Chapitre 4 : Espaces vectoriels normés

Exercice 1

id-12l

 $(E, \|.\|)$ est un espace vectoriel normé.

- Démontrer que si $(a,b) \in E^2$ et $a \neq b$, alors il existe U et V ouverts de E tel que $a \in U$ et $b \in V$ et $U \cap V = \emptyset$.
- Généralement, démontrer que si A et B sont deux parties non vides telles que $d(A,B)=\inf_{x\in A,y\in B}d(x,y)>0$. Montrer qu'il existe deux ouverts disjoints U et V de E tel que $\left\{\begin{array}{c}A\subset U\\B\subset V\end{array}\right.$

Exercice 2

[id=160]

- Démontrer que toute norme sur \mathbb{R} est de la forme N=c|.| où c est une constante strictement positive.
- Démontrer que si E est un espace vecoriel non réduit à $\{0\}$ toute norme N sur E en tant qu'application de E vers \mathbb{R}_+ est surjective.

Exercice 3

id=161

Soit (E, ||.||) un espace vectoriel normé et A une partie non vide de E et $d_A : E \to \mathbb{R}; x \mapsto d_A(x) = d(x, A)$. Démontrer que :

$$\forall x, y \in E, \quad |d_A(x) - d_A(y)| \le ||x - y||$$

Exercice 4

id=162

Soit $(E, \|.\|)$ un espace vectoriel normé. Montrer que pour tout $x, y, z, t \in E$, on a :

$$||x - y|| + ||z - t|| \le ||x - z|| + ||y - t|| + ||x - t|| + ||y - z||$$

Exercice 5

id=163

Soient a_1,\ldots,a_n des réels et $N:\mathbb{K}^n\to\mathbb{R}$ l'application définie par

$$N(x_1,\ldots,x_n) = a_1 |x_1| + \cdots + a_n |x_n|$$

A quelle condition sur les a_1, \ldots, a_n , l'application N définit-elle une norme sur \mathbb{K}^n ?

Exercice 6 [id=16]

Soient $f_1, \ldots, f_n : [0,1] \to \mathbb{R}$ continues.

A quelle condition l'application

$$N: (x_1, \ldots, x_n) \mapsto ||x_1 f_1 + \cdots + x_n f_n||_{\infty}$$

définit-elle une norme sur \mathbb{R}^n ?

Exercice 7 [id=165]

Soit $(E, \|.\|)$ un espace vectoriel normé.

- $\boxed{\mathbf{1}}$ Montrer que toute boule fermé ou ouverte de E est bornée.
- $\fbox{\textbf{2}}$ Montrer que si A et B sont deux parties de E bornées alors A+B est bornée.
- 3 Soit F un sous-espace vectoriel de E. Démontrer que F est borné si et seulement si $F = \{0\}$.

Exercice 8 [id=166]

Soit $E = \mathcal{C}^1([0,1],\mathbb{R})$ l'espace vectoriel réel des applications réelle de classes C^1 sur [0,1] et pour tout $f \in E$, on pose :

$$N_1(f) = |f(0)| + \int_0^1 |f'(t)| dt$$

et

$$N_2(f) = \left| \int_0^1 f(t)dt \right| + \int_0^1 |f'(t)|dt$$

- $\fbox{ \ 1\ }$ Montrer que N_1 et N_2 sont deux normes sur E
- $\fbox{\bf 2}$ Montrer que N_1 et N_2 sont équivalentes

Exercice 9 [id=167]

Soit $n \in \mathbb{N}^*$. Pour tout $p \in \mathbb{N}$, on note :

$$\begin{cases} \mathscr{A}_p = \{ M \in \mathcal{M}_n(\mathbb{R}) / \operatorname{rg}(A) = p \} \\ \mathscr{B}_p = \{ M \in \mathcal{M}_n(\mathbb{R}) / \operatorname{rg}(A) \le p \} \end{cases}$$

Les parties \mathcal{A}_p et \mathcal{B}_p sont elles ouvertes? fermées?

Exercice 10 [id=168

On note E l'ensemble des suites réelles bornées.

Pour tout $u = (u_n)_{n \in \mathbb{N}} \in E$, on pose :

$$||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$$

- 1 Montrer que $\|.\|_{\infty}$ est une norme sur E.
- 2 Montrer que chacun des ensembles suivants :

$$\begin{cases} F = \{u \in E/u_0 = 1\} \\ G = \{u \in E/u \text{ converge }\} \\ H = \{u \in E/\lim_{n \to +\infty} u_n = 0\} \end{cases}$$

est un fermé de E.

3 Montrer que

$$K = \{ u \in E / \exists n \in \mathbb{N}, \forall p \ge n, u_p = 0 \}$$

n'est pas un fermé de E. Déterminer l'adhérence de K.

4 L'espace E est-il complet?

Exercice 11 [id=169]

On note $E = \mathcal{C}([0,1],\mathbb{R})$ l'espace vectoriel réel des applications continues de [0,1] vers \mathbb{R} et $E' = \mathcal{C}^1([0,1],\mathbb{R})$ le sous-espace vectoriel de E constitué des applications de classe C^1 de [0,1] vers \mathbb{R} , et soit

$$F = \{ f \in E'/f(0) = 0 \}$$

Pour tout $f \in E$, on pose :

$$N(f) = \sup_{x \in [0,1]} |f(x)|,$$

et pour tout $f \in E'$, on pose

$$N'(f) = \sup_{x \in [0,1]} |f'(x)|.$$

- $\boxed{\mathbf{1}}$ On rappelle que N est une norme sur E. Est ce que N' est une norme sur E'?
- **2** Démontrer que N' est une norme sur F.
- $\boxed{\bf 3}$ Les normes N et N' considérées comme normes de F sont elles équivalentes?

