Chapitre 5 : Espaces préhilbertiens réels

Exercice 1 [id=672]

On se fixe un entier naturel non nul n et une matrice $A \in \mathcal{A}_n(\mathbb{R})$, c'est-à-dire que A est antisymétrique. On note I la matrice identité de $\mathcal{M}_n(\mathbb{R})$.

- 1 Montrer que pour toute matrice colonne $X \in \mathcal{M}_{n,1}(\mathbb{R})$ et toute matrice carrée B d'ordre n, on a $X^{\top}BX = X^{\top}B^{\top}X$. En déduire que $X^{\top}AX = 0$.
- 2 Soit une matrice colonne X telle que (A+I)X=0. En calculant $X^{\top}(A+I)X$ de deux manières différentes, montrer que X=0.
- $\boxed{\mathbf{3}}$ En déduire que A+I est inversible.
- 4 Montrer que la matrice $B = (I A)(I + A)^{-1}$ est orthogonale.
- **5** Calculer (I+B)(I+A). En déduire que I+B est inversible.
- Réciproquement, soit B une matrice orthogonale telle I+B soit inversible. On considère la matrice $C=(I+B)^{-1}(I-B)$. Montrer que l'on a $C^{\top}=I-B^{-1}-C^{\top}B^{-1}$, puis que la matrice C est antisymétrique.

Exercice 2 [id=673

n est un entier naturel non nul. On se propose de démontrer que pour toute matrice $S \in \mathcal{M}_n(\mathbb{R})$, on a S est symétrique positive si et seulement si

$$\forall M \in \mathbf{O}_n(\mathbb{R}), \operatorname{tr}(SM) \leq \operatorname{tr}(S).$$

On munit l'espace euclidien \mathbb{R}^n de son produit scalaire canonique et on rappelle que $\langle X, Y \rangle = \operatorname{tr}(X^\top Y)$ défini un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.

- 1 Démontrer l'implication directe.
- 2 Démontrer que si A est une matrice antisymétrique alors e^A est une matrice orthogonale.
- 3 Démontrer que pour tout vecteur $x \in \mathbb{R}^n$ tel que ||x|| = 1, la matrice $\Omega_x = I_n 2xx^{\top}$ est une matrice orthogonale de $\mathcal{M}_n(\mathbb{R})$..
- $\boxed{\mathbf{4}}$ Soit $S \in \mathcal{M}_n(\mathbb{R})$ tel que

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \operatorname{tr}(SM) \leq \operatorname{tr}(S).$$

et soit A une matrice antisymétrique de $\mathcal{M}_n(\mathbb{R})$.

- (a) Démontrer que l'application $u:t\mapsto \operatorname{tr}(e^{tA})$ est de classe C^1 sur $\mathbb R$ et calculer u'(t) pour tout $t\in\mathbb R$.
- **b** Justifier que u'(0) = 0 et en déduire que $\langle S, A \rangle = 0$
- \bigcirc Démontrer que $S \in \mathcal{S}_n(\mathbb{R})$.
- (d) Soit λ une valeur propre de S et x un vecteur propre de S associé à λ tel que ||x|| = 0. En utilisant la matrice Ω_x définie dans la question 3) ci-dessus prouver que $\lambda \geq 0$
- **5** Conclure.

Soit E un espace euclidien de dimension n et $f \in \mathbf{O}(E)$.

- 1 On suppose que n est impair et $f \in \mathbf{O}^+(E)$. Montrer que $1 \in \operatorname{Sp}(f)$. (Indication : Comparer $\det(f \operatorname{Id}_E)$ et $\det(f^{-1} \operatorname{Id}_E)$.)
- 2 Que peut-on dire quand n est pair?
- 3 Soit n quelconque et $f \in \mathbf{O}^-(E)$. Montrer que $-1 \in \mathrm{Sp}(f)$

Exercice 4 [id=17]

- $\boxed{\mathbf{1}}$ Montrer que l'application $\Phi: (A,B) \mapsto \operatorname{tr}({}^tAB)$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.
- Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$. Montrer que $f: X \mapsto AX XB$ est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$ et trouver son adjoint f^*

Exercice 5 [id=20]

Soit
$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- $\boxed{\mathbf{1}}$ Justifier que la matrice A est diagonalisable.
- **2** Trouver une matrice orthogonale $P \in \mathbf{O}_3(\mathbb{R})$ tel que $P^{-1}AP$ est diagonale.

Exercice 6 [id=34]

Soit E un espace vectoriel euclidien et u et v deux endomorphismes symétriques de E.

