Chapitre 2 : Algèbre linéaire : Rappels

Exercice 1

[id=1

Soit J la matrice de $\mathcal{M}_n(\mathbb{R})$ définie par $J=(a_{i,j})$ avec $\forall i,j\in [\![1,n]\!], a_{i,j}=1$. On note que si u l'endomorphisme canoniquement associé à J. On note $E=\mathbb{R}^n$ et $\mathscr{E}=(e_1,\ldots,e_n)$ la base canonique de E.

- $\boxed{\mathbf{1}}$ Calculer dim(ker(u))
- $\boxed{\mathbf{3}}$ Calculer u(e) où $e = \sum_{k=1}^{n} e_k$.
- $\boxed{\textbf{4}} \text{ Déduire de ce qui précède que l'on a : } \ker(u) \oplus \ker(u-n\operatorname{Id}_E) = E.$

Exercice 2

[id=5

Soient $E_0, E_1, \ldots, E_n, n+1$ espaces vectoriels sur un même corps commutatif \mathbb{K} , de dimensions respectives d_0, d_1, \ldots, d_n . On suppose qu'il existe n applications linéaires $f_0, f_1, \ldots, f_{n-1}$ telles que :

$$\forall k \in \{0, \dots, n-1\}, f_k \in \mathcal{L}(E_k, E_{k+1}).$$

et de plus :

- f_0 est injective;
- $\forall j \in \{1, \ldots, n-1\}, \text{Im } f_{j-1} = \ker(f_j);$
- f_{n-1} est surjective.

Montrer que

$$\sum_{j=0}^{n} (-1)^j d_j = 0$$

Exercice 3

[id=9]

Soit A la matrice de $\mathcal{M}_3(\mathbb{R})$ tel que :

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & -1 \\ -1 & -1 & -1 \end{pmatrix}$$

- $oxed{1}$ Justifier que A est inversible
- $\boxed{\mathbf{2}}$ Calculer A^{-1} par au moins deux méthodes.

Exercice 4

[id-10]

Soit E un \mathbb{K} -espace vectoriel de dimension n avec $n \in \mathbb{N}$. Démontrer que pour tous sous-espaces vectoriels F_1 et F_2 de E, on a $\dim(F_1) = \dim(F_2)$ si et seulement si il existe un sous-espace vecoriel F de E tel que $F_1 \oplus F = F_2 \oplus F = E$. (on exprime cà en disant F_1 et F_2 possédent un

supplémentaire commun.)

Exercice 5 [id=14]

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice relativement à la base canonique $\mathscr{E} = (e_1, e_2, e_3)$

est
$$A = \begin{pmatrix} 15 & -11 & 5 \\ 20 & -15 & 8 \\ 8 & -7 & 6 \end{pmatrix}$$
. On note $\mathscr{E}' = (e'_1, e'_2, e'_3)$ avec $e'_1 = 2e_1 + 3e_2 + e_3, e'_2 = 3e_1 + 4e_2 + e_3, e'_3 = e_1 + 2e_2 + 2e_3$.

- $\boxed{\mathbf{1}}$ Démontrer que \mathscr{E}' est une base de \mathbb{R}^3 .
- $\boxed{\mathbf{2}}$ Déterminer la matrice A' de f rlativement à \mathscr{E}' .

Exercice 6 [id=15]

Soit E un \mathbb{K} -espace vectoriel de dimension finie, F_1, F_2, \ldots, F_n des sous-espaces vectoriels de E tel que $F_1 + \cdots + F_n = E$. Montrer qu'il existe des sous-espaces vectoriels G_1, \ldots, G_n de E tel que $G_1 \subset F_1, \ldots, G_n \subset F_n$ et $\bigoplus_{k=1}^n G_k = E$

Exercice 7 $_{[id=22]}$

Soiet $(p,q) \in (\mathbb{N}^*)^2$. On considère $(A,B) \in \mathbf{GL}_p(\mathbb{K}) \times \mathbf{GL}_q(\mathbb{K})$ et $C \in \mathcal{M}_{p,q}(\mathbb{K})$ et la matrice définie par blocs : $M = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$.

- $\boxed{\mathbf{1}}$ Démontrer que M est inversible.
- **2** Calculer M^{-1} en fonction de A, B et C

Exercice 8 [id=28]

On considère un \mathbb{K} -espace vectoriel E de dimension finie et quatre endomorphismes u,v,f,g de E qui commutent deux à deux, et vérifient la relation :

$$(\star) \quad u \circ f + v \circ g = \mathrm{Id}_E$$

- 1 Montrer que $\ker(f) \cap \ker(g) = \{0\}$ et $E = \operatorname{Im}(f) + \operatorname{Im}(g)$.
- $\boxed{\mathbf{2}} \text{ Montrer que } \ker(f \circ g) = \ker(f) \oplus \ker(g) \text{ et } \operatorname{Im}(f \circ g) = \operatorname{Im}(f) \cap \operatorname{Im}(g).$
- On suppose dans cette question qu'on a de plus $f \circ g = 0$. Montrer que $E = \ker(f) \oplus \ker(g) = \operatorname{Im}(f) \oplus \operatorname{Im}(g)$, $\ker(f) = \operatorname{Im}(g)$, $\ker(g) = \operatorname{Im}(f)$.

Exercice 9 [id=

On considère un \mathbb{K} -espace vectoriel E et quatre endomorphismes u,v,f,g de E qui commutent deux à deux, et vérifient la relation :

$$(\star) \quad u \circ f + v \circ g = \mathrm{Id}_E$$

- 1 Montrer que $\ker(f) \cap \ker(g) = \{0\}$ et $E = \operatorname{Im}(f) + \operatorname{Im}(g)$.
- $\boxed{\mathbf{2}} \text{ Montrer que } \ker(f \circ g) = \ker(f) \oplus \ker(g) \text{ et } \mathrm{Im}(f \circ g) = \mathrm{Im}(f) \cap \mathrm{Im}(g).$
- 3 On suppose dans cette question qu'on a de plus $f \circ g = 0$. Montrer que $E = \ker(f) \oplus \ker(g) = \operatorname{Im}(f) \oplus \operatorname{Im}(g), \ker(f) = \operatorname{Im}(g), \ker(g) = \operatorname{Im}(f)$.

Exercice 10 [id=30]

Soit E un espace vectoreil de dimension n avec $n \in \mathbb{N}^*$. Démontrer que si H et K sont deux hyperplans différents de E alors $\dim(H \cap K) = n - 2$.