Exercice 12 [id=1]

 $(E,\|.\|)$ est un espace vetoriel normé. Soient $x,y,z\in E$ tel que x+y+z=0. Montrer que :

$$||x - y|| + ||y - z|| + ||z - x|| \ge \frac{3}{2} (||x|| + ||y|| + ||z||)$$

[id=171]

Soit $E = \mathcal{C}^0([0,1],\mathbb{R})$ l'espace vectoriel réel des applications continues de [0,1] vers \mathbb{R} et pour tout $f \in E$, on pose :

$$||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|; ||f||_1 = \int_0^1 |f(t)| dt; ||f||_2 = \sqrt{\int_0^1 |f(t)|^2 dt}$$

Pour tout $n \in \mathbb{N}^*$, on considère l'application f_n définie sur [0,1] par :

$$\forall x \in [0,1], \quad f_n(x) = \begin{cases} nx & \text{si } 0 \le x \le \frac{1}{n} \\ 1 & \text{si } \frac{1}{n} \le x \le 1 \end{cases}$$

- $\boxed{\mathbf{1}}$ Donner une représentation graphique f_n pour $n \in \mathbb{N}^*$.
- **2** Calculer $||f_n||_p$ pour tout $n \in \mathbb{N}^*$ et tout $p \in \{1, 2, \infty\}$

Exercice 14

On note $E = \{u \in \mathbb{R}^{\mathbb{N}} / u \text{ est bornée}\}$ l'espace vectoriel réel des suites réelles bornées. Pour tout $u = (u_n) \in E$, on note :

$$||u|| = \sup_{n \in \mathbb{N}} |u_n|$$
 et $N(u) = \sup_{n \in \mathbb{N}} (|u_n| + |u_{2n}|)$

- $\boxed{\mathbf{1}}$ Montrer que $\|.\|$ et N sont des normes sur E.
- 2 Montrer qu'elles sont équivalentes.
- $\fbox{\bf 3}$ On note θ la suite nulle. Préciser les valeurs de :

$$k_1 = \sup_{\substack{u \in E \\ u \neq \theta}} \frac{\|u\|}{N(u)}$$
 et $k_2 = \sup_{\substack{u \in E \\ u \neq \theta}} \frac{N(u)}{\|u\|}$

Exercice 15

[id=173]

Soit $n \in \mathbb{N}^*$ et pour tout $p \in \mathbb{N}$, on note $\Gamma_p = \{M \in \mathcal{M}_n(\mathbb{R})/\operatorname{rg}(M) \geq p\}$.

- $\boxed{\mathbf{1}}$ Étudier si Γ_p est ouvert, fermé.
- **2** Préciser l'adhérence et l'intérieur de Γ_p .

Exercice 16 [id=174

Pour tout $(x, y) \in \mathbb{R}^2$, on pose : $N(x, y) = \max(|x|, |y|, |x - y|)$.

- $\boxed{\mathbf{1}}$ Prouver que N est une norme.
- $\fbox{\bf 2}$ tracer la sphère unité associée à N.

[id=175]

Soit $(E, \|.\|)$ un espace vectoriel normé.

 $\boxed{\mathbf{1}}$ Montrer que pour toute partie A, on a :

$$\operatorname{Int}(A) \neq \emptyset \Rightarrow \operatorname{Vect}(A) = E$$

2 En déduire que pour tout sous-espace vectoriel F de E, si $F \neq E$ alors $Int(F) = \emptyset$.

Exercice 18

[id=176]

Soit $(E, \|.\|)$ un espace vectoriel. On appelle hyperplan de E tout sous-espace vectoriel H de E tel qu'il existe $a \in E$ tel que $a \neq 0$ et $E = H \oplus \mathbb{K}a$.

 $\boxed{\mathbf{1}}$ Soit H un hyperplan de E. Montrer que :

$$\forall b \in E, E = H \oplus \mathbb{K}b \Leftrightarrow b \notin H$$

Soit H un hyperplan de E. Démontrer que pour tout sous-espace vectoriel H' de E, on a :

$$H \subset H' \Rightarrow H' = H$$
 ou $H' = E$

- 3 Montrer que pour tout sous-espace vectoriel H de E on a : H est un hyperplan si et seulement si : il existe une forme linéaire non nulle φ sur E tel que $H = \ker(\varphi)$.
- $\boxed{\mathbf{4}}$ Démontrer que si ϕ et ψ sont deux formes linéaires non nules de E alors :

$$\ker(\phi) = \ker(\psi) \Leftrightarrow \exists \alpha \in \mathbb{K}^*, \psi = \lambda \phi$$

- **5** On suppose que E est muni d'une norme $\|.\|$.
 - (a) Montrer que pour tout spus-espace vectoriel F l'adhérence de F, à savoir \overline{F} est aussi un sous-espace vectoriel de E.
 - $oxed{b}$ En déduire que tout hyperplan de E est soit fermé soit dense.
- On suppose toujours que E est muni d'une norme $\|.\|$ et soit H un hyperplan de E tel que $H = \ker(\varphi)$ avec φ une forme linéaire non nulle de E. Démontrer que φ est continue si et seulement si H est fermé.

Exercice 19

[id=177]

Soit $(E, \|.\|)$ un \mathbb{R} -espace vectoriel normé de dimension n avec $n \geq 2$. Soit F un sous-espace vectoriel de E tel que $F \neq E$ et soit $A = E \setminus F$.