- $\boxed{\mathbf{1}}$ Démontrer que $\ker(u) \bigoplus^{\perp} \operatorname{Im}(u) = E$.
- **2** Démontrer que $u \circ v$ est symétrique si et seulement si $u \circ v = v \circ u$.

Exercice 7 [id=37]

Soit E un espace vectoriel euclidien. Pour $f \in \mathcal{L}(E)$, on note $\rho(f) = \max\{|\lambda|; \lambda \text{ valeur propre de } f\}$. On pose également $\|f\| = \sup\{\|f(x)\|; \|x\| \le 1\}$. Démontrer que si f est symétrique, alors $\|f\| = \rho(f)$.

Exercice 8 [id=20]

On dit qu'une matrice S de $\mathcal{M}_n(\mathbb{R})$ est symétrique définie positive si S est symétrique et vérifie la condition :

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), X \neq 0 \Rightarrow {}^{\mathbf{t}}XSX > 0$$

On note $\mathcal{S}_n^{++}(\mathbb{R})$ l'ensemble de telles matrices. Soit $S \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée réelle. Pour tout $X, Y \in \mathcal{M}_{n,1}(\mathbb{R})$, on pose :

$$\langle X, Y \rangle_S = \langle SX, Y \rangle$$

 $\boxed{\mathbf{1}}$ Soit $S \in \mathcal{S}_n(\mathbb{R})$. Démontrer que :

$$S \in \mathcal{S}^{++}(\mathbb{R}) \Leftrightarrow \operatorname{Sp}(S) \subset \mathbb{R}_{+}^{*}$$

- **2** Démontrer que \langle , \rangle_S est un produit scalaire sur $\mathcal{M}_{n,1}(\mathbb{R})$ si et seulement si S est symétrique définie positive.
- Soit φ un produit scalaire sur $\mathcal{M}_{n,1}(\mathbb{R})$. Démontrer qu'il existe une et une seule matrice $S \in \mathcal{S}^{++}(\mathbb{R})$ tel que $\varphi = \langle , \rangle_S$.

Exercice 9 [id=20]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ tel que $A^{\mathbf{t}}AA = I_n$. Démontrer que $A = I_n$.

Exercice 10 [id=203]

E est un espace euclidien et u un endomorphisme de E.

- Démontrer que si x et y sont deux vecteurs propres de u associés aux valeurs propres λ, μ tel que $\lambda \mu \leq 0$ alors il existe un vecteur $z \in E$ tel que $z \neq 0$ et $u(z) \perp z$.
- Démontrer que si $\operatorname{tr}(u) = 0$ alors il existe aux moins un vecteur $z \in E$ tel que ||z|| = 1 et $z \perp u(z)$.
- Démontrer que tr(u) = 0 si et seulement si il existe une base orthonormée \mathcal{B} de E tel que les termes diagonaux de la matrice de u relativement à \mathcal{B} sont nuls.
- 4 Soit:

$$A = \left(\begin{array}{ccc} 3 & 6 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) \in \mathcal{M}_3(\mathbb{R})$$

Démontrer qu'il existe $\Omega \in \mathbf{SO}(3)$ tel que $A = \Omega \Delta^{\mathsf{t}}\Omega$ avec Δ une matrice dont tous les termes de la diagonale sont égaux à 1.

Exercice 11 [id=204

Soit (E,\langle,\rangle) un espace préhilbertien réel et $x,y\in E.$ Démontrer que les assertions suivantes sont équivalentes :

- (i) $x \perp y$
- (ii) $\forall \lambda \in \mathbb{R}, ||x + \lambda y|| \ge ||x||$

[id=205]

On munit $\mathbb{R}[X]$ du produit scalaire

$$\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t) dt$$

- a) Etablir l'existence et l'unicité d'une suite de polynômes (P_n) formée de polynômes deux à deux orthogonaux avec chaque P_n de degré n et de coefficient dominant 1.
- b) Etudier la parité des polynômes P_n .
- c) Prouver que pour chaque $n \ge 1$, le polynôme $P_{n+1} XP_n$ est élément de l'orthogonal à $\mathbb{R}_{n-2}[X]$.
- d) En déduire alors qu'il existe $\lambda_n \in \mathbb{R}$ tel que

$$P_{n+1} = XP_n + \lambda_n P_{n-1}$$

Exercice 13

[id=20

Dans ce sujet, on identifie polynôme et fonction polynomiale associée sur [-1,1]. On munit l'espace $E = \mathcal{C}([-1,1],\mathbb{R})$ du produit scalaire :

$$\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt$$

Pour tout $n \in \mathbb{N}$, on introduit le polynôme P_n dfini par :