Exercice 11 [id=33]

Soient E et F deux \mathbb{K} —espaces vectoriels de dimensions finies p et n repsetcivement. On considére deux applications linéaires u et v de E vers F.

- $\boxed{\mathbf{1}} \text{ Démontrer que rg } (u+v) \leq \operatorname{rg}(u) + \operatorname{rg}(v).$
- **2** En déduire que $|\operatorname{rg}(u) \operatorname{rg}(v)| \le \operatorname{rg}(u+v)$.
- Vérifier dans le cas particulier où $E = \mathbb{R}_2[X]$, $F = \mathbb{R}_1[X]$ et u(P) = P' et v(P) = P(X+1) P(X) pour tout $P \in \mathbb{R}_2[X]$.

Exercice 12 [id=78]

Soient E, F deux \mathbb{K} -espaces vectoriels, $f \in \mathcal{L}(E, F)$ et A, B deux sous-espaces vectoriels de E. Montrer que :

$$f(A) \subset f(B) \Leftrightarrow A + \ker f \subset B + \ker f$$

Exercice 13 [id=79]

Soit $m \in \mathbb{R}$ et on considère dans $\mathcal{M}_3(\mathbb{R})$ la matrice $A = \begin{pmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \\ 1/3 & 1/4 & m \end{pmatrix}$. Determiner le rang de A.

$$SoitA = \begin{pmatrix} 1 & a & 1 & b \\ a & 1 & b & 1 \\ 1 & b & 1 & a \\ b & 1 & a & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}), \text{ où } a, b \in \mathbb{R}. \text{ Calculer rg } (A).$$

Exercice 15 [id=81]

Soient A et B deux parties d'un \mathbb{K} -espace vectoriel E.

- $\boxed{\mathbf{1}}$ Comparer $\operatorname{Vect}(A \cap B)$ et $\operatorname{Vect}(A) \cap \operatorname{Vect}(B)$.
- $\boxed{\mathbf{2}}$ Montrer que : $\operatorname{Vect}(A \cup B) = \operatorname{Vect}(A) + \operatorname{Vect}(B)$.

Exercice 16 [id=82]

Soient F et G des sous-espaces vectoriels de E.

Montrer que : $F \cap G = F + G \Leftrightarrow F = G$.

Exercice 17 [id=83]

Soient E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$ tel que les vecteurs x et f(x) sont colinéaires et ce pour tout $x \in E$.

- 1 Justifier que pour tout $x \in E$, il existe $\lambda_x \in \mathbb{K}$ tel que $f(x) = \lambda_x \cdot x$.
- Montrer que pour tout couple de vecteurs non nuls x et y, on a $\lambda_x = \lambda_y$. (indice: on pourra distinguer les cas: (x, y) liée ou (x, y) libre.)
- $\fbox{\bf 3}$ Conclure que f est une homothétie vectorielle.

Exercice 18 [id=84]

Soient f et g deux endomorphismes d'un espace vectoriel E sur $\mathbb R$ ou $\mathbb C$ vérifiant $f\circ g=\mathrm{Id}.$

- $\boxed{\mathbf{1}} \text{ Montrer que } \ker(g \circ f) = \ker f \text{ et } \operatorname{Im}(g \circ f) = \operatorname{Im} g.$
- 2 Montrer

$$E=\ker f\oplus \mathrm{Im} g$$

- **3** Dans quel cas peut-on conclure $g = f^{-1}$?
- 4 Calculer $(g \circ f) \circ (g \circ f)$ et caractériser $g \circ f$.

Soient E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$ tel que $f^2 - 3f + 2 \operatorname{Id} = 0$.

- $\boxed{\mathbf{1}}$ Montrer que f est inversible et exprimer son inverse en fonction de f.
- $oxed{2}$ Établir que $\ker(f-\mathrm{Id})$ et $\ker(f-2\mathrm{Id})$ sont des sous-espaces vectoriels supplémentaires de E.

Exercice 20

[id=86

n désigne un entier naturel non nul et \mathbb{K} l'un des corps \mathbb{R} ou \mathbb{C} . Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est dite nilpotente s'il existe un entier naturel non nul k tel que $A^k = 0$. Le plus petit entier naturel non nul p réalisant $A^p = 0$ s'appelle l'indice de nilpotence de A. On note $\mathcal{N}_n(\mathbb{K})$ l'ensemble des matrices nilpotentes de $\mathcal{M}_n(\mathbb{K})$.

- 1 Démontrer que si A est une matrice nilpotente de $\mathcal{M}_n(\mathbb{K})$ alors $A^n = 0$.
- 2 La somme de deux matrices nilpotentes est elle toujours nilpotente?
- 3 Montrer que si A et B sont deux matrices nilpotentes de $\mathcal{M}_n(\mathbb{K})$ et AB = BA alors A + B et AB sont nilpotentes.
- $\boxed{\mathbf{4}} \ \mathcal{N}_n(\mathbb{K})$ est il un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$?
- Démontrer que si $\mathcal{H}_n(\mathbb{K}) = \{M \in \mathcal{M}_n(\mathbb{K})/\operatorname{tr}(M) = 0\} = \ker(\operatorname{tr}) \text{ alors } \operatorname{Vect}(\mathcal{N}_n(\mathbb{K})) = \mathcal{H}_n(\mathbb{K}).$

Exercice 21

[id=87

Soit $n \in \mathbb{N}$ tel que $n \geq 2$. Soit $A \in \mathcal{M}_n(\mathbb{K})$ tel que A n'est ni nulle ni inversible et soit r = rg(A). On pose :

$$\mathscr{E}_1 = \{ M \in \mathcal{M}_n(\mathbb{K}) / AM = 0 \};$$

$$\mathscr{E}_2 = \{ M \in \mathcal{M}_n(\mathbb{K}) / MA = 0 \}$$

et

$$\mathscr{E}_3 = \{ M \in \mathcal{M}_n(\mathbb{K}) / AM = MA = 0 \} = \mathscr{E}_1 \cap \mathscr{E}_2.$$

- 1 Démontrer qu'il existe $B \in \mathcal{M}_n(\mathbb{K})$ tel que $B \neq 0$ et AB = BA = 0.
- **2** Démontrer que $\mathcal{E}_k, k \in \{1, 2, 3\}$ sont des sous-espace vectoriels de $\mathcal{M}_n(\mathbb{K})$.
- $\boxed{\mathbf{3}}$ Determiner les dimensions de $\mathscr{E}_1,\mathscr{E}_2$ et \mathscr{E}_3

Exercice 22

id-88

Soient $f, g \in \mathcal{L}(E)$ tels que

$$g \circ f \circ g = g$$
 et $f \circ g \circ f = f$.