- $\boxed{\mathbf{1}}$ Montrer que si dim(F) = n 1 alors A n'est pas connexe par arcs.
- **2** Montrer que si $\dim(F) \leq n-2$, alors A est connexe par arcs.

Dans cet exercice, n est un entier naturel tel que $n \geq 2$ et on note \mathcal{N}_n l'ensemble des matrices nilpotentes de $\mathcal{M}_n(\mathbb{R})$ et \mathscr{H}_n l'hyperplan des matrices de $\mathcal{M}_n(\mathbb{R})$ qui sont de trace nulle. On munit $\mathcal{M}_n(\mathbb{R})$ de la norme $\|.\|_{\infty}$ et on rappelle que :

$$\forall A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R}), \quad ||A||_{\infty} = \sup_{1 \le i,j \le n} |a_{i,j}|.$$

Pour tout coupe (M_1, M_2) de matrices de $\mathcal{M}_n(\mathbb{R})$, on note $d(M_1, M_2) = ||M_1 - M_2||_{\infty}$, la distance entre les matrices M_1 et M_2 et on pose :

$$d_{\infty} = d(I_n, \mathcal{N}_n) = \inf_{A \in \mathcal{N}_n} ||I_n - A||_{\infty} = \inf_{A \in \mathcal{N}_n} d(I_n, A).$$

- 1 Prouver que \mathcal{N}_n et \mathcal{H}_n sont des fermés de $\mathcal{M}_n(\mathbb{R})$ et que $\mathcal{N}_n \subset \mathcal{H}_n$.
- 2 a Soit X une partie non vide minorée de \mathbb{R} et $\alpha \in \mathbb{R}$. Démontrer que :

$$\alpha = \inf(X) \Leftrightarrow \left\{ \begin{array}{l} \alpha \text{ est un minorant de } X \\ \alpha \in \overline{X} \end{array} \right.$$

ou \overline{X} est l'adhérence de X. En déduire que si α est un minorant de X alors $\alpha = \inf(X)$ si et seulement si il existe une suite $(x_p)_{p \geq 1}$ à valeurs dans X tel que : $\lim_{p \to +\infty} x_p = \alpha$.

- (b) Montrer que si X et Y sont deux parties de \mathbb{R} tel que $X \neq \emptyset$ et $X \subset Y$ et Y est minorée alors X est minorée et $\inf(Y) \leq \inf(X)$.
- **3** Prouver que $d_{\infty} \leq 1$.
- Prouver que pour toute matrice $M \in \mathcal{H}_n$, on a $1 \leq ||I_n M||_{\infty}$ (On pourra poser $M = (m_{i,j})_{1 \leq i,j \leq n}$ et remarquer, après justification, que

$$||I_n - M||_{\infty} \le \max_{1 \ge i \le n} |1 - m_{i,i}|$$

et utiliser le fait que tr(M) = 0.)

- **5** Pour tout $p \in \mathbb{N}^*$, on pose $M_p = \frac{1}{p}E_{11} \frac{1}{p}E_{22}$.
 - (a) Calculer, pour tout $p \in \mathbb{N}^*$, la distance $t_p = d(I_n, M_p) = ||I_n M_p||_{\infty}$.
 - (\mathbf{b}) Calculer $d(I_n, \mathcal{H})$.
 - \bigcirc En déduire que $d_{\infty} = 1$.

Exercice 21

[id=179]

Dans $\mathcal{M}_n(\mathbb{R})$, on considère la norme |||.||| définie par

$$|\!|\!|\!| A |\!|\!|\!| = \sup_{\substack{X \in \mathcal{M}_{n,1}(\mathbb{R}) \\ X \neq 0}} \frac{\|AX\|_{\infty}}{\|X\|_{\infty}}$$

- $\boxed{\mathbf{1}}$ Démontrer que pour tout $A \in \mathcal{M}_n(\mathbb{R})$, le réel $||A||_{\infty}$ est effectivement bien défini.
- **2** Démontrer que $A \mapsto ||A||$ est une norme sur $\mathcal{M}_n(\mathbb{R})$.
- $\overline{\mathbf{3}}$ Démontrer que pour tout $A \in \mathcal{M}_n(\mathbb{R})$, on a :

$$|\!|\!|\!| A |\!|\!|\!| = \sup_{\|X\|_\infty \le 1} \|AX\|_\infty = \sup_{\|X\|_\infty = 1} \|AX\|_\infty$$

4 Démontrer que :

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \quad ||AX||_{\infty} \le |||A|||_{\infty} ||X||_{\infty}$$

En déduire que :

$$\forall A, B \in \mathcal{M}_n(\mathbb{R}), \quad ||AB|| \leq ||A|| \, ||B||$$

Soit $A \in \mathcal{M}_n(\mathbb{R})$, tel que $A = (a_{i,j})_{1 \leq i,j \leq n}$. On se propose dans cette question de démontrer que :

$$||A|| = \sup_{1 \le i \le n} \left(\sum_{j=1}^{n} |a_{i,j}| \right)$$

Pour cela on pose, pour tout $i \in [1, n]$,

$$\alpha_i = \sum_{j=1}^n |a_{i,j}|, \text{ et } \alpha = \sup_{1 \le i \le n} \alpha_i.$$

On veut donc prouver que $\alpha = ||A||_{\infty}$.