$$P_n(x) = \frac{1}{n!2^n} \frac{d^n}{dx^n} ((x^2 - 1)^n)$$

- 1 Calculer $P_n(1)$ et $P_n(-1)$.
- $\fbox{\bf 2}$ Montrer que P_n est une fonction polynôme de degré n orthogonal à tout polynôme de degré inférieur ou égal à n-1.
- **3** En commençant par dériver deux fois $(x^2-1)^{n+1}$, établir que pour tout $n \ge 1$:

$$P'_{n+1} = (2n+1)P_n + P'_{n-1}$$

4 En déduire :

$$||P_n|| = \sqrt{\frac{2}{2n+1}}$$

Exercice 14

id=207

Soit $\mathcal{F} = (x_1, \dots, x_n)$ une famille de $n \ge 2$ vecteurs d'un espace préhilbertien réel. On suppose

$$\forall 1 \leqslant i \neq j \leqslant n, (x_i \mid x_j) < 0$$

Montrer que toute sous famille de n-1 vecteurs de $\mathcal F$ est libre.

[id=208]

1) Calculer

$$\inf \left\{ \int_0^1 t^2 (\ln t - at - b)^2 dt, (a, b) \in \mathbb{R}^2 \right\}$$

2) Calculer

$$\inf \left\{ \int_0^1 (\ln t - at - b)^2 \, \mathrm{d}t, (a, b) \in \mathbb{R}^2 \right\}$$

Exercice 16

[id=209]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), ||AX|| \le ||X||$$

où $\|.\|$ désigne la norme euclidienne usuelle sur l'espace des colonnes.

1 Montrer que :

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \|^{\mathbf{t}} A X \| \le \|X\|.$$

2 Montrer que :

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), AX = X \Rightarrow {}^{\mathbf{t}}AX = X.$$

3 Prouver que :

$$\mathcal{M}_{n,1}(\mathbb{R}) = \ker(A - I_n) \oplus \operatorname{Im}(A - I_n).$$

Exercice 17

[id=21

Soit $A \in \mathcal{O}_n(\mathbb{R})$. On suppose que 1 n'est pas valeur propre de A.

1 Étudier la convergence de

$$\frac{1}{n+1}(I_n+A+\cdots+A^p)$$

lorsque $p \to +\infty$.

2 La suite $(A^p)_{p\in\mathbb{N}}$ est-elle convergente?

Exercice 18

id=21

Soit $E = \mathbb{R}^4$, muni de son produit scalaire canonique et on note $\mathscr{B} = (e_1, e_2, e_3, e_4)$ la base canonique de E. On considère le sous-espace vectoriel F de E défini par le système d'équations :

$$\left\{ \begin{array}{l} x+y+z+t=0 \\ x-y+z-t=0 \end{array} \right.$$

 $\fbox{1}$ Donner une base orthonormée de F et F^{\perp} .

On note p_F la projection orthogonale de E sur F. Donner la matrice de p_F relativement à \mathcal{B} .

3 Calculer d(a, F) où a = (2, 3, 2, 3)

Soit $E = \mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices réelles carrées d'ordre n. Pour tout $X, Y \in E$, on note $\langle X, Y \rangle = \operatorname{tr}({}^{\mathbf{t}}XY)$.

- $\boxed{\mathbf{1}}$ Démontrer qu'il s'agit d'un produit scalaire sur E.
- 2 Déterminer $(D_n(\mathbb{R}))^{\perp}$, où $D_n(R)$ est l'ensemble des matrices diagonales de E.

Exercice 20 [id=213

Soit $E=\mathcal{C}^0([0,1],\mathbb{R})$ l'espace vectoriel des fonctions continues de [0,1] vers \mathbb{R} . Pour tout $f,g\in E$, on note $\langle f,g\rangle=\int_0^1 f(t)g(t)dt$. Soit F le sous-espace vectoriel de E constitué des fonctions polynomiales.

- 1 Prouver que pour tout $h \in E$, il existe une suite $(f_n) \in F^{\mathbb{N}}$ tel que $\lim_{n \to +\infty} f_n = h$ dans (E, \langle, \rangle) .
- **2** En déduire que $F^{\perp} = \{\theta\}$, où θ est la fonction nulle de [0,1] vers \mathbb{R} .

Exercice 21 [id=214

Soit $n \in \mathbb{N}^*$. On munit $\mathcal{M}_n(\mathbb{R})$ de son produit scalaire canonique : pour tout $A, B \in \mathcal{M}_n(R)$, $\langle A, B \rangle = \operatorname{tr}({}^{t}AB)$. On note $\mathcal{S}_n(\mathbb{R})$ (resp. $\mathcal{A}_n(\mathbb{R})$) le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ constitué des matrices symétriques(resp. antisymétriques).

