1}{(3 + (-1)^n)^n}$$

$$\boxed{\mathbf{6}} \ u_n = \frac{1}{1+x^{2n}}, \ x \in \mathbb{R}, \ \text{donn\'e}.$$

$$\boxed{7} \ u_n = 1 - \cos \frac{1}{n}$$

$$\boxed{8} \ u_n = \sqrt[n]{\frac{n}{n+1}} - 1$$

$$\boxed{\mathbf{9}} \ u_n = n^{-\left(1 + \frac{2}{n}\right)}$$

10
$$u_n = \exp\left(\cos\left(\frac{1}{n}\right)\right) - \exp\left(\cos\left(\frac{2}{n}\right)\right)$$

11
$$u_n = x^{\ln(n)}, x > 0$$
, donné.

12
$$u_n = n^2 a^{\sqrt{n}}, a > 0$$
 donné.

13
$$u_n = \frac{n!}{a^n}, \ a > 0, \ donné.$$

$$14 \mid u_n = \frac{n!}{n^n}$$

$$\boxed{\mathbf{15}} \ u_n = \frac{a^n}{n^a}, \ a > 0 \text{ donn\'e}.$$

16
$$u_n = (a + \frac{1}{n})^n, a > 0$$
 donné.

17
$$u_n = \frac{1}{(1+a)(1+a^2)\cdots(1+a^n)}, a > 0$$
 donné.

18
$$u_n = \left(1 + \frac{x}{n}\right)^{n^2}, x \in \mathbb{R}, \text{ donné.}$$

$$\boxed{19} u_n = \left(\frac{\sin^2 n}{n}\right)^n$$

$$\boxed{\mathbf{20}} u_n = \left(1 - \exp\left(\frac{1}{n^2}\right)\right) \sqrt{\ln(n)}$$

$$\boxed{\mathbf{21}} u_n = \frac{1}{\ln(n!)}$$

22
$$u_n = n^{n^{-a}} - 1, a > 0$$
 donné.

23
$$u_n = \frac{(n!)^2}{(2n)!}$$

24
$$u_n = \frac{(n!)^2}{2^{n^2}}$$

25
$$u_n = \frac{n^2}{n^3 + 1}$$

$$\boxed{26} u_n = \frac{1}{(\ln(n))^n}$$

$$\boxed{27} u_n = \frac{1}{(\ln(n))^{\ln(n)}}$$

28
$$u_n = \frac{1}{\ln(n^2 + n + 1)}$$

29
$$u_n = \frac{n^2}{(1+\delta)^n}$$
, δ un nombre réel tel que $|\delta| < \frac{1}{2}$.

30
$$u_n = \frac{\sum\limits_{k=1}^{n} k}{\sum\limits_{k=1}^{n} k^2} = \frac{1+\dots+n}{1^2+\dots+n^2}.$$

31
$$u_n = \frac{a^n + 1}{n + a^{2n}}, a > 0$$
 donné.

32
$$u_n = 2^{-\sqrt{n}}$$
.

33
$$u_n = \frac{1}{\sqrt{n(n+1)(n+2)}}$$

$$\boxed{\mathbf{34}} u_n = \exp\left(\frac{1}{n}\right) - \exp\left(\frac{1}{n+a}\right), \ a > 0 \text{ donn\'e}.$$

35
$$u_n = f\left(a + \frac{1}{n}\right) + f\left(a - \frac{1}{n}\right) - 2f(a)$$
 avec : $a \in \mathbb{R}$ et f une fonction réelle de classe C^2 sur un intervalle de la forme $]a - \alpha, a + \alpha[, \alpha > 0]$

36
$$u_n = \frac{1}{an+b} - \frac{c}{n}, (a,b,c) \in \mathbb{R}^3$$
: discuter suivant a,b et c .