(a) Justifier qu'il existe au moins un indice $k \in [\![1,n]\!]$ tel que

$$\alpha = \alpha_k = \sum_{j=1}^n |a_{k,j}|.$$

(b) Démontrer que si $X=(x_i)\in\mathcal{M}_{n,1}(\mathbb{R})$ et $Y=AX=(y_i)_{1\leq i\leq n}$, alors :

$$\forall j \in [1, n], \quad |y_j| \le \alpha_j ||X||_{\infty}$$

En déduire que : $||AX||_{\infty} \le \alpha ||X||_{\infty}$ et que $|||A||| \le \alpha$.

© Soit $X_0 = (\xi_j)_{1 \le j \le n}$ avec, pour tout $j \in [1, n]$ on aie :

$$\xi_j = \begin{cases} 1 & \text{si} \quad a_{k,j} = 0 \\ \frac{|a_{k,j}|}{a_{k,j}} & \text{si} \quad a_{k,j} \neq 0 \end{cases}$$

Démontrer que $||X_0||_{\infty} = 1$. Que vaut $||AX_0||_{\infty}$?

(d) Conclure.

Exercice 22 [id=180]

On considère $E=\mathbb{R}[X]$. Pour tout $P=\sum\limits_{k=0}^n a_k X^k\in E$, on pose : $\|P\|=\max\limits_{0\leq k\leq n}|a_k|$. On considère l'application linéaire

$$\varphi: E \to E, P \mapsto \varphi(P) = P(X+1)$$

 $\boxed{\mathbf{1}} \ \text{Etdier la continuité de } \varphi \ \text{de } (E,\|.\|) \ \text{vers lui même}.$

 $\fbox{\bf 2}$ Etudier la continuité de ψ de $(E,\|.\|)$ vers lui même où

$$\psi: E \to E, P \mapsto \psi(P) = AP$$

où $A \in \mathbb{R}[X]$ est un polynôme donné.

3 Reprendre les questions précédentes si on considère le norme :

$$||P|| = \sup_{t \in \mathbb{R}} e^{-|t|} |P(t)|$$

.

Exercice 23 [id=18]

Soit K une partie infinie bornée de \mathbb{R} . Pour tout $P \in \mathbb{K}[X]$, on pose

$$||P||_K = \sup_{t \in K} |P(t)|.$$

Soit $A \in \mathbb{K}[X]$ et Φ_A l'application linéaire définie par :

$$\forall P \in \mathbb{K}[X], \quad \Phi_A(P) = AP$$

- 1 Montrer que $\|.\|_K$ est une norme sur $\mathbb{K}[X]$.
- 2 Étudier la continuité de Φ_A de $(\mathbb{K}[X], \|.\|_K)$ vers lui même dans chacun des cas suivants :
 - (a) K est une partie compacte infinie de \mathbb{K} .
 - (\mathbf{b}) K est une partie bornée infinie de \mathbb{K} .
- $\boxed{\mathbf{3}} \text{ Étudier la continuité de } \Phi_A \text{ de } (\mathbb{K}[X], \|.\|) \text{ vers } (\mathbb{K}[X], \|.\|) \text{ lorsque } \mathbb{K}[X] \text{ est muni de la norme } \|P\| = \sum\limits_{k=0}^{N} |a_k| \text{ pour tout } P \in \mathbb{K}[X] \text{ tel que } P = \sum\limits_{k=0}^{N} a_k X^k.$
- 4 On suppose dans cette question que K = [0,1] et $A(X) = X^m$ avec $m \in \mathbb{N}$. Étudier la continuité de Φ_A de $(\mathbb{K}[X], \|.\|)$ vers $(\mathbb{K}[X], \|.\|_K)$ où $\|.\|_{\infty}$ est celle définie : $\|P\| = \max_{0 \le k \le N} |a_k|$ pour tout $P \in \mathbb{K}[X]$ tel que $P = \sum_{k=0}^{N} a_k X^k$.

Exercice 24

[id=182]

On considère un entier naturel m tel que $m \geq 2$, E est un \mathbb{K} -espace vectoriel et $(N_k)_{1 \leq k \leq m}$ une famille de normes de E. Pour tout $a = (a_k)_{1 \leq k \leq m} \in (\mathbb{R}_+^*)^m$ et tout vecteur $x \in E$, on pose $\|x\|_a = \sum_{k=1}^m a_k N_k(x)$.

- 1 Démontrer que $\|.\|_a$ est une norme sur E, pour tout $a \in (\mathbb{R}_+^*)^m$.
- **2** Démontrer que les normes $\|.\|_a$ sont deux à deux équivalentes quand a décrit $(\mathbb{R}_+^*)^m$.

Exercice 25 [id=183]

Soit $(E, \|.\|)$ un espace vectoriel normé et A et B deux parties non vides bornée de E. On définit la distance de A à B comme suit $d(A, B) = \inf\{\|a - b\|/(a, b) \in A \times B\}$ et le diamétre d'une partie bornée non vide X de E par $\delta(X) = \sup\{\|x - y\|/x, y \in X\}$.

- 1 Montrer que $A \cup B$ est non vide bornée.
- **2** Montrer que $\delta(A \cup B) \leq \delta(A) + \delta(B) + d(A, B)$.