- $oxed{1}$ Montrer que $\operatorname{Im} f$ et $\ker g$ sont supplémentaires dans E.
- **2** Justifier que $f(\operatorname{Im} g) = \operatorname{Im} f$.

[id=89]

Soient E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et f un endomorphisme de E tel qu'il existe un vecteur $x_0 \in E$ pour lequel la famille $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ soit une base de E. On note

$$C = \{g \in \mathcal{L}(E)/g \circ f = f \circ g\}.$$

- $\boxed{\mathbf{1}}$ Montrer que \mathcal{C} est un sous-espace vectoriel de $\mathcal{L}(E)$.
- **2** On note $\mathbb{K}[f] = \{P(f)/P \in \mathbb{K}[X]\}$. Démontrer que $\mathbb{K}[f] \subset \mathcal{C}(f)$.
- Soit $g \in \mathcal{C}(f)$. Justifier l'existence d'un polynôme $P \in \mathbb{K}_{n-1}[X]$ tel que $g(x_0) = P(f)(x_0)$. Prouver ensuite que P(f) = g. En déduire que

$$C(f) = \{a_0 \mathrm{Id} + a_1 f + \dots + a_{n-1} f^{n-1} \mid a_0, \dots, a_{n-1} \in \mathbb{K} \}$$

 $\boxed{\mathbf{4}}$ Déterminer la dimension de $\mathcal{C}(f)$.

Exercice 24

[id=90]

Soit n un entier naturel supérieur ou égal à 2. Soit F un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ de dimension n^2-1 stable par la multiplication matricielle, c'est-à-dire :

$$\forall (M, M') \in F^2, MM' \in F.$$

On suppose que $I_n \notin F$.

- $\boxed{1} \text{ Montrer que } \mathcal{M}_n(\mathbb{R}) = F \oplus \text{Vect}(I_n).$
- 2 a Soit p le projecteur de $\mathcal{M}_n(\mathbb{R})$ sur $\mathrm{Vect}(I_n)$ parallèlement à F. Montrer que :

$$\forall (M, M') \in \mathcal{M}_n(\mathbb{R})^2, \ p(MM') = p(M)p(M').$$

- (b) Montrer que pour toute matrice M de $\mathcal{M}_n(\mathbb{R})$ telle que M^2 appartienne à F, on a $M \in F$.
- Soit $(E_{i,j})_{1 \le i,j \le n}$ la base canonique de $\mathcal{M}_n(\mathbb{R})$. Calculer $E_{i,j} \times E_{k,l}$ pour tout $i,j,k,l \in [1,n]$.
- (\mathbf{d}) Montrer que $\forall (i,j) \in [1,n]^2, E_{i,j} \in F$.
- (e) Conclure.

Exercice 25

[id=9]

Soit $n \in \mathbb{N}$ tel que $n \geq 2$. \mathbb{K} désigne l'un des corps \mathbb{R} ou \mathbb{C} .

- Démontrer que pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$ tel que A non nulle et non inversible, il existe une matrice $B \in \mathcal{M}_n(\mathbb{K})$ tel que $B \neq 0$ et AB = BA = 0.
- **2** Soit $A \in \mathcal{M}_n(\mathbb{K})$ Démontrer que rg (A) = 1 si et seulement si :

$$\exists (X,Y) \in \mathcal{M}_{n,1}(\mathbb{K}), \quad \left\{ \begin{array}{ll} X \neq 0 \\ Y \neq 0 \end{array} \right. \quad \mathrm{et} \quad A = X^{\mathsf{t}}Y$$

Soit $A \in \mathcal{M}_3(\mathbb{K})$ tel que $A \neq 0$ et $A^2 = 0$. Démontrer que A est semblable à la matrice $J = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Exercice 26 [id=92]

- On considère n+1 nombres réels deux à deux distincts a_0, \ldots, a_n . Montrer que pour tout $k \in [\![0,n]\!]$, il existe un unique polynôme L_k de $\mathbb{R}_n[X]$ tel que : $\forall j \in [\![0,n]\!]$, $L_k(a_j) = \delta_{k,j}$. Expliciter le polynôme L_k sous forme factorisée.
- **2** a Montrer que $\mathcal{L} = (L_0, \dots, L_n)$ est une base de $\mathbb{R}_n[X]$.
 - (b) Soit $P \in \mathbb{R}_n[X]$. Donner les coordonnées de P dans la base \mathcal{L}
- **3** On suppose dans cette question que $a_j = j$ pour tout $j \in [0, n]$.
 - (a) Montrer que pour tout $k \in [0, n]$, on a :

$$L_k(X) = \frac{(-1)^{n-k}}{n!} \binom{n}{k} \prod_{\substack{j=0\\j\neq k}} (X-j).$$

- \bigcirc Déterminer le polynôme $Q = \sum_{k=1}^{n} kL_k$.
- © Soit $A \in \mathcal{M}_{n+1}(\mathbb{R})$ la matrice de passage de la base canonique $\mathcal{B} = (1, X, \dots, X^n)$ de $\mathbb{R}_n[X]$ à la base \mathcal{L} trouvée ci-dessus. Préciser la première ligne de A, la somme des éléments des autres lignes de A et la somme des éléments des colonnes de A.
- (\mathbf{d}) Donner A^{-1}

Exercice 27 [id=93]

- $\boxed{\mathbf{1}}$ Calculer A^2 et A^3 .
- **2** Montrer que A est inversible et calculer A^{-1} .

Exercice 28 [id=94]

E est un \mathbb{K} -espace vectoriel. Si f et g sont deux endomorphismes de E on note fg le composé $f \circ g$ et f^2 l'endomorphisme $f \circ f$.

 $\boxed{\mathbf{1}}$ Soit $u \in \mathcal{L}(E)$ un endomorphisme de E. On suppose qu'il existe un projecteur p de E

tel que u = pu - up. Démontrer que $u^2 = 0$.

- $\boxed{\mathbf{2}} \text{ On suppose que } u^2 = 0.$
 - (a) Justifier que $\operatorname{Im}(u) \subset \ker(u)$.
 - (b) Prouver que si F est un sous-espace vectoriel de E tel que $\operatorname{Im}(u) \subset F \subset \ker(u)$, G un supplémentaire de F dans E et p la projection de E sur F parallèlement à G, alors pu=u et up=0.
- Déduire de ce qui précède que pour tout endomorphisme u de E, il existe un projecteur p de E tel que pu up = u si et seulement si $u^2 = 0$.
- Soit $u \in \mathcal{L}(E)$ tel que $u^2 = 0$. Caractériser par leur images, les projecteurs p vérifiant u = pu up.