37
$$u_n = \frac{2^n + a^n}{2^n + b^n}, (a, b) \in \mathbb{R}^2$$
: discuter suivant a et b .

$$38 \mid u_n = \frac{(-1)^n}{n} \arctan \frac{1}{n}$$

39
$$u_n = \sin\left(\left(n + \frac{a}{n}\right)\pi\right), a \in \mathbb{R}$$

40
$$u_n = \frac{(-1)^n}{(-1)^n + n^a}$$
, $a \in \mathbb{R}$ et $a \neq 0$.

41
$$u_n = \frac{\cos(an+b)}{n^{\alpha}}$$
, avec $(a,b,\alpha) \in \mathbb{R}^3$ et $\alpha > 0$ et $\alpha \not\equiv 0$ $[2\pi]$.

42
$$u_n = \frac{(-1)^n}{n+2\sin n}$$

43
$$u_n = (-1)^n (\sqrt{n^2 + 1} - n)$$

$$\boxed{44} u_n = \ln\left(1 + \frac{\cos n}{\sqrt{n}}\right)$$

45
$$u_n = \frac{\sin(2n)}{n^2 - n + 1}$$

46
$$u_n = \frac{1 + \ln(n)}{n^2}$$

$$\boxed{47} u_n = \frac{2^n + 5}{3^n + 11}$$

48
$$u_n = \frac{5^n + 2}{11^n + 3}$$

$$\boxed{\mathbf{49} \quad u_n = e^{-\sqrt{n}}}$$

$$\boxed{\mathbf{50} \quad u_n = \frac{n!}{n^n}}$$

51
$$u_n = \frac{(n+1)^4}{n!+1},$$

$$\mathbf{52} \mid u_n = \left(\frac{1}{2} + \frac{1}{n}\right)^n,$$

$$\boxed{53} u_n = \frac{n^{\ln(n)}}{\ln(n)^n},$$

54
$$u_n = n^2 \sin(\frac{1}{2^n}),$$

55
$$u_n = (n^6 + 3)^a - (n^2 + 2)^{3a}$$
, où $a \in \mathbb{R}$

56
$$u_n = \sqrt{\ln(n+1)} - \sqrt{\ln(n)}$$

57
$$u_n = \left(\frac{\ln(n+1)}{\ln(n)} - 1\right)^{\alpha}$$
, où $\alpha > 0$, DL2 de la suite u_n .

$$58 u_n = \ln\left(1 + \frac{1}{n}\sin\left(\frac{n\pi}{2}\right)\right).$$

$$\boxed{59} u_n = \frac{(-1)^n}{2n + (-1)^n},$$

60
$$u_n = \frac{(-1)^n}{n + (-1)^n \ln(n)}$$
, DL2 de la suite u_n .

61
$$u_n = \frac{(-1)^n}{n + (-1)^n \sqrt{n+1}},$$

62
$$u_n = \frac{(-1)^{n+1}}{n^{\alpha} + (-1)^n}$$
 avec $\alpha > 0$.

63
$$u_n = \ln\left(1 + \frac{(-1)^{n+1}}{n^{\alpha}}\right) \text{ avec } \alpha > 0.$$

64
$$u_n = \frac{(-1)^n}{\ln n + (-1)^n}$$

$$\boxed{65} u_n = \ln\left(1 + \frac{(-1)^n}{\sqrt{n}}\right),$$

66
$$u_n = (-1)^n \sqrt{n} \sin(\frac{1}{n}),$$

$$\boxed{67} \quad u_n = \cos\left(n^2 \pi \ln\left(\frac{n-1}{n}\right)\right),$$

68
$$u_n = \frac{\frac{(-1)^n}{\sqrt{n+1}}}{e^{\frac{(-1)^n}{\sqrt{n+1}}} - 1} - 1,$$

$$\boxed{69} u_n = \ln\left(\frac{\sqrt{n} + (-1)^n}{\sqrt{n-4}}\right),$$

70
$$u_n = \ln\left(1 + \frac{(-1)^n}{\sqrt{n(n+1)}}\right),$$

$$\boxed{\mathbf{71}} u_n = \left(\frac{n}{n+1}\right)^{n^2}$$
 et équivalent du reste.