[id=184]

Soit E un espace vectoriel normé, de dimension finie et F un sous-espace vectoriel de E et

$$\mathfrak{L}_F = \{ u \in \mathcal{L}(E) / \ker u = F \}.$$

 $\boxed{\mathbf{1}}$ Démontrer que $\mathfrak{L}_F \neq \emptyset$

 $oxed{2}$ Déterminer $\mathbf{Adh}(\mathfrak{L}_F)$ et $\mathbf{Int}(\mathfrak{L}_F)$, l'adhérence et l'intérieur de \mathfrak{L}_F

Exercice 27

[id=185

 $\fbox{1}$ Soient a,b,c,d des nombres réels tel que a < b et c < d. Démontrer que les assertions suivantes sont équavalentes :

(i) $]a, b[\cap]c, d[\neq \emptyset]$

(ii) $\max(a, c) < \min(b, d)$

(iii) $|a+b-c-d| \le b-a+d-c$

Soit $(E, \|.\|)$ un espace vectoriel normé. Pour tout $(x, r) \in E \times \mathbb{R}_+^*$, on note $B_{x,r}$ la boule ouverte de cetre x et de rayon r. Pour toutes parties non vides A et B de E, on note $A + B = \{a + b/(a, b) \in A \times B\}$.

(a) Démontrer que pour tout $(x, x', r, r') \in E \times E \times \mathbb{R}_+^* \times \mathbb{R}_+^*$, on a :

$$B_{x,r} \cap B_{x',r'} \neq \emptyset \Leftrightarrow ||x' - x|| < r + r'$$

(b) Démontrer que pour tout $(x, x', r, r') \in E \times E \times \mathbb{R}_+^* \times \mathbb{R}_+^*$, on a :

$$B_{x,r} + B_{x',r'} = B_{x+x',r+r'}$$

© Démontrer que pour tout $(x, x', r, r') \in E \times E \times \mathbb{R}_+^* \times \mathbb{R}_+^*$, on a :

$$B_{x,r} = B_{x',r'} \Leftrightarrow x = x' \text{ et } r = r'$$

Exercice 28

[id=186]

Soit $n \in \mathbb{N}^*$ et A une partie de \mathbb{R}^n . On suppose que A est convexee. Démontrer que $\operatorname{Int}(A) = \emptyset$ si et seulement si A est contenue dans un hyperplan H de \mathbb{R}^n .

Exercice 29

[id=18

Soit $(E, \|.\|)$ un espace vectoriel normé et A une partie de E. On suppose que A est convexe et $\operatorname{Int}(A) \neq \emptyset$.

Démontrer que pour tout $a \in \text{Int}(A)$ et tout $b \in \text{Adh}(A)$, le segment a, b est contenu dans Int(A) (autrement dit, pour tout $t \in]0,1[$, on a $(1-t)a+tb \in \text{Int}(A)$.)

 $\begin{tabular}{|c|c|c|c|} \hline \bf 2 & Démontrer que $Int(A) = Int(Adh(A))$ \\ \hline \end{tabular}$

[id=188]

Soit $(E,\|.\|)$ un espace vectoriel normé. Démontrer que :

- Pour toutes parties A et B de E, Si $A \subset B$ alors $Adh(A) \subset Adh(B)$ et $Int(A) \subset Int(B)$ et $Ext(A) \supset Ext(B)$.
- Pour toute partie A de E, on a $Adh(A^c) = (Int(A))^c$ et $Int(A^c) = (Adh(A))^c$ et $(Ext(A))^c = Adh(A)$ et $\partial(A^c) = \partial(A)$.
- **3** Pour toute partie A de E, on a : $Adh(A) = Int(A) \cup \partial A$.
- 4 Une partie A de E est fermée si et seulement si $\partial A \subset A$.
- $\boxed{\mathbf{5}}$ Pour toutes parties A et B de E, on a :
 - (a) $Adh(A \cup B) = Adh(A) \cup Adh(B)$ et $Adh(A \cap B) \subset Adh(A) \cap Adh(B)$.
 - (b) $\operatorname{Int}(A \cap B) = \operatorname{Int}(A) \cap \operatorname{Int}(B)$ et $\operatorname{Int}(A \cup B) \supset \operatorname{Int}(A) \cup \operatorname{Int}(B)$.
 - (c) Ext $(A \cup B) = \text{Ext}(A) \cap \text{Ext}(B)$ et Ext $(A \cap B) \supset \text{Ext}(A) \cup \text{Ext}(B)$.
 - (d) $\partial(\operatorname{Int}(A)) \subset \partial A$ et $\partial(\operatorname{Adh}(A)) \subset \partial(A)$ et $\partial(A \cup B) \subset \partial(A) \cup \partial(B)$.
- **6** Pour toute partie A de E, on a $\partial(A) = \emptyset \Leftrightarrow A$ est ouverte ou A est fermée.
- Pour toutes parties A et B de E, si $\partial(A) \cup \partial(B) = \emptyset$, alors on a les égalités suivantes : $Adh(A \cap B) = Adh(A) \cap Adh(B)$ et $Int(A \cup B) = Int(A) \cup Int(B)$ et $\partial(A \cap B) = (\partial(A) \cap Adh(B)) \cup (Adh(A) \cap \partial(B))$.

Exercice 31

[id=189

- 1. Soit $P\in\mathbb{R}[X]$ unitaire de degré n. Montrer que P est scindé sur \mathbb{R} si et seulement si : $\forall z\in\mathbb{C}, |P(z)|\geq |\operatorname{Im} z|^n$
- 2. Montrer que l'adhérence de l'ensemble des matrices diagonalisables dans $\mathcal{M}_n(\mathbb{R})$ est l'ensemble des matrices trigonalisables.

Exercice 32

[id=190

Soit E un \mathbb{K} -espace vectoriel normé de dimension n avec $n \in \mathbb{N}^*$. Soit A une partie fermée non vide de E. Démontrer que :

$$\forall x \in E, \exists a \in A, \quad d(x, A) = ||x - a||$$

Exercice 33

 $_{
m id=19}$

Soit E un espace vectoriel normé. Soit K une partie compacte convexe de E. Soit f une application de K dans K, 1-lipschitzienne. Montrer que f admet un point fixe.