- $\boxed{1}$ Démontrer que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont supplémentaires orthogonaux.
- 2 Soit $M \in \mathcal{M}_n(\mathbb{R})$. Calculer $d(M, \mathcal{S}_n(\mathbb{R}))$ en fonction de M.
- **3** Exemple: Calculer $d(M, \mathcal{S}_n(\mathbb{R}))$ pour $M = I_n + E_{1,n}$, puis pour M = J où J est la matrice dont tous les coefficients valent 1.

Exercice 22 $_{[id=21]}$

Déterminer les matrices de $\mathcal{M}_3(\mathbb{R})$ à la fois symétriques et orthogonales.

Exercice 23 [id=216]

Soit $M = \begin{pmatrix} a & b & c \\ b & x & y \\ c & y & z \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$. Comment choisr $(a, b, c) \in \mathbb{R}^3$ pour qu'il existe $(x, y, z) \in \mathbb{R}^3$ telle que M soit une matrice orthogonale?

[id=217]

Pour tout $(a, b) \in \mathbb{R}^2$, on pose :

$$\Phi(a,b) = \int_0^{\pi} (\sin t - (at^2 + bt))^2 dt$$

Calculer $\min_{(a,b)\in\mathbb{R}^2} \Phi(a,b)$.

Exercice 25

[id=218

Soit E un espace euclidien.

 $\boxed{\mathbf{1}}$ Soit $f: E \to E$ une application telle que :

$$\left\{ \begin{array}{l} f(0) = 0 \\ \forall (x,y) \in E^2, \|f(x) - f(y)\| = \|x - y\| \end{array} \right. .$$

Montrer que f est un endomorphisme orthogonal de E.

Soit $f: E \to E$ une application telle que :

$$\forall (x, y) \in E^2, ||f(x) - f(y)|| = ||x - y||$$

Que peut-on dire de f?

Exercice 26

[id=219

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique dont toutes les valeurs propres sont positives ou nulles.

- 1 Montrer qu'il existe un polynôme $P \in \mathbb{R}[X]$ tel que la matrice P(A) est symétrique à valeurs propres positives ou nulles et $(P(A))^2 = A$.
- **2** Trouver P pour n = 3 et $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$.

Exercice 27

[id=22]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique dont toutes les valeurs propres sont positives ou nulles. $\mathcal{M}_{n,1}(\mathbb{R})$ étant muni de son produit scalaire canonique, calculer :

$$\inf_{\substack{t \in \mathbb{R} \\ X \in \mathcal{M}_{n,1}(\mathbb{R})}} \operatorname{tr}((A - tX^{\mathbf{t}}X)^2).$$

[id=221]

n est un entier naturel non nul, On note :

$$Z = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R}),$$

$$J = Z^{\mathbf{t}}Z$$
 et $M = I_n - \frac{1}{n}J$.

On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire :

$$X, Y \in \mathcal{M}_n(\mathbb{R}), \langle X, Y \rangle = \operatorname{tr}({}^{\mathbf{t}}XY)$$

et \mathbb{R}^n de son produit scalaire canonique, c'est-à-dire, si $x=(x_i)_{1\leq i\leq n}$ et $y=(y_i)_{1\leq i\leq n}$ sont deux vecteurs de \mathbb{R}^n alors

$$(x|y) = \sum_{i=1}^{n} x_i y_i.$$

On note π l'endomorphisme de \mathbb{R}^n canoniquement associé à M.

- Démontrer que π est une projection orthogonale de l'espace euclidien $(\mathbb{R}^n, (|))$, et en préciser les éléments caractéristiques.
- $\boxed{\mathbf{2}}$ On considère l'endomorphisme Φ de $\mathcal{M}_n(\mathbb{R})$ défini par

$$\forall X \in \mathcal{M}_n(\mathbb{R}), \Phi(X) = MXM.$$

Démontrer que Φ est une projection orthogonale de l'espace euclidien $(\mathcal{M}_n(\mathbb{R}), \langle . \rangle)$.