Exercice 29

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ vérifiant

$$AB = A + B$$

Montrer que A et B commutent

Exercice 30

On considère les matrices suivantes de $\mathcal{M}_n(\mathbb{K})$:

$$A = \begin{pmatrix} 1 & \cdots & \cdots & 1 \\ 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 \end{pmatrix} \quad \text{et} \quad N = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & \ddots & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}$$

On se propose de calculer A^{-1} par trois méthodes.

Première méthode:

- 1 Calculer N^n et N^{n-1} .
- **2** Exprimer A en fonction de N.
- **3** Montrer que $I_n N$ est inversible et déterminer son inverse. Conclure.

Deuxième méthode : Soit $f: \mathbb{K}_{n-1}[X] \to \mathbb{K}_{n-1}[X]; P \mapsto f(P) = \frac{P(0) + (X-1)P}{X}$

- 1 | Montrer que f est bien une application.
- **2** Montrer que f est un isomorphisme du \mathbb{K} -espace vectoriel $\mathbb{K}_{n-1}[X]$.
- $|\mathbf{3}|$ Determiner $g = f^{-1}$.
- Calculer les matrices de f et g relativement à la base canonique $\mathcal{B} = (1, X, \dots, X^{n-1})$ de $\mathbb{K}_{n-1}[X]$ et conclure.

Troisième méthode : Soit E un \mathbb{K} -espace vectoriel de dimension n et $\mathcal{B} = (e_1, \dots, e_n)$ une base de E et soit $\Omega = (\omega_1, \dots, \omega_n)$ avec pour tout $k \in [1, n]$ on pose $\omega_k = \sum_{j=1}^k e_j$.

- 1 Déterminer les matrices de passage de \mathcal{B} à Ω et celle de Ω à \mathcal{B} .
- 2 Conclure.

[id=97]

E est un \mathbb{K} -espace vectoriel de dimension n avec $n \in \mathbb{N}^*$. Soit $k \in \mathbb{N}, k \geq 2$ et p_1, \ldots, p_k des projecteurs de E. On note $p = \sum_{i=1}^k p_i$.

- **1** Démontrer que pour tout projecteur π de E on a rg $(\pi) = \operatorname{tr}(\pi)$.
- **2** On suppose que p est un projecteur. Montrer que $\operatorname{Im}(p) = \bigoplus_{i=1}^k \operatorname{Im}(p_i)$.
- $\fbox{\bf 3}$ Montrer que p est un projecteur si et seulement si :

$$\forall (i,j) \in [1,k]^2, p_i \circ p_j = \delta_{i,j} p_i.$$

avec pour tout $i, j \in \llbracket 1, k
rbracket, \delta_{i,j} = \left\{ egin{array}{ll} 1 & \mathrm{si} & i = j \\ 0 & \mathrm{si} & i
eq j \end{array} \right.$ (le symbole de Kronnecker).

Exercice 32

[id=98]

Soient $p, q \in \mathcal{L}(E)$. Montrer l'équivalence entre les assertions :

(i) $p \circ q = p$ et $q \circ p = q$. (ii) p et q sont des projecteurs de même noyau.

Exercice 33

[id=99

Soient E un \mathbb{K} -espace vectoriel et f un endomorphisme de E nilpotent i.e. tel qu'il existe $n \in \mathbb{N}^*$ pour lequel $f^n = 0$. Montrer que $\mathrm{Id} - f$ est inversible et exprimer son inverse en fonction de f.

Exercice 34

[id=10

Soit E un \mathbb{K} -espace vectoriel non réduit à $\{0\}$ de dimension finie ou infinie et u un endomorphisme de E tel que :

$$\forall v \in \mathcal{L}(E), \ u \circ v = v \circ u$$

- Démontrer que si $f \in \mathcal{L}(E)$ alors f est une homothétie de E si et seulement si pour tout $x \in E$ la famille (x, f(x)) est liée.
- Soit $x \in E$ tel que $x \neq 0$. On note $F = \mathbb{K}x$ la droite vectorielle engendrée par x, G un supplémentaire de F(donc G est un hyperplan de E), et soit p la projection de E sur F parallèlement à G.
 - (a) Prouver que u(x) = p(u(x)).
 - (\mathbf{b}) En déduire que (x, u(x)) est liée.
 - c Enoncer le théorème démontré.

Soit $n \in \mathbb{N}$ tel que $n \geq 2$.

- Démontrer que pour tout $r \in [0, n-1]$, il existe une matrice carrée $N_r \in \mathcal{M}_n(\mathbb{K})$ nilpotente de rang r.
- En déduire que pour tout $A \in \mathcal{M}_n(\mathbb{K})$ on a A est non inversible si et seulement si il existe une matrice nilpotente N et une matrice inversible P tel que A = PN si et seulement si il existe une matrice nilpotente M et une matrice inversible Q tel que A = MQ

Exercice 36

[id=10

Rang de f^2 :

E est un \mathbb{K} -espace vectoriel de dimension finie n Soit $f \in \mathcal{L}(E)$

- 1 Montrer que rg (f^2) = rg $f \dim(\ker f \cap \operatorname{Im}(f))$
- **2** En déduire que $\dim(\ker(f^2) \le 2\dim(\ker(f))$.

Exercice 37

[id=103

E et F sont deux \mathbb{K} -espaces vectoriels de dimensions finies. Soit $f \in \mathcal{L}(E,F)$ et G un sous espace de E Montrer que $\dim(f(G)) = \dim(G) - \dim(\ker f \cap G)$.

Exercice 38

[id=10

Dans l'espace vectoriel réel $E=\mathbb{R}^{\mathbb{R}}$ des applications de \mathbb{R} vers \mathbb{R} , on considère l'application :

$$f: \mathbb{R} \to \mathbb{R}; x \mapsto \sin(x).$$

Démontrer que la famille

$$\mathscr{F} = (f, f \circ f, f \circ f \circ f)$$

est une famille libre de vecteurs de E.