Indication : pour a dans K fixé et tout entier naturel n non nul, on pourra considérer l'application f_n définie sur K par : $f_n : x \mapsto \frac{1}{n}a + \left(1 - \frac{1}{n}\right)f(x)$.

[id=192]

Soit E un espace vectoriel normé de dimesnion finie sur \mathbb{K} avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Soit A une partie finie non vide et $f: A \to E$ une application de A vers E tel que :

$$\left\{ \begin{array}{l} f(A) \subset A \\ \exists k \in [0,1[, \forall (x,y) \in A^2, \|f(x) - f(y)\| \leq k \|x - y\| \end{array} \right.$$

Soit $a \in A$ et (x_n) la suite définie par $\left\{ \begin{array}{l} x_0 = a \\ \forall n \in \mathbb{N}, x_{n+1} = f(x_n) \end{array} \right. .$

- 1 Démontrer que la série $\sum (x_{n+1} x_n)$ est absolument convergente.
- **2** En déduire que la suite (x_n) est convergente. On note ℓ sa limite.
- **3** Démontrer que ℓ est l'unique point fixe de f, c'est-à-dire l'unique $t \in A$ tel que f(t) = t.

Exercice 35

[id=193]

Soit E un espace vectoriel normé de dimesnion finie sur \mathbb{K} avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Soit K une partie compacte non vide de E et $f: K \to E$ une application tel que $f(K) \subset K$ et $\forall (x,y) \in K^2, x \neq y \Rightarrow \|f(x) - f(y)\| < \|x - y\|$. Démontrer que f admet un et un seul point fixe ℓ et que tout suite $(x_n)_{n\geq 0} \in K^{\mathbb{N}}$, :définie par $x_0 \in K$ et $\forall n \in N, x_{n+1} = f(x_n)$ est convergente de limite ℓ .

Exercice 36

[id=194

Soit E un espace vectoriel normé et Ω un ouvert de E. On note $\mathbf{O}(\Omega) = \bigcup_{\omega \in \Omega} B_f(\omega, 1)$. Démontrer que $\mathbf{O}(\Omega)$ est un ouvert de E.

Exercice 37

[id=195]

Soit $E = \mathcal{C}^0([0,1],\mathbb{R})$ l'espace vectoriel des applications continues de [0,1] vers \mathbb{R} . Étudier la convergence de la suite $(f_n)_{n\geq 0}$ dans l'espace vectoriel normé $(E,\|.\|_p)$ pour les cas p=1,p=2 et $p=\infty$, dans les deux cas suivants :

 $\boxed{\mathbf{1}}$ La suite (f_n) définie par :

$$\forall t \in [0, 1], f_n(t) = \begin{cases} -2n^2t + 2n & \text{si } 0 \le t \le \frac{1}{n} \\ 0 & \text{si } \frac{1}{n} \le t \le 1 \end{cases}.$$

2 La suite (f_n) définie par :

$$\forall t \in [0,1], f_n(t) = \begin{cases} -2n\sqrt{n}t + 2\sqrt{n} & \text{si } 0 \le t \le \frac{1}{n} \\ 0 & \text{si } \frac{1}{n} \le t \le 1 \end{cases}.$$

Soit $E = \mathcal{B}([-1,1],\mathbb{R})$ l'espace des applications bornées de [-1,1] vers \mathbb{R} muni de la norme de convergence uniforme $\|.\|_{\infty}$ et A la parties de E constituées des applications continues. Camculer d(f, A) où f est l'application définie par :

$$\forall t \in [-1, 1], f(t) = \left\{ \begin{array}{ccc} \frac{t}{|t|} & \text{si} & x \neq 0 \\ 0 & \text{si} & x = 0 \end{array} \right.$$

Exercice 39

[id=197]

Soit E un espace vectoriel non réduit à $\{0\}$. Si N_1 et N_2 deux normes de E, on dit que N_1 et moins fine que N_2 et on note $N_1 \prec N_2$ si et seulement s'il existe une constante $\alpha > 0$ tel que $N_1 \leq \alpha N_2$. Pour tout $k \in \{1,2\}$ et tout $(a,r) \in E \times \mathbb{R}_+^*$, on adoptera les notations suivantes :

- \mathcal{O}_k l'ensemble des ouverts de l'espace normé (E, N_k) .
- $B^k(a,r)$ (resp. $B_f^k(a,r)$) la boule ouverte(resp. fermé) de centre a et de rayon r de l'espace vectoriel normé (E, N_k) .
- $\mathscr{I}_{1,2} = \{\frac{N_2(x)}{N_1(x)}/x \in E \setminus \{0\}\}$ et $\mathscr{I}_{2,1} = \{\frac{N_1(x)}{N_2(x)}/x \in E \setminus \{0\}\}$. Dans tout ce qui suite N_1 et N_2 sont deux normes de E.