Exercice 29

[id=222]

Soit

$$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in \mathcal{M}_n(\mathbb{R})$$

une matrice tel que

$$\operatorname{rg}(A) = 1$$

Soit

$$\Omega = (\omega_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in \mathbf{O}_n(\mathbb{R})$$

une matrice orthogonale. Démontrer que

$$A + \Omega \in \mathbf{GL}_n(\mathbb{R}) \Leftrightarrow 1 + \sum_{i=1}^n \sum_{j=1}^n \omega_{i,j} a_{i,j} \neq 0.$$

Exercice 30

[id=223]

Soit $n \in \mathbb{N}^*$. On admet que si pour tout $A, B \in \mathcal{M}_n(\mathbb{R})$, on pose $\langle A, B \rangle = \operatorname{tr}({}^{\mathsf{t}}AB)$ alors il s'agit d'un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$. Soit $\Omega \in \mathcal{M}_n(\mathbb{R})$ et Φ_{Ω} et Ψ_{Ω} les endomorphismes de $\mathcal{M}_n(\mathbb{R})$

définis par :

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \left\{ \begin{array}{l} \Phi_{\Omega}(M) = M\Omega \\ \Psi_{\Omega}(M) = \Omega^{-1}M\Omega \end{array} \right..$$

- Prouver que Φ_{Ω} est un endomorphisme orthogonal de $\mathcal{M}_n(\mathbb{R})$ si et seulement si Ω est une matrice orthogonale de $\mathcal{M}_n(\mathbb{R})$.
- Prouver que Ψ_{Ω} est un endomorphisme orthogonal de $\mathcal{M}_n(\mathbb{R})$ si et seulement s'il existe un scalaire non nul $\alpha \in \mathbb{R}^*$ tel que $\alpha\Omega$ est une matrice orthogonale de $\mathcal{M}_n(\mathbb{R})$.

Exercice 31 [id=224

E est un espace euclidien de dimension n avec $n \geq 2$ et u est un endomorphisme symétrique de E, c'est-à-dire que $u \in \mathscr{S}^n(E)$ où $\mathscr{S}_n(E)$ est l'ensemble des endomorphismes symétriques de E. On pourra confondre une vecteur $x = (x_i)_{1 \leq i \leq n} \in \mathbb{R}^n$ et la colonne $X = (x_i)_{1 \leq i \leq n}$ des coordonnées de x relativement à la base canonique de \mathbb{R}^n . On munit \mathbb{R}^n du produit scalaire canonique qui fait de sa base canonique une base orthonormée.

On note

$$\alpha = \min(\mathrm{Sp}(u)), \beta = \max(\mathrm{Sp}(u))$$

Pour tout $x \in E \setminus \{0\}$, on pose :

$$R_u(x) = \frac{\langle u(x), x \rangle}{\langle x, x \rangle} = \frac{\langle u(x), x \rangle}{\|x\|^2}.$$

Partie I : Quotient de Rayleygh, endomorphisme(resp. matrice) symétrique positif(resp. défini positif)

- lacksquare Soit $\lambda \in \operatorname{Sp}(u)$ et $x \in E_{\lambda}(u)$. calculer $R_u(x)$.
- **2** a Justifier l'existence de α et β .
 - Justifier l'existence de deux vecteurs $v, w \in E$ tel que ||v|| = ||w|| = 1 et $u(v) = \alpha v$ et $u(w) = \beta w$.
 - Prouver que :

$$\forall x \in E \setminus \{0\}, \quad \alpha \le R_u(x) \le \beta$$

 $\boxed{\mathbf{3}}$ On note \mathcal{S}^1 la sphère unité de E et on considère l'application

$$\varphi: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}, t \mapsto \varphi(t) = R_u(\cos(t)v + \sin(t)w).$$

- (a) Démontrer que $R_u(E\setminus\{0\}) = R_u(S^1)$.
- **b** Justifier que φ est continue sur $\left[0, \frac{\pi}{2}\right]$ et calculer $\varphi(0)$ et $\varphi\left(\frac{\pi}{2}\right)$.
- (c) En déduire que $R_u(E\setminus\{0\}) = [\alpha, \beta]$
- 4 Démontrer que les assertions suivantes sont équivalentes :
 - (1) $\forall x \in E, \langle u(x), x \rangle \ge 0.$
 - (2) $\operatorname{Sp}(u) \subset \mathbb{R}_+$.

Désormais si l'une des assertions (1) et (2) est vraie on dit que l'endomorphisme symétrique u est positif. On note $\mathscr{S}_n^+(E)$ l'ensemble de tels endomorphismes.

- 5 Démontrer que les assertions suivantes sont équivalentes :
 - (1)' $\forall x \in E \setminus \{0\}, \langle u(x), x \rangle > 0.$
 - (2)' $\operatorname{Sp}(u) \subset \mathbb{R}_+^*$.