Exercice 39

On considère trois espaces vectoriels sur \mathbb{K} et $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,G)$ des application linéaires. Démontrer que :

- $1 \quad f(\ker(g \circ f)) = \ker(g) \cap \operatorname{Im}(f).$
- $\boxed{\mathbf{2}} g^{-1}(\operatorname{Im}(g \circ f)) = \ker(g) + \operatorname{Im}(f).$
- $\boxed{\mathbf{3}} \ker(g \circ f) = f^{-1}(\ker(g)).$
- $\boxed{\mathbf{4}} \ker(f) \subset \ker(g \circ f).$
- $\boxed{\mathbf{5}} \operatorname{Im}(g \circ f) = g(\operatorname{Im}(f)).$
- $\boxed{\mathbf{6}} \operatorname{Im}(g \circ f) \subset \operatorname{Im}(g).$

[id=106]

E,F et G sont trois \mathbb{K} -espaces vectoriels et $f\in\mathcal{L}(E,F)$ et $g\in\mathcal{L}(F,G)$. Montrer que :

- $\boxed{\mathbf{1}} \ker(g \circ f) = \ker(f) \Leftrightarrow \ker(g) \cap \operatorname{Im}(f) = \{0\}$
- $\boxed{\mathbf{2}} \operatorname{Im}(g \circ f) = \operatorname{Im}(g) \Leftrightarrow \ker(g) + \operatorname{Im}(f) = F.$

Exercice 41

id=107]

Soit $E=\mathbb{R}^3$ et on note θ l'endomorphisme nul de E et Id l'application identique de E, ce qui veut dire $\forall x\in E, \theta(x)=0$ et $\mathrm{Id}(x)=x$. Pour tout $n\in\mathbb{N}^*$ on note $u^n=\underbrace{u\circ\cdots\circ u}$.

Soit $u \in \mathcal{L}(E)$ un endomorphisme de E tel que $u \neq \theta$ et $u^3 + u = \theta$. On se propose de démontrer qu'il existe une base $\mathscr{V} = (v_1, v_2, v_3)$ de E tel que la matrice de u relativement à \mathscr{V}

est
$$A = \max_{\mathscr{V}}(u) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}.$$

- $\boxed{\mathbf{1}} \text{ Montrer que } \ker(u) \oplus \ker(u^2 + 1) = E$
- Prouver que u et $u^2 + \text{Id}$ ne sont pas inversibles.
- **3** En déduire l'existence de $v_1, v_2 \in E$ tel que $v_1 \neq 0$ et $v_2 \neq 0$ et $u(v_1) = 0$ et $u^2(v_2) = -v_2$.
- Démontrer que $\operatorname{Im}(u) \subset \ker(u^2 + \operatorname{Id})$ et en déduire que si on pose $v_3 = u(v_2)$ alors $u(v_3) = -v_3$.
- $\boxed{\bf 5}$ Démontrer que (v_2,v_3) est une famille libre.
- En déduire que $\mathscr{V}=(v_1,v_2,v_3)$ est une base de E et que $\mathrm{mat}_{\mathscr{V}}(u)=A$ où A est la matrice indiquée ci-dessus.

Exercice 42

[id=108

Soit \mathbb{K} un corps infini et E un \mathbb{K} -espace vectoriel. Démontrer que pour toute entier naturel m tel que $m \geq 2$, si F_1, \ldots, F_m sont des sous-espaces vectriels de E tel que $\bigcup_{k=1}^m F_k = E$ alors il existe $i \in [1, m]$ tel que $F_i = E$.

Exercice 43

[id=10

Soit $n \in \mathbb{N}^*$ et E un sous-espace vectoriel de $\mathbb{K}[X]$ tel que $\dim(E) = n$. Démontrer qu'il existe deux bases $\mathscr{P} = (P_1, \dots, P_n)$ et $\mathscr{Q} = (Q_1, \dots, Q_n)$ de E tel que :

- $\boxed{\mathbf{1}}$ Les polynômes $Q_1,\ldots,\ Q_n$ ont des degrés deux à deux distincts.
- $\boxed{\mathbf{2}}$ Les polynômes P_1, \dots, P_n ont le même degré.

Exercice 44 [id=11]

Soit $D: \mathbb{K}[X] \to \mathbb{K}[X], P \mapsto P'$. On dit qu'un sous-espace vectoriel F de $\mathbb{K}[X]$ est stable par D si et seulement si $D(F) \subset F$. Démontrer que les seuls sous-espaces de $\mathbb{K}[X]$ stables par D sont $\mathbb{K}[X]$ et $\mathbb{K}_n[X]$, pour tout $n \in \mathbb{N}$.

Exercice 45 [id=111]

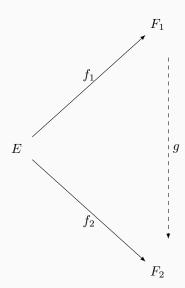
- Soit E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$ tel que , pour tout $x \in E$, la famille (x, u(x)) est liée. Démontrer qu'il existe $\lambda \in \mathbb{K}$ tel que $u = \lambda \operatorname{Id}_E$ (Cela veut dire que u est une homothétie vectorielle.)
- - (b) Soient $A_1 = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$ et $A_2 = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}$. Justifier rapidment que A_1 et A_2 sont semblables puis donner une matrice $P \in \mathbf{GL}_2(\mathbb{R})$ tel que $A_2 = P^{-1}A_1P$.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$ $(n \geq 2)$ tel que $\operatorname{tr}(A) = 0$. démontrer que A est semblable à une matrice A' dont tous les termes diagonaux sont nuls.
- $\boxed{\mathbf{4}}$ Soit E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$ tel que :

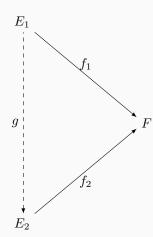
$$\forall v \in \mathcal{L}(E), \quad u \circ v = v \circ u$$

Démontrer que u est une homothétie vectorielle.