- 1 Démontrer que les assertions suivantes sont équivalentes :
 - (i) N_2 est plus fine que N_1 .
 - (ii) $\mathcal{I}_{2,1}$ est majorée.
 - (iii) $\exists r > 0, B_f^2(0, r) \subset B_f^1(0, r).$
 - (iv) $\mathcal{O}_1 \subset \mathcal{O}_2$.
- **2** Démontrer que N_1 et N_2 sont équivalentes si et seulement si $N_1 \prec N_2$ et $N_2 \prec N_1$.
- 3 Démontrer que N_1 et N_2 ne sont pas équivalentes si et seulement si $\mathcal{I}_{1,2}$ ou $\mathcal{I}_{2,1}$ n'est pas majorée. En déduire que si N_1 et N_2 ne sont pas équivalentes alors il existe une suite $(x_n) \in E^{\mathbb{N}^*}$ tel que (x_n) converge dans l'un des espace vectoriels normés $(E, N_1), (E, N_2)$ et diverge dans l'autre.
- 4 En déduire que N_1 et N_2 sont équivalentes si et seulement si (E, N_1) et (E, N_2) ont les mêmes suites convergentes.
- 5 Démontrer que Si N_1 et N_2 sont équivalentes alors pour toute suite $(x_n) \in E^{\mathbb{N}}$ convergente pour l'une des normes, elle converge pour l'autre et les limites sont égales.
- 6 Démontrer que N_1 N_2 sont équivalentes si et seulement si (E, N_1) et (E, N_2) ont les mêmes suites qui convergent vers 0.

Exercice 40

[id=198]

Soit $E = \mathscr{C}^0([0,1],\mathbb{R})$ l'espace vectoriel réel des applications continues de [0,1] vers \mathbb{R} muni de la norme de convergence uniforme $\|.\|_{\infty}$, c'est-à-dire :

$$\forall f \in E, ||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|.$$

Démontrer que la boule fermée unité de $(E, \|.\|_{\infty})$ n'est pas compacte.

Soit $(E, \|.\|)$ un espace vectoriel normé au moins de dimension 2, donc elle peut être éventuellement infinie.

- Démontrer que si E_1, E_2, E_3 sont trois s.e.v. de E tel que $E_1 \subsetneq E_2 \subsetneq E_3$ et si $a, b \in E$ tel que $a \in E_2 \setminus E_1$ et $b \in E_3 \setminus E_2$ alors $E_1 \cap [a, b] = \emptyset$.
- En utilisant le résultat établi dans la question 1), démontrer que si F est un sous-espace vectoriel de E tel que $\operatorname{codim}(F) \not\in \{0,1\}$ alors $E' = E \setminus F$ est une partie non vide connexe par arcs de E.

Exercice 42

[id=200]

 $\mathbb K$ désigne l'un des corps $\mathbb R$ ou $\mathbb C.$ Soit $n\in\mathbb N^*$ tel que $n\geq 2$ et

$$\mathscr{P}_n = \{ M \in \mathcal{M}_n(\mathbb{K})/M^2 = M \}.$$

On munit $\mathcal{M}_n(\mathbb{K})$ d'une norme quelconque.

- $\boxed{\mathbf{1}}$ \mathscr{P}_n est elle une partie compacte de $\mathcal{M}_n(\mathbb{R})$?
- **2** Prouver que \mathscr{P}_n n'est pas connexe par arcs.
- 3 Pour tout $r \in [0, n]$, on note $\mathscr{P}_{n,r} = \{M \in \mathscr{P}_n / \operatorname{rg}(M) = r\}$
 - (a) Prouver que $\mathscr{P}_{n,r}$ est connexe par arcs dans chacun des cas $\mathbb{K} = \mathbb{C}$ puis $\mathbb{K} = \mathbb{R}$.
 - (b) Soit $r, r' \in [0, r]$ tel que $r \neq r'$. Démontrer que si $A \in \mathscr{P}_{n,r}$ et $B \in \mathscr{P}_{n,r'}$ alors il n'existe aucune chemin qui joigne A et B dans \mathscr{P}_n .
 - \bigcirc En déduire les composantes connexes de \mathscr{P}_n .

Exercice 43 [id=46]

On considère la suite $(u_n)_{n>0}$ définie par

$$u_0 = 0, u_1 = 1, \forall n \in \mathbb{N}, u_{n+2} = \frac{1}{2}(u_{n+1} + u_n)$$

1 Determiner une matrice $A \in \mathcal{M}_2(\mathbb{R})$ telle que

$$\forall n \in \mathbb{N}, \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix} = A^n \begin{pmatrix} u_1 \\ u_0 \end{pmatrix}$$

Veuillez bine justifier votre réponse.

- Determiner le plynôme cractéristique $\chi_A(X)$ de A et calculer ses valeurs propres λ_1 et λ_2 .
- Soit $R_n(X) = a_n X + b_n$ te reste de la division euclidienne de X^n par $\chi_A(X)$. Calculer a_n et b_n (on pourra utiliser les racines λ_1, λ_2 de $\chi_A(X)$.)
- Montrer que $A^n = a_n A + b_n I_n$, en déduire que la suite $(A^n)_{n \geq 0}$ converge lorsque n tend vers $+\infty$ vers une limite A_∞ que l'on determinera. Calculer $\lim_{n \to +\infty} u_n$.

[id=485]

Soit E un espace vectoriel normé de dimension finie.

- Soit A une partie non vide de E. Montrer que l'application $x \mapsto d(x, A)$ est continue sur E.
- **2** Soit K un compact non vide inclus dans un ouvert U. Montrer qu'il existe $\alpha > 0$ tel que

$$\forall x \in K, B(x, \alpha) \subset U$$

Exercice 45

[id=528

Soit $(E, \|.\|)$ un espace vectoriel normé.