$$72 \mid u_n = \frac{1}{(\ln n)^{\ln n}}.$$

73
$$u_n = \frac{x^n}{1+y^{2n}}$$
 selon les valeurs des réels x et y .

$$\boxed{74} u_n = \left(n\sin\left(\frac{1}{n}\right)\right)^n$$

75
$$u_n = e^{\frac{(-1)^n}{n}} - \left(1 + \frac{(-1)^n}{n^2}\right)^n$$

76
$$u_n = n^{\frac{1}{1+n^2}} - 1$$

$$77 \mid u_n = \sin\left(\frac{1}{n}\right) - \ln\left(1 + \frac{1}{n}\right)$$

78
$$u_n = \frac{e^{\frac{2}{n}} - 1}{\sin(\frac{1}{n})}$$
, DL2 de la suite u_n .

79
$$u_n = \frac{n^2 + n - 3}{n!}$$

$$\boxed{\mathbf{80} \quad u_n = \arctan\left(\frac{2}{n^2}\right)}$$

81
$$u_n = \frac{n-1}{n(n+1)(n+2)}$$

$$\boxed{\mathbf{82} \quad u_n = \ln\left(1 - \frac{1}{n^2}\right)}$$

83
$$u_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k}$$

84
$$u_n = \frac{(-1)^n \sqrt{n} \sin(1/\sqrt{n})}{n + (-1)^n}$$

$$85 \quad u_n = \frac{\cos(\ln n)}{n}$$

86
$$u_n = \prod_{p=2}^n (2 - \sqrt[p]{e})$$

87
$$u_n = \frac{(-1)^n}{n^{\alpha} + (-1)^n}$$
: généraliser à $u_n = \frac{e^{in\theta}}{n^{\alpha} + e^{in\theta}}$

$$88 \mid u_n = (\sin(\pi e n!))^p$$

$$\boxed{\mathbf{89}} \quad u_n = \sum_n \sin \pi \sqrt{n^2 + 1};$$

Pour
$$n \ge 1$$
, $u_n = (\frac{1}{p(n)})^{p(n)}$, où $p(n)$ est le nombre de chiffres de l'écriture décimale de n ;