Désormais si l'une des assertions (1)' et (2)' est vraie on dit que l'endomorphisme symétrique u est défini positif. On note $\mathscr{S}_n^{++}(E)$ l'ensemble de tels endomorphismes. Il est clair que $\mathscr{S}_n^{++}(E) \subset \mathscr{S}_n^+(E) \subset \mathscr{S}_n(E)$.

- Soit $A \in \mathcal{S}_n(\mathbb{R})$, c'est-à-dire que A est symétrique. on dit que A est positive(resp. définie positive) si $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), {}^t\!XAX \geq 0$ (resp. $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, {}^t\!XAX > 0$.).
 - (a) Vérifier que si $A \in \mathcal{M}_n(\mathbb{R})$ et f_A l'endomorphisme canoniquement associé à A alors A est positive(resp. définie positive) si et seulement si f_A est positif(resp. défini positif).
 - $footnote{b}$ En déduire une autre caractérisation de A positive(resp. A définie positive) utilisant le spectre de A.

Partie II: Racine carrée d'une matrice symétrique positive

- Soit $A \in \mathcal{S}_n^+(\mathbb{R})$ une matrice symétrique positive. Démontrer qu'il existe une matrice B symétrique positive tel que $B^2 = A$.
- Soit $A \in \mathcal{S}_n^+(\mathbb{R})$ une matrice symétrique positive. On suppose que M est une matrice symétrique positive tel que $M^2 = A$. Soient u et v les endomorphismes respectifs canoniquement associés à A et M.
 - \bigcirc Justifier que u et v sont symétriques positifs.
 - (\mathbf{b}) Montrer que u et v commutent.
 - © Soit λ une valeur propre de u et on note u_{λ} l'endomorphisme induit par u sur le sous-espace propre $E_{\lambda}(u)$. Que peut-on dire de u_{λ} ?
 - d Justifier que $E_{\lambda}(u)$ est stable par v. On note v_{λ} l'endomorphisme de $E_{\lambda}(u)$ induit par v.
 - \bullet Justifier que v_{λ} est diagonalisable.
 - f Prouver que v_{λ} admet une et une seule valeur propre qu'on exprimera en fonction de λ .
- Déduire de la question précédente que pour toute matrice symétrique positive A de $\mathcal{M}_n(\mathbb{R})$, il existe une et une seule matrice symétrique positive B de $\mathcal{M}_n(\mathbb{R})$ tel que $B^2 = A$. B sera appelée la racine carrée de A.

Partie III: Application: Décomposition polaire

 $\boxed{\mathbf{1}}$ Soit $A \in \mathbf{GL}_n(\mathbb{R})$.

Démontrer que si $A = \Omega S$ avec Ω une matrice orthogonale et S une matrice symétrique alors forcément S est la racine carrée de ${}^{t}AA$.

- a Démontrer que si S est la racine carrée de ${}^{\mathbf{t}}AA$ alors S est symétrique définie positive. On pose alors $\Omega = AS^{-1}$. Démontrer que Ω est une matrice orthogonale.
- (b) Déduire de ce qui précède que :

$$\forall A \in \mathbf{GL}_n(\mathbb{R}), \exists ! (\Omega, S) \in \mathbf{O}_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R}), \quad A = \Omega S$$

- $\boxed{2} \text{ Soit } A \in \mathcal{M}_n(\mathbb{R}).$
 - (a) Justifier l'existence d'une suite $(A_p) \in (\mathbf{GL}_n(\mathbb{R}))^{\mathbb{N}}$ tel que $\lim_{n \to +\infty} A_p = A$.
 - (b) Montrer que le groupe orthogonal $\mathbf{O}_n(\mathbb{R})$ est un compact de $\mathcal{M}_n(\mathbb{R})$.
 - © En déduire qu'il existe une suite convergente (Ω_k) de matrices orthogonales tel que $\Omega = \lim_{k \to +\infty} \Omega_k$ est une matrice orthogonale et tel que $\forall k \in \mathbb{N}, A_k = \Omega_k S_k$ où $S_k \in \mathcal{S}_n^+(\mathbb{R})$.

- (d) Démontrer que $\mathcal{S}_n^+(\mathbb{R})$ est une partie fermée de $\mathcal{S}_n(\mathbb{R})$.
- **3** En déduire que pour toute matrice $A \in \mathcal{M}_n(\mathbb{R})$, il existe $\Omega \in \mathbf{O}_n(\mathbb{R})$ et $S \in \mathscr{S}_n^+(\mathbb{R})$ tel que $A = \Omega S$.