 $\boxed{\mathbf{1}}$ A et B sont deux parties non vides de E. Démontrer que

$$\forall x \in E, d(x, A \cup B) = \min(d(x, A), d(x, B))$$

- Soit $x \in E$ et on note $B_x = B_f(x, ||x||)$ la boule fermé de centre x et de rayon ||x||. Soit F une partie de E tel que $F \cap B_x \neq \emptyset$. Démontrer que $d(x, F) = d(x, F \cap B_x)$.
- $\fbox{3}$ En déduire que le résultat de la question précédente est vrai si F est un sous-espace vectoriel de E.
- $\boxed{\mathbf{4}}$ En déduir que si F est un sous-espace vectoriel de dimension finie de E alors :

$$\forall x \in E, \exists y \in F, d(x, F) = ||x - y||$$

Exercice 46

[id=529]

Soit (E,d) un espace métrique , I un ensemble non vide et $(A_i)_{i\in I}$ une famille de parties non vides de E. Démontrer que :

$$(\star\star)$$
 $d(x, \bigcup_{i\in I} A_i) = \inf_{i\in I} d(x, A_i).$

Exercice 47

[id=531

p,q,r sont des nombres réelles strictement positifs tel que p+q+r=1. On considère la matrice $M\in\mathcal{M}_3(\mathbb{R})$ définie par :

$$M = \left(\begin{array}{ccc} p & q & r \\ r & p & q \\ q & r & p \end{array}\right).$$

Montrer que

$$\lim_{n \to +\infty} M^n = \left(\begin{array}{ccc} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array}\right)$$

[id=533]

On fixe $A \in \mathcal{M}_p(\mathbb{R})$ et on considère $\Delta : M \in \mathcal{M}_p(\mathbb{R}) \mapsto AM - MA$.

 $\boxed{\mathbf{1}}$ Prouver que Δ est un endomorphisme de $\mathcal{M}_p(\mathbb{R})$ et que :

$$\forall n \in \mathbb{N}^{\star}, \forall (M, N) \in \mathcal{M}_p(\mathbb{R})^2, \Delta^n(MN) = \sum_{k=0}^n \binom{n}{k} \Delta^k(M) \Delta^{n-k}(N)$$

2 On suppose que $B = \Delta(H)$ commute avec A. Montrer :

$$\Delta^2(H) = 0$$
 et $\Delta^{n+1}(H^n) = 0$

Vérifier $\Delta^n(H^n) = n!B^n$.

- 3 Soit $\|.\|$ une norme sur $\mathcal{M}_p(\mathbb{R})$. Montrer que $\|B^n\|^{1/n} \xrightarrow[n \to +\infty]{} 0$.
- $\boxed{\mathbf{4}}$ En déduire que la matrice B est nilpotente.

Exercice 49

[id=53

Soit $\mathcal{F} = \{A \in \mathcal{M}_n(\mathbb{R})/\operatorname{Sp}(A) \neq \emptyset\}$. Démontrer que \mathcal{F} est une partie fermée de $\mathcal{M}_n(\mathbb{R})$.

Exercice 50

[id=539]

Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de E pour laquelle il existe un réel $\varepsilon>0$ tel que l'on ait $\|x_m-x_n\|\geq \varepsilon$ pour tous entiers naturels m,n distincts.

- Montrer qu'une telle suite n'admet aucune valeur adhérence. Soit K une partie compacte d'un espace normé E.
- **2** Montrer que pour tout réel $\alpha > 0$, il existe un entier p > 0 et x_1, \ldots, x_p éléments de K tels que

$$K \subset \bigcup_{k=1}^{p} B(x_k, \alpha)$$

Pour I un ensemble d'indexation quelconque, on considère une famille $(\Omega_i)_{i\in I}$ de parties ouvertes de E telle que ¹

$$K\subset\bigcup_{i\in I}\Omega_i.$$

- Montrer qu'il existe un réel $\alpha > 0$ tel que, pour tout $x \in K$, il existe un indice $i \in I$ pour lequel la boule $B(x, \alpha)$ soit contenue dans l'ouvert Ω_i .
- $\boxed{\mathbf{4}}$ En déduire qu'il existe une sous-famille finie $(\Omega_{i_1},\ldots,\Omega_{i_p})$ de la famille $(\Omega_i)_{i\in I}$ telle que

$$K \subset \bigcup_{k=1}^{p} \Omega_{i_k}$$

[id=578]

- 1 Montrer que C privé d'un nombre fini de complexes est une partie connexe par arcs.
- Application : Établir que $GL_n(\mathbb{C})$ est une partie connexe par arcs. On pourra considérer l'application $z \mapsto \det((1-z)A + zB)$ pour $A, B \in GL_n(\mathbb{C})$.

Exercice 52

[id=662

On munit le \mathbb{R} -espace vectoriel $\mathscr{B}(\mathbb{N},\mathbb{R})$ des suites réelles bornées de la norme

$$||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$$

Déterminer si les sous-ensembles suivants sont fermés ou non :

- $\boxed{\mathbf{1}}$ $A = \{ \text{ suites croissantes } \},$
- $2 B = \{ \text{ suites convergeant vers } 0 \},$
- $|\mathbf{3}| C = \{ \text{ suites convergentes } \},$
- $\boxed{\mathbf{4}}$ $D = \{$ suites admettant 0 pour valeur d'adhérence $\},$
- $E = \{ \text{ suites périodiques } \}.$

Exercice 53

[id=668

Soit $(E, \|.\|)$ un espace vectoriel normé réel et on considère une partie \mathbf{O} de E tel que \mathbf{O} est convexe, ouvert bornée et symétrique $(\forall x \in E, x \in E \Rightarrow -x \in E.)$ et $0 \in \mathbf{O}$. Pour tout $x \in E$, on pose :

$$N(x) = \inf \left\{ \lambda > 0 / \frac{x}{\lambda} \in \mathbf{O} \right\}.$$

Prouver que N est une norme sur E.