91 Pour
$$n \geq 1, u_n = \frac{\sigma(n)}{n^2}$$
, où $\sigma : \mathbb{N}^* \to \mathbb{N}^*$ est une bijection;

92
$$u_n = \sin(\pi(2+\sqrt{5})^n)$$

$$\boxed{93} u_n = \frac{n+1}{n^3 - 7},$$

$$\boxed{94} u_n = \frac{n+1}{n^2 - 7},$$

$$\boxed{\mathbf{95}} \quad u_n = \frac{n+1}{n-7},$$

$$\boxed{\mathbf{96}} \quad u_n = \sin\left(\frac{1}{n^2}\right),$$

$$\boxed{97} \ u_n = \frac{2^n + 3^n}{n^2 + 5^n},$$

98
$$u_n = \frac{1}{n^{(1+\frac{1}{\sqrt{n}})}},$$

$$\boxed{99} \ u_n = \frac{1}{\ln(n^2 + 2)},$$

100
$$u_n = \frac{\ln(n)}{n^{\frac{3}{2}}},$$

$$101 \mid u_n = \frac{n}{2^n},$$

$$\boxed{102} u_n = \frac{n^{100\ 000}}{2^n},$$

$$103 \quad u_n = \frac{1}{n!},$$

$$104 \quad u_n = \frac{n^{100\ 000}}{n!},$$

$$\boxed{105} \quad u_n = \frac{2^n}{n!},$$

106
$$u_n = \frac{4^{n+1}((n+1)!)^2}{(2n)!},$$

$$\boxed{107} u_n = \left(\sin\left(\frac{1}{n}\right)\right)^n,$$

$$\boxed{108} u_n = \left(1 - \frac{1}{n}\right)^{n^2},$$

$$\boxed{109} u_n = \left(1 + \frac{1}{n}\right)^{n^2}.$$

110
$$u_n = \frac{1}{n^{3/4}} + \frac{\sin(2n)}{n^{3/4}},$$

111
$$u_n = \frac{1}{n^{3/4}} + \frac{1 - n^{(n-3/4)}}{n^n},$$

112
$$u_n = \sqrt{1 + \frac{(-1)^n}{n^{3/4}}} - \exp\left(\frac{(-1)^{n+1}}{2n^{3/4}}\right).$$

113
$$u_n = n \ln \left(1 + \frac{1}{n} \right) - \cos \left(\frac{1}{\sqrt{n}} \right),$$

114
$$u_n = \frac{(-1)^n}{n + (-1)^n \sqrt{n}}.$$

115
$$u_n = (-1)^n \frac{1}{\ln(n+1)},$$

$$\boxed{116} u_n = \sin\left(\left(n + \frac{1}{n}\right)\pi\right),$$

117
$$u_n = (-1)^n (\sqrt{1+n} - \sqrt{n}).$$

118
$$u_n = (-1)^n \frac{n^3}{n!},$$

119
$$u_n = \frac{a^n}{n!}$$
 avec $a \in \mathbb{C}$,

120
$$u_n = na^{n-1} \text{ avec } a \in \mathbb{C},$$

121
$$u_n = \sum_{p=0}^{+\infty} \frac{1}{(n+p)^2}$$
 (comparer à une intégrale)

122
$$u_n = \frac{(-1)^n}{n^{2/3} + \cos n}$$

$$123 \quad u_n = \frac{\cos\sqrt{n}}{n(\ln n)^2}$$

124
$$u_n = x^{-\sqrt{1+n}} \quad (x \in \mathbb{R}_+^*).$$

$$125 \quad u_n = \frac{\cos(\ln n)}{n}$$

$$\boxed{126} \quad u_n = \left(\frac{2n}{3n+2}\right)^n,$$

127
$$u_n = \frac{1}{n^n}$$
,

$$128 \quad u_n = \frac{n!}{n^n} ,$$

129
$$u_n = \frac{(n!)^2}{(2n)!}$$
,

130
$$u_n = \frac{(n+1)2^n}{n!}$$
,

131
$$u_n = \frac{(2n)!}{n^{2n}}$$

132
$$u_n = \frac{n^n}{(n!)^2}$$

Exercice 8 [id=235]

Calculer la somme de la série $\sum u_n$ dans chacun des cas suivants, après justification de sa convergence.

$$\boxed{\mathbf{1}} u_n = \frac{3^n}{7^{n-2}}, n \ge 2;$$

$$2 u_n = \frac{1}{n(n+1)}, n \ge 1;$$

3
$$u_n = \frac{1}{n(n+1)(n+2)}, n \ge 1;$$

$$\boxed{\mathbf{4}} \ u_n = \frac{1}{n(n+1)\cdots(n+p)}, n \geq 1 \text{ et } p \in \mathbb{N}^* \text{ fixé};$$

$$\boxed{\mathbf{5}} \ u_n = \ln \frac{n(n+2)}{(n+1)^2}, n \ge 1;$$

6
$$u_n = \ln(1 + 2^{-2^n}), n \ge 0.$$

$$\boxed{7} \ u_n = \frac{n^2 + 9n + 5}{(n+1)(2n+3)(2n+5)(n+4)}.$$

$$\boxed{8} \ u_n = n \ln \left(\frac{n^4 + 2n^3 - 2n - 1}{n^4 + 2n^3} \right).$$

$$\boxed{9} \ u_n = \sum_{k=0}^n \frac{(-1)^{n-k}}{k! 2^{n-k}}.$$

10
$$u_n = \sum_{k=0}^n \frac{1}{(n-k)!k!}$$
.

$$\boxed{11} u_n = \frac{E(\sqrt{n+1}) - E(\sqrt{n})}{n}.$$

12
$$u_n = \frac{(-1)^n}{n^2 - 1}$$
.