Exercice 46 [id=112]

- Soient E, F_1, F_2 des \mathbb{K} -espaces vectoriels et on considère $f_1 \in \mathcal{L}(E, F_1), f_2 \in \mathcal{L}(E, F_2)$ des applications linéaires. Démontrer que les assertions suivantes sont équivalentes :
 - (1) $\ker f_1 \subset \ker f_2$
 - $(2) \exists g \in \mathcal{L}(F_1, F_2), \quad f_2 = g \circ f_1$
- On considère des \mathbb{K} -espaces vectoriels E_1, E_2, F et des applications linéaires $f_1 \in \mathcal{L}(E_1, F)$ et $f_2 \in \mathcal{L}(E_2, F)$. Démontrer que les assertions suivantes sont équivalentes :
 - (1) $\operatorname{Im}(f_1) \subset \operatorname{Im}(f_2)$.
 - $(2) \exists g \in \mathcal{L}(E_1, E_2) \quad f_1 = f_2 \circ g.$





3 Soient E, F des \mathbb{K} -espaces vectoriels.

- (a) On considère des applications linéaires $f_1, f_2 \in \mathcal{L}(E, F)$. Démontrer que pour toute application linéaires $g \in \mathcal{L}(E, F)$, les assertions suivantes sont équivalentes :
 - (1) $\ker(f_1) \cap \ker(f_2) \subset \ker(g)$.
 - (2) $\exists a, b \in \mathcal{L}(F), g = a \circ f_1 + b \circ f_2.$
- (b) On considère des applications linéaires $f_1, f_2 \in \mathcal{L}(E, F)$. Démontrer que pour toute application linéaire $g \in \mathcal{L}(E, F)$, les assertions suivantes sont équivalentes :
 - (1) $\operatorname{Im}(g) \subset \operatorname{Im}(f_1) + \operatorname{Im}(f_2)$.
 - (2) $\exists a, b \in \mathcal{L}(E), g = f_1 \circ a + f_2 \circ b.$

Exercice 47 [id=113]

1 Pour tout $a = (a_0, \ldots, a_{n-1})$, on note :

$$V(a) = V(a_0, \dots, a_{n-1}) = \begin{vmatrix} 1 & a_0 & \dots & a_0^{n-1} \\ 1 & a_1 & \dots & a_1^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & a_{n-1} & \dots & a_{n-1}^{n-1} \end{vmatrix}$$

Démontrer que $V(a_0, ..., a_{n-1}) = \prod_{0 \le i < j \le n-1} (a_j - a_i).$

APPLICATION : Soit E un \mathbb{K} -espace vectoriel de dimension n avec $n \in \mathbb{N}$ et $n \geq 2$ et F_1, \ldots, F_m des sous-espaces vectoriels de E tel que $m \geq 2$ et $\bigcup_{k=1}^m F_k = E$. Démontrer qu'il existe $j \in [\![1,m]\!]$ tel que $F_j = E$.

Indication : On pourra considérer une base $\mathscr{E}=(e_0,\ldots,e_{n-1})$ de E et l'application

$$f: \mathbb{K} \to E; t \mapsto f(t) = \sum_{k=0}^{n-1} t^k e_k.$$

 $\fbox{\bf 3}$ Prouver que le résultat du 2) reste vrai si on ne suppose plus E de dimension finie.

Exercice 48 [id=:

Soit E un $\mathbb{K}-$ espace vectoriel. On appelle hyperplan de E, un sous-espace vectoriel H de E de codimension 1, c'est-à-dire tel qu'il existe $a \in E$ tel que $a \neq 0$ et $H \oplus \mathbb{K} a = E$. On appelle forme linéaire sur E toute application linéaire de E vers \mathbb{K} . On note $E^* = \mathcal{L}(E, \mathbb{K})$, appelé le dual algébrique de E.

 $\boxed{\mathbf{1}}$ Soit H un hyperplan de E. Démontrer que :

$$\forall b \in E, \quad H \oplus \mathbb{K}b = E \Leftrightarrow b \notin H.$$

Soit H un hyperplan de E. Démontrer que pour tout sous-espace vectoriel H' de E on a :

$$H \subset H' \Rightarrow H' = H$$
 ou $H' = E$.

- 3 Soit H un sous-espace vectoriel de E. Démontrer que H est un hyperplan de E si et seulement si il existe une forme linéaire non nulle φ sur E tel que $H = \ker \varphi$.
- Soit E un \mathbb{K} -espace vectoriel. Démontrer que si φ et ψ sont deux formes linéaires non nulles de E alors :

$$\ker \varphi = \ker \psi \Leftrightarrow \exists \alpha \in \mathbb{K}^*, \quad \psi = \alpha \varphi$$

Exercice 49 [id=115]

Pour toute matrice $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{K})$, on rappelle que la comatrice de A est $A' = (a'_{i,j})_{1 \leq i,j \leq n}$ tel que pour tout $i,j \in [\![1,n]\!]$, $a'_{i,j} = (-1)^{i+j}\Delta_{i,j}$ et $\Delta_{i,j} = \det(A_{i,j})$, avec $A_{i,j}$ est la matrice de $\mathcal{M}_{n-1}(\mathbb{K})$ obtenue après suppression de la ligne i et la colonne j de A. On note $A' = \operatorname{Com}(A)$, la comatrice de A et $\widetilde{A} = {}^{\operatorname{t}}(\operatorname{Com}(A))$, appelée matrice complémentaire de A.

1 Prouver que :

$$\forall A \in \mathcal{M}_n(\mathbb{K}), \quad \widetilde{A}A = A\widetilde{A} = \det(A)I_n.$$

2 Soit $n \in \mathbb{N}$ tel que $n \geq 2$ et $A \in \mathcal{M}_n(\mathbb{K})$ et on note $r = \operatorname{rg}(A)$. Démontrer que :

$$\operatorname{rg}(\widetilde{A}) = \operatorname{rg}(\operatorname{Com}(A)) = \begin{cases} n & \text{si} & r = n \\ 1 & \text{si} & r = n - 1 \\ 0 & \text{si} & r < n - 1 \end{cases}$$

Exercice 50 [id=116]

Soit $n \in \mathbb{N}$ et $\Delta = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ une matrice diagonale de $\mathcal{M}_n(\mathbb{K})$ dont les termes diagonaux $\lambda_1, \dots, \lambda_n$ sont deux à deux distincts. On considère l'application :

$$\Phi: \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K}); X \mapsto \phi(X) = \Delta X - X\Delta$$

Pour tout $X, Y \in \mathcal{M}_n(\mathbb{K})$, on note [X, Y] = XY - YX, appelé crochet de Lie. Ainsi $\forall X \in \mathcal{M}_n(\mathbb{K}), \Phi(X) = [\Delta, X]$.

- $\boxed{\mathbf{1}} \ \ \text{Vérifier que } \Phi \ \text{est linéaire et déterminer ker} \ \Phi \ \text{et Im} \ \Phi.$
- **2** Démontrer que $\forall A, B \in \mathcal{M}_n(\mathbb{K}), \operatorname{tr}([A, B]) = 0.$
- $\boxed{\mathbf{3}}$ Soit $M \in \mathcal{M}_n(\mathbb{K})$ tel que $\operatorname{tr}(M) = 0$.

- (a) Démontrer que M est semblable à une matrice M' dont les termes diagonaux sont nuls.
- (b) En déduire qu'il existe $A, B \in \mathcal{M}_n(\mathbb{K})$ tel que M = [A, B].