[id=225

Soit $(E, \langle . \rangle)$ un espace euclidien de dimension n avec $n \geq 2$. Soit u un endomorphisme symétrique de E. On se propose de donner une démonstration du fait que $\mathrm{Sp}(u) \neq \emptyset$. Pour tout $x \in E$, on pose $q(x) = \langle u(x), x \rangle$.

- **1** Démontrer que si $v_1, v_2 \in E$ tel que $v_1 \neq 0$ et $\forall x \in E, x \perp v_1 \Rightarrow x \perp v_2$ alors $v_2 \in \mathbb{R}v_1$.
- $\boxed{\mathbf{2}}$ Justifier que g est continue sur E.
- $\fbox{\bf 3}$ Démontrer que si on note S^1 la sphère unité de E alors g est bornée sur S^1 et atteint ses bornes. On note $\lambda = \min_{x \in S^1} g(x)$.
- Soit $\omega_1 \in S^1$ tel que $g(\omega_1) = \min_{x \in S^1} g(x) = \lambda$. Soit $x \in E$ tel que $x \neq 0$ et $x \perp \omega_1$. On pose $\omega_2 = \frac{1}{\|x\|} x$. Pour tout $t \in \mathbb{R}$, on pose $\varphi(t) = \cos(t)\omega_1 + \sin(t)\omega_2$ et $f(t) = g(\varphi(t))$.
 - $\begin{picture}(\mathbf{a})\end{picture}$ Démontrer que f est dérivable sur $\mathbb{R}.$
 - **(b)** Démontrer que f admet un minimum absolu au point $t_0 = 0$. Que vaut f'(0)?
 - \bigcirc En déduire que $x \perp u(\omega_1)$.
 - (d) Montrer que la famille $(\omega_1, u(\omega_1))$ est liée et en déduire que $\mathrm{Sp}(u)$ est non vide.

Exercice 33

[id=22

On pose $E = \mathscr{C}^1([0;1], \mathbb{R})$ et

$$\forall f, g \in E, \langle f, g \rangle = \int_0^1 f(t)g(t)dt + \int_0^1 f'(t)g'(t)dt$$

- (a) Montrer que $\langle \cdots, \cdot \rangle$ définit un produit scalaire sur E.
- (b) On pose $V = \{ f \in E \mid f(0) = f(1) = 0 \}$ et $W = \{ f \in E \mid f \text{ est } \mathscr{C}^2 \text{ et } f'' = f \}$ Montrer que V et W sont supplémentaires et orthogonaux. Exprimer la projection orthogonale sur W.
- (c) Soient $\alpha, \beta \in \mathbb{R}$ et

$$E_{\alpha,\beta} = \{ f \in E \mid f(0) = \alpha \text{ et } f(1) = \beta \}$$

Calculer

$$\inf_{f \in E_{\alpha,\beta}} \int_0^1 \left(f(t)^2 + f'(t)^2 \right) \mathrm{d}t$$

Mohamed Ait Lhoussain page 11 SPÉ MP

[id=227]

n désigne un entier naturel. Pour tous $P,Q\in\mathbb{R}_n[X]$, on pose :

$$\langle P, Q \rangle = P(0)Q(0) + \int_0^1 P'(t)Q'(t)dt$$

- $\fbox{ 1 }$ Montrer qu'il s'agit d'un produit scalaire sur $\mathbb{R}_n[X]$
- **2** Calculer $\langle X^k, X^\ell \rangle$, pour tout $k, \ell \in [0, n]$.
- 3 On suppose dans cette question que n=3. Vérifier que $\mathscr{B}=(1,X,X^2,X^3)$ n'est pas orthonormée et trouver par le procédé de Schmidt une base orthonormée \mathscr{E} de $\mathbb{R}_3[X]$.
- 4 On suppose toujours que n=3 et soit $F=\operatorname{Vect}(X+1,-3X+2)$. Determiner F^{\perp} , le supplémentaire orthogonal de F dans $\mathbb{R}_3[X]$.