13
$$u_n = na^n, a \in [0, 1[.$$

14
$$u_n = \frac{a^n}{n}, a \in [0, 1[.$$

Exercice 9 [id=236]

Etudier la convergence des intégrales suivantes :

$$\boxed{\mathbf{1}} \int_{4}^{+\infty} \frac{\sin x}{\sqrt{x} + \sin x} \mathrm{d}x$$

$$\boxed{\mathbf{2}} \int_{1}^{+\infty} \ln\left(1 + \frac{\sin x}{x^{\alpha}}\right) dx$$
, où $\alpha \in \mathbb{R}$ et $\alpha > 0$.

SPÉ MP

Exercice 10 [id=2]

Démontrer que l'intégrale $I=\int_1^{+\infty}((1+x)^{\frac{1}{1+x}}-x^{\frac{1}{x}})\mathrm{d}x$ est convergente.

Exercice 11 $_{[id=238]}$

Quelle est la nature de l'intégrale suivante $\int_0^{+\infty} e^{\cos(x)} dx$?

Exercice 12 [id=239]

Déterminer les valeurs possibles de α et β pour les quelles l'intégrale $\int_0^{+\infty} e^{\alpha x + \beta x^2} \mathrm{d}x$ est convergente.

Exercice 13 [id=240]

Pour tout $n \in \mathbb{N}^*$, on pose :

$$u_n = \frac{n^2}{\left(\prod_{k=1}^n k^k\right)^{\frac{4}{n^2}}}$$

Calculer $\lim_{n\to+\infty} u_n$.

Exercice 14 [id=241]

Démontrer que pour tout nombre réel α , si $\alpha > \frac{1}{2}$ alors la série $\sum \frac{\sin \sqrt{n}}{n^{\alpha}}, n \ge 1$ est convergente.

Exercice 15 $_{[id=242]}$

Soit a un niombre réel et $f:[a,+\infty[\to\mathbb{C}$ une application de classe C^1 tel que les intégrales $\int_a^{+\infty} f(t) \mathrm{d}t$ et $\int_a^{+\infty} |f'(t)| \mathrm{d}t$ sont convergentes. Démontrer que la série $\sum f(n), n \geq p$ est convergente, p étant le plus petit entier naturel supérieur ou égal à a.

Exercice 16 [id=243]

Soit $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$ tel que $1 - \alpha < \beta < 1$.

1 Démontrer que la série de terme général

$$u_n = \frac{e^{in^\beta}}{n^\alpha}$$

est convergente.

2 En déduire que les séries de termes généraux respectifs

$$c_n = \frac{\cos(n^{\beta})}{n^{\alpha}}$$
 et $s_n = \frac{\sin(n^{\beta})}{n^{\alpha}}$

sont convergentes.

Exercice 17

Quelle est la nature de la série de terme générale $u_n = \frac{(-1)^n}{n^{\frac{1}{3}} + (-1)^n}$?

Exercice 18

Pour tout $n \in \mathbb{N}$, on pose $a_n = \int_0^1 t^n \sqrt{1 - t^2} dt$. 1) Montrer que (a_n) est décroissante.

- 2) Montrer que pour tout $n \in \mathbb{N}$, on a $a_{n+2} = \frac{n+1}{n+4} a_n$. En déduire que $a_n \sim a_{n+1}$. 3) Montrer que la suite de terme générale $b_n = (n+1)(n+2)(n+3)a_na_{n+1}$ est constante. En déduire un équivalent de a_n et la nature de la série $\sum a_n$.