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $\psi_A : \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}, X \mapsto \Psi_A(X) = \operatorname{tr}(AX)$. Démontrer que l'application :

$$\Phi: \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K})^*; A \mapsto \Phi(A) = \Psi_A$$

est un isomorphisme.

- Soit $r \in [0, n]$ tel que $r \neq 0$, et $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, avec $A \in \mathcal{M}_r(\mathbb{K})$. Démontrer que $\operatorname{tr}(J_r M) = \operatorname{tr}(A)$ où $J_r = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.
- **3** Vérifier que la matrice

$$K = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & \dots & \dots & 0 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

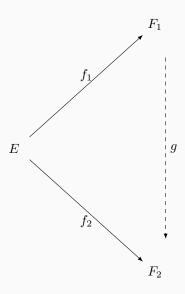
est inversible et que tr(K) = 0.

 $\boxed{\mathbf{4}}$ Démontrer que tout hyperplan \mathcal{H} de $\mathcal{M}_n(\mathbb{K})$, il existe une matrice A tel que $A \in \mathcal{H} \cap \mathbf{GL}_n(\mathbb{K})$.

Exercice 52 [id=1

Soient E, F_1, F_2 des \mathbb{K} -espaces vectoriels et on considère $f_1 \in \mathcal{L}(E, F_1), f_2 \in \mathcal{L}(E, F_2)$ des applications linéaires.

Mohamed Ait Lhoussain page 15 SPÉ MP

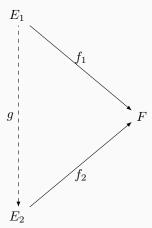


Démontrer que les assertions suivantes sont équivalentes :

- (1) $\ker f_1 \subset \ker f_2$
- (2) $\exists g \in \mathcal{L}(F_1, F_2), \quad f_2 = g \circ f_1$
- Soient E, F des \mathbb{K} -espaces vectoriels et on considère des applications linéaires $f_1, f_2 \in \mathcal{L}(E, F)$. Démontrer que pour toute application linéaires $g \in \mathcal{L}(E, F)$, les assertions suivantes sont équivalentes :
 - (1) $\ker(f_1) \cap \ker(f_2) \subset \ker(g)$.
 - (2) $\exists a, b \in \mathcal{L}(F), g = a \circ f_1 + b \circ f_2.$

Exercice 53

- [id=119]
- ① On considère des \mathbb{K} —espaces vectoriels E_1, E_2, F et des applications linéaires $f_1 \in \mathcal{L}(E_1, F)$ et $f_2 \in \mathcal{L}(E_2, F)$. Démontrer que les assertions suivantes sont équivalentes :



- (1) $\operatorname{Im}(f_1) \subset \operatorname{Im}(f_2)$.
- (2) $\exists g \in \mathcal{L}(E_1, E_2)$ $f_1 = f_2 \circ g$.
- $oxed{2}$ E, F sont des espaces vectoriels et on considère des applications linéaires $f_1, f_2 \in \mathcal{L}(E, F)$. Démontrer que pour toute application linéaire $g \in \mathcal{L}(E, F)$, les assertions suivantes sont équivalentes :

- (1) $\operatorname{Im}(g) \subset \operatorname{Im}(f_1) + \operatorname{Im}(f_2)$.
- (2) $\exists a, b \in \mathcal{L}(E), g = f_1 \circ a + f_2 \circ b.$

Donner un exemple de matrices non sembalables non inversible et non nulles dans $\mathcal{M}_2(\mathbb{R})$

Exercice 55

[id=464]

Soit E un \mathbb{K} -espace vecoriel et on considère deux endomorphismes f et g de E. Démontrer que si f+g est inversible et $f\circ g=0$ alors $\operatorname{rg}(f)+\operatorname{rg}(g)=n$

Exercice 56

[id=465

E est un \mathbb{K} -espace vectoriel et U un sous-espace vectoriel de E. Soit

$$\mathcal{A} = \{ u \in \mathcal{L}(E)/U \subset \ker(u) \}.$$

- 1 Prouver que A est un sous-espace vectoriel de E.
- **2** Si E est de dimension finie n, calculer la dimension de \mathcal{A} en fonction de n et $p = \dim(U)$.

Exercice 57 [id-

Soit A une matrice carrée de taille 2. Démontrer que si A est non sclaire alors $A \simeq \begin{pmatrix} 0 & -d \\ 1 & t \end{pmatrix}$ avec $t = \operatorname{tr}(A)$ et $d = \det(A)$

Exercice 58 [id=

Soit u un endomorphisme d'un espace euclidien E. On suppose $u^* \circ u = u \circ u^*$.

- 1 | Montrer que les endomorphismes u et u^* ont les mêmes sous-espaces propres.
- 2 | Montrer que les sous-espaces propres de u sont deux à deux orthogonaux.

Exercice 59 [id=480]

On consifère deux \mathbb{K} -espaces vectoriels E et F de dimensions finie et soit W un sous-espace vectoriel de E. On note $\mathscr{L}_W(E,F)=\{f\in\mathscr{L}(E,F)/\forall x\in W, f(x)=0\}.$

1 Démontrer que $\mathcal{L}_W(E,F)$ est un espace vectoriel.

2 Trouver la dimension de $\mathscr{L}_W(E,F)$.

Exercice 60 [id=48]

Soient
$$n \in \mathbb{N}^*, A = (\operatorname{Min}(i,j))_{1 \leqslant i,j \leqslant n} = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & 2 & \dots & 2 \\ \vdots & \vdots & & \vdots \\ 1 & 2 & \dots & n \end{pmatrix} \in \mathbf{M}_n(\mathbb{R})$$
. Montrer que A est

inversible et calculer A^{-1} .

Exercice 61 [id=484]

Soit E un espace vectoriel quelconque, f un endomorphisme de E et F un sous-espace vectoriel de E.

 $\boxed{\mathbf{1}}$ Démontrer que si F est de dimension finie et $F \subset f(F)$ alors f(F) = F.

On suppose dans cette question que f est injective et $F \subset f(F)$. A-t-on f(F) = F? Justifier votre réponse.

Exercice 62 [id=497]

Soit $n \in \mathbb{N}$ tel que $n \geq 2$ et $A \in \mathcal{M}_n(\mathbb{K})$ tel que

$$(\star) \quad \forall M \in \mathcal{M}_n(\mathbb{K}), \det(A+M) = \det(A) + \det(M).$$

Démontrer que A=0.