Exercice 35

[id=228]

Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{S}_n(\mathbb{R})$ telle que $A^2 = A$. Démontrer que l'on a les inégalités suivantes :

- $\boxed{\mathbf{1}} \quad 0 \le \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} \le n$
- $\boxed{\mathbf{3}} \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{i,j}| \le n^{\frac{3}{2}}$

Exercice 36

[id=22

Soit E un espace euclidien de dimension n avec $n \in \mathbb{N}^*$ et on considère deux bases orthonormées $\mathscr{B} = (b_1, \ldots, b_n)$ et $\mathscr{C} = (c_1, \ldots, c_n)$ de E et un endomorphisme $u \in \mathcal{L}(E)$. Démontrer que le réel $\alpha_u = \sum_{i=1}^n \sum_{j=1}^n \langle u(b_i), c_j \rangle^2$ est indépendant des bases orthonormées \mathscr{B} et \mathscr{C}

Exercice 37

[id=230

Soit $n \in \mathbb{N}^*$. Démontrer que pour toute matrice symétrique positive S de $\mathcal{M}_n(\mathbb{R})$, on a l'inégalité :

$$1 + \sqrt[n]{\det(S)} \le \sqrt[n]{\det(I_n + S)}$$

Exercice 38

[id=360]

Soit (E,\langle,\rangle) un espace préhilbertien réel, F et G deux sous-espaces vectoriels de E. Montrer que :

 $\boxed{\mathbf{1}}$ Si $F \subset G$ alors $G^{\perp} \subset F^{\perp}$.

$$\boxed{\mathbf{2}} (F+G)^{\perp} = F^{\perp} \cap G^{\perp}.$$

$$\boxed{\mathbf{3}} (F \cap G)^{\perp} = F^{\perp} + G^{\perp}.$$

4 $F \subset (F^{\perp})^{\perp}$. Montrer que c'est une égalité si E est de dimension finie et donner un exemple où l'inclusion est stricte.

Exercice 39

[id=46

On munit $E=\mathcal{M}_3(\mathbb{R})$ muni du produit scalaire usuel.

- 1 Déterminer l'orthogonal de $\mathscr{A}_3(\mathbb{R})$.
- **2** Calculer la distance de la matrice $M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ au sous-espace vectoriel des matrices antisymétriques.

Exercice 40

[id=486]

Soit $A \in \mathscr{M}_n(\mathbb{R})$.

- Justifier qu'il existe $\Omega \in \mathcal{O}_n(\mathbb{R})$ vérifiant $\operatorname{tr}(A\Omega) \geq \operatorname{tr}(AU)$ pour toute matrice $U \in \mathcal{O}_n(\mathbb{R})$.
- **2** Montrer que la matrice $S = A\Omega$ est alors symétrique à valeurs propres positives. On pourra commencer par étudier le cas n = 2.

Exercice 41

[id=495]

Soit n dans \mathbb{N}^* , $a = (a_1, \dots, a_n)$ dans \mathbb{R}^n , et

$$M(a) = \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_2 & a_2 & a_3 & \cdots & a_n \\ a_3 & a_3 & a_3 & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & a_n & a_n & \cdots & a_n \end{pmatrix}$$

On dit qu'une matrice symétrique réelle d'ordre n est :

- positive si $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), {}^tXAX \geq 0$
- définie-positive si : $\forall X \neq 0 \in \mathcal{M}_{n,1}(\mathbb{R}), {}^tXAX > 0$

Dans les questions 1)a) et 1)b) on étudie le rang deM(a)

Question 1.a

On suppose $a_i \neq a_{i+1}$ pour tout $i \in [1, ..., n-1]$. Montrer que M(a) est inversible.

Question 1.b Dans le cas général, donner une méthode donnant $\operatorname{rg}(M(a))$ en fonction de (a_1, \dots, a_n)

Dans les questions 2)a) à 2)d), on étudie le caractère positif de la matrice symétrique M(a)

Question 2.a

Montrer que si M(a) est positive alors $a_i \geq 0$ pour tout i de $\{1, \dots, n\}$. Montrer que la matrice est positive pour tout i de $\{1, \cdots, n-1\}$

Question 2.b

En déduire que si M(a) est positive alors :

$$a_1 \ge a_2 \ge \dots \ge a_n \ge 0$$

Question 2.c

Établir la réciproque par récurrence, avec $J \in \mathcal{M}_n(\mathbb{R})$ de coefficients tous égaux à 1.

Question 2.d

À quelles conditions la matrice M(a) est-elle symétrique définie positive?

Exercice 42

n est un entier naturel non nul et $\mathcal{S}_n(\mathbb{R})$ l'espace vectoriel des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$.

1 Démontrer que si $A \in \mathcal{S}_n(\mathbb{R})$ vérifie $\langle AX, X \rangle = 0$ pour tout $X \in \mathbb{R}^n$ alors A = 0.

2 Soit $\Lambda = \{ M \in \mathcal{M}_n(\mathbb{R}) / \langle MX, X \rangle = 0, \forall X \in \mathbb{R}^n \}.$

(a) Montrer que Λ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$.

(**b**) Determiner $\dim(\Lambda)$.

SPÉ MP page 14