Exercice 19 [id=246]

Soit $f:[1,+\infty[\to\mathbb{R}$ une application strictement positive de classe C^1 tel que

$$\lim_{x \to +\infty} \frac{f'(x)}{f(x)} = -\infty$$

- 1 | Montrer que f est intégrable sur $[1, +\infty[$
- **2** Démontrer que, quand x tends vers $+\infty$, on a

$$\int_{-\infty}^{+\infty} f(t) dt = o(f(x))$$

Exercice 20

Soit $f:[0,+\infty[\to\mathbb{R}$ de classe C^1 . Montrer que, si f^2 et f'^2 sont intégrables sur $[0,+\infty[$ alors $\lim_{x \to +\infty} f(x) = 0.$

Soit α un nombre réel strictement positif. Pour tout nombre réel strictement positif x, on pose $F_{\alpha}(x) = \frac{1}{x^{\alpha}} \int_0^x \frac{u^{\alpha - 1}}{1 + u} du.$

- **1** Montrer que F_{α} est bien définie pour tout $x \in \mathbb{R}_{+}^{*}$.
- **2** Calculer $F_1(x)$ et $F_{\frac{1}{2}}(x)$, pour tout $x \in \mathbb{R}_+^*$.

[id=248]

- **3** Trouver la limite, quand x tend vers 0 à droite de $F_{\alpha}(x)$.
- **4** | Montrer que sur l'intervalle $]0,+\infty[$, la fonction $x\mapsto F_{\alpha}(x)$ est la seule solution de l'équation différentielle (E_{α}) $xy' + \alpha y = \frac{1}{x+1}$ qui ait une limite finie quand la variable x tend vers 0 à droite.
- **5** (a) Montrer que, pour tout x > 0, on a $F_{\alpha}(x) \ge \frac{1}{\alpha(1+x)}$.
 - (b) Montrer que, sur l'intervalle x > 0, la fonction $x \mapsto F_{\alpha}(x)$ est décroissante.
- **6** a Si $\alpha > 1$, montrer que, pour tout x > 0, on a $F_{\alpha}(x) \leq \frac{1}{(\alpha 1)x}$.
 - (b) Si $0 < \alpha < 1$, montrer qu'il existe un nombre réel c_{α} , ne dépendant que de α , tel que, pour tout x > 0, on ait : $F_{\alpha}(x) \leq \frac{c_{\alpha}}{r^{\alpha}}$.
- **7** (a) Trouver une relation simple entre $F_{\alpha}(x)$ et $F_{\alpha+1}(x)$.
 - (b) En déduire la limite, quand x tend vers $+\infty$, de $xF_{\alpha+1}(x)$.

Exercice 22

Etudier la convergence de l'intégrale $\int_1^{+\infty} \frac{\sin(x)}{\sqrt{x} + \cos(x)} dx$.

Exercice 23

On pose $R_n = \sum_{k=n+1}^{\infty} \frac{(-1)^k}{k}$ pour tout $n \in \mathbb{N}$ 1) Justifier l'existence de R_n .

- 2) Montrer que, pour tout $n \in \mathbb{N}$, $R_n = (-1)^{n+1} \int_0^1 \frac{x^n}{1+x} dx$.
- 3) Montrer qu'il existe $\beta \in \mathbb{N}^*$ et $A \in \mathbb{R}^*$ tels que $R_n = A \frac{(-1)^{n+1}}{n^{\beta}} + O(\frac{1}{n^{\beta+1}})$. En déduire la convergence de $\sum_{n=0}^{\infty} R_n$. 4) Calculer $\sum_{n=0}^{\infty} R_n$.

Exercice 24

Soit $(a_n)_{n\in\mathbb{N}}$ une suite à termes positifs. Montrer que la série $\sum u_n$ de terme général

$$u_n = \frac{a_n}{(1+a_0)(1+a_1)\cdots(1+a_n)}$$

converge et calculer sa somme en fonction des a_n .

[id=252]

Démontrer que pour tout nombre complexe p, l'intégrale :

$$I = \int_0^{+\infty} e^{x^2} e^{-px} \mathrm{d}x$$

est divergente.

Exercice 26

[id=274]

Soit $(a_{n,k})_{n,k\geq 0}$ une famille de réels. On suppose que :

- Pour tout $k \geq 0$, la suite $(a_{n,k})_{n\geq 0}$ est convergente, de limite a_k .
- Il existe une famille $(b_k)_{k\geq 0}$ telle que $|a_{n,k}|\leq b_k$ pour tout $k,n\geq 0$ et telle que $\sum_{k=0}^{\infty}b_k<\infty$. Montrer que les quantités $S_n=\sum_{k=0}^{\infty}a_{n,k}$ et $S=\sum_{k=0}^{\infty}a_k$ sont bien définies, puis que l'on a $\lim_{n\to\infty}S_n=S$.

Exercice 27

[id=478]

Soit (a_n) la suite définie par $a_0 = 1$ et $\forall \in \mathbb{N}, a_{n+1} = \sqrt{a_0 + \cdots + a_n}$. Calculer $\lim_{n \to +\infty} \frac{a_n}{n}$.

Exercice 28

[id=481

On considère la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par $\,u_0\in]\,1;+\infty[$ et :

$$\forall n \in \mathbb{N}, u_{n+1} = u_n^2 - u_n + 1.$$

- a) Montrer : $u_n \xrightarrow[n\infty]{} +\infty$.
- b) Existence et calcul de $\sum_{n=0}^{+\infty} \frac{1}{u_n}$.

Exercice 29

[id=483]

Donner un équivalent simple de $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k!}$

[id=487]

Soit (u_n) une suite réelle tel que les séries $\sum u_n$ et $\sum u_n^2$ sont convergentes.

- Démontrer qu'il existe $k \in \mathbb{N}$ tel que (\star) $\forall n \in \mathbb{N}, n \geq k \Rightarrow u_n + 1 \neq 0$. On note p le plus petit $k \in \mathbb{N}$ réalisant (1) ci-dessus.
- **2** Démontrer que la série $\sum_{n\geq p} \frac{u_n}{1+u_n}$ est convergente

Exercice 31

[id=488]

Nature des séries $\sum u_n$ et $\sum U_n$ pour $u_n = \int_0^1 \tan(x^n) dx$ et $U_n = \int_0^1 \tan(x^{n^2}) dx$ pour tout $n \in \mathbb{N}$

Exercice 32

[id=489

Nature des séries $\sum u_n$ et $\sum U_n$ pour $u_n = \frac{1}{(n+1)!} \sum_{k=0}^n k!$ et $U_n = \frac{1}{(n+2)!} \sum_{k=0}^n k!$ pour tout $n \in \mathbb{N}$

Exercice 33

[id=490]

- Soit (u_n) une suite de nombre complexes et (U_n) définie par $U_n = \frac{1}{n} \sum_{k=1}^n u_k$. Démontrer que si (u_n) est convergente vers $\ell \in \mathbb{C}$ alors (U_n) converge aussi vers ℓ .
- **2** Soit $\alpha \in]0,1[$ et (x_n) la suite définie par $\begin{cases} x_0 = \alpha \\ \forall n \in \mathbb{N}, x_{n+1} = \sin(x_n) \end{cases}$.
 - (a) Montrer que (x_n) converge vers 0.
 - (b) Montrer que $x_n \sim \sqrt{\frac{3}{n}}$ quand $n \to +\infty$.
- **Généralisation :** Soit a un nombre réel tel que a>0 et $f:[0,a]\to\mathbb{R}$ une application concave strictement croissante tel qu'il existe k et p constantes réelles strictement positives tel que, pour x voisin de 0 dans [0,a], on aie :

$$f(x) = x - kx^{p+1} + o(x^{p+1}).$$

Soit alors (x_n) une suite définie par $x_0 \in]0, a[$ et $\forall n \in \mathbb{N}, x_{n+1} = f(x_n)$. Démontrer que quand n tend vers $+\infty$, on a : $x_n \sim \left(\frac{1}{pkn}\right)^{\frac{1}{p}}$.

Exercice 34

[id=49

On note la fonction $\Gamma: x \mapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$. On pose $u_n = \int_n^{n+1} \ln \Gamma(x) dx$. Préciser la nature de $\sum_{n\geq 1} \frac{(-1)^n}{u_n}$.

[id=493]

- 1 Montrer: $\forall n \in \mathbb{N}, \exists ! a_n \in \mathbb{R}, e^{a_n} + na_n = 2.$
- **2** Déterminer la nature de $\sum a_n$ et $\sum (-1)^n a_n$.
- **3** Déterminer la limite de $n(1 na_n)$ en $+\infty$.
- 4 Développer a_n à la précision o $\left(\frac{1}{n^3}\right)$.

Exercice 36

[id=494]

On pose $a_n = -\int_0^1 \frac{t^n \ln t}{t+1} dt$

- $\boxed{1}$ Montrer que (a_n) est définie. Donner sa limite.
- **2** Calculer $a_n + a_{n+1}$. En déduire un équivalent de a_n .
- 3 Calculer $\sum_{n=0}^{+\infty} (-1)^n a_n$ et $\sum_{n=0}^{+\infty} a_n$.

Exercice 37

[id=49

Soit (u_n) une suite réelle strictement positive. Pour tout $n \in \mathbb{N}$, on pose $S_n = \sum_{p=0}^n u_p$. Comparer la nature des séries $\sum u_n$ et $\sum \frac{u_n}{S_n}$.

Exercice 38

[id=502]

Soit (x_n) la suite définie par

$$\begin{cases} x_0 = 1 \\ \forall n \in \mathbb{N}, x_{n+1} = \sum_{k=0}^{n} x_k \end{cases}$$

Démontrer que la série $\sum \frac{1}{x_n}$ converge et calculer sa somme.

Exercice 39

[id=51]

Soit f la fonction définie par :

$$f(t) = \frac{2t - 1}{\ln t - \ln(1 - t)}$$

et soit:

$$I = \int_0^1 f(t)dt.$$

1 Justifier l'existence de I

2 Montrer que pour tout $n \in \mathbb{N}^*$, on a :

$$\frac{1}{4n} \le I - \frac{\pi}{2n^3} \sum_{k=1}^{n-1} \frac{k(n-k)}{\sin\left(\frac{k\pi}{n}\right)} \le \frac{3}{4n}$$

3 En déduire que $I = \frac{\pi}{2} \int_0^1 \frac{x(1-x)}{\sin(\pi x)} dx$.

Exercice 40 [id=522]

Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite de complexes telle que $\sum_{n\geq 1}a_n^2$ est absolument convergente.

 $\boxed{\mathbf{1}}$ Montrer que, pour tout $n \in \mathbb{N}^*$,

$$\int_{-\pi}^{\pi} x \left(\sum_{k=1}^{n} (-1)^k |a_k| e^{ikx} \right)^2 dx = \frac{2\pi}{i} \sum_{\substack{1 \le k \le n \\ 1 \le p \le n}} \frac{|a_k| |a_p|}{k+p}.$$

 $\boxed{\mathbf{2}}$ Montrer que la famille $\left(\frac{a_p a_q}{p+q}\right)_{p,q \in \mathbb{N}^*}$ est sommable.

Exercice 41 [id=546]

Soit $f:[0,1]\to\mathbb{R}$ une application continue tel que $f(1)\neq 0$. Pour tout $n\in\mathbb{N}$, on note $I_n=\int_0^1 t^n f(t) \mathrm{d}t$. Démontrer que $I_n\sim\frac{f(1)}{n}$ dans les deux cas suivants :

 $\boxed{\mathbf{1}}$ f est de classe C^1 .

 $\boxed{\mathbf{2}}$ f est de classe C^0 .