Exercice 63 [id=498]

Soient : $n \in \mathbb{N}^*$, et Δ (dérivée discrète), l'application de $\mathbb{R}_n[X]$ dans $\mathbb{R}[X]$ définie par :

$$\forall P \in \mathbb{R}_{n}[X], \Delta(P) = P(X+1) - P(X).$$

a. Montrer que Δ permet de définir un endomorphisme de $\mathbb{R}_n[X]$, que l'on notera Δ_n .

b. Montrer que : $\Delta^n \neq 0$ et $\Delta_n^{n+1} = 0$ (c'est-à-dire Δ_n est nilpotent d'indice de nilpotence n+1

c. En déduire qu'il existe des constantes a_0, \ldots, a_{n+1} (que l'on déterminera) telles que :

$$\forall P \in \mathbb{R}_{\mathbf{n}}[\mathbf{X}], \sum_{k=0}^{n+1} a_k P(X+k) = 0.$$

On pourra faire intervenir l'endomorphisme T de $\mathbb{R}_n[X]$ défini par : $\forall P \in \mathbb{R}_n[X], T(P) = P(X + 1)$.

Soient f, g et h trois endomorphismes d'un K-espace vectoriel E, tels que : $f \circ g = h$ et $g \circ h = f$ et $h \circ f = g$.

- $\boxed{\mathbf{1}}$ Montrer que f,g et h ont même image et même noyau.
- $\boxed{\mathbf{2} \mid \text{Montrer que} : f^5 = f.}$
- **3** En déduire que : $E = \text{Im}(f) \oplus \text{ker}(f)$.

Exercice 65

[id=500

Dans $\mathcal{CM}_n(\mathbb{R})$ on définit les matrices :

$$A = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & \ddots & \ddots & & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}, M = \begin{pmatrix} 1 & 0 & \cdots & 0 & 1 \\ 1 & \ddots & \ddots & & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 & 1 \end{pmatrix}.$$

- $oxed{1}$ A l'aide de l'endomorphisme canoniquement associé à A, calculer A^k , pour tout entier : $k \in \mathbb{N}$.
- **2** En déduire M^k , pour tout entier : $k \in \mathbb{N}$.

Exercice 66 [id=

Soit $E = \mathbb{R}^3$ et $F = \{(x, y, z) \in \mathbb{R}^3 : x - y - 2z = 0\}$

- $\boxed{\mathbf{1}}$ Montrer que F est un sous-espace vectoriel de E, donner une base \mathscr{B}_F de F.
- Soit $G = \text{Vect}\{(0,1,1)\}$ le sous-espace vectoriel de E engendré par $\{(0,1,1)\}$ Determiner $F \cap G$, en déduire que $E = F \oplus G$.

Exercice 67 [id=50]

Soit E un espace vectoriel de dimension 3 et $\mathscr{B}=(e_1,e_2,e_3)$ une base de E. On considère l'endomorphisme f de E tel que :

$$f(e_1) = f(e_3) = e_3, f(e_2) = -e_1 + e_2 + e_3.$$

- $\boxed{\mathbf{1}}$ Écrire la matrice A de f relativement à la base \mathscr{B} .
- 2 a Determiner $\ker(f)$.
 - (\mathbf{b}) Determiner une base \mathcal{B}_0 de $\ker(f)$.
 - \bigcirc Compléter \mathscr{B}_0 en une base de E.
- $\boxed{\mathbf{3}}$ Determiner $\mathrm{Im}(f)$ et en donner une base \mathscr{B}_1 .

 $\boxed{\mathbf{4}}$ On considère $\mathscr{B}' = (e'_1, e'_2, e'_3)$ avec :

$$e'_1 = e_1 - e_3, e'_2 = e_1 - e_2, e'_3 = -e_1 + e_2 + e_3$$

- (a) Montrer que \mathcal{B}' est une base de E.
- (\mathbf{b}) Écrire la matrice P de passage de \mathscr{B} à \mathscr{B}' .
- **5** Exprimer e_1, e_2, e_3 en fonction de e'_1, e'_2, e'_3 . En déduire P^{-1} , l'inverse de P.
- **6** Écrire la matrice A' de f dans \mathscr{B}'
- **7** Calculer A^n , pour tout $n \in \mathbb{N}$.

Exercice 68

[id=51

 $\boxed{1}$ Soit a, b, c, d sont dans \mathbb{K} avec $a \neq 0$. Montrer que:

$$\left[\begin{array}{cc} 1 & 0 \\ \frac{c}{a} & 1 \end{array}\right] \left[\begin{array}{cc} a & 0 \\ 0 & d - \frac{bc}{a} \end{array}\right] \left[\begin{array}{cc} 1 & \frac{b}{a} \\ 0 & 1 \end{array}\right] = \left[\begin{array}{cc} a & b \\ c & d \end{array}\right].$$

2 Plus généralement, si A et D sont des matrices carrées sur \mathbb{K} d'ordre p et q telles que A soit inversible, trouver les matrices B_1, C_1, D_1 telles que

$$\left[\begin{array}{cc} I_p & 0 \\ C_1 & I_q \end{array}\right] \left[\begin{array}{cc} A & 0 \\ 0 & D_1 \end{array}\right] \left[\begin{array}{cc} I_p & B_1 \\ 0 & I_q \end{array}\right] = \left[\begin{array}{cc} A & B \\ C & D \end{array}\right].$$

- 3 On garde les notations de la question précédente.
 - (a) Quel est l'inverse de la matrice $\left[\begin{array}{cc} I_p & 0 \\ C_1 & I_q \end{array}\right]?$
 - (b) Si D_1 est inversible, quel est l'inverse de $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$?

Exercice 69

[id=511

Soient $(E, +, \cdot)$ un \mathbb{R} -espace vectoriel et A, B, C trois sous-espaces vectoriels de E.

- 1 Montrer que $(A \cap C) + (B \cap C) \subset (A + B) \cap C$. Donner un exemple dans \mathbb{R}^2 pour lequel l'inclusion est stricte.
- **2** Montrer que, si A + B = A + C, $A \cap B = A \cap C$ et $B \subset C$, alors B = C.

Soient $n\in\mathbb{N}^*$ et a_1,\dots,a_n des nombres complexes. Calculer pour $k=1,\dots,n-1$

$$D_k = \begin{vmatrix} 1 & a_1 & \cdots & a_1^{k-1} & a_1^{k+1} & \cdots & a_1^n \\ 1 & a_2 & \cdots & a_2^{k-1} & a_2^{k+1} & \cdots & a_2^n \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & a_n & \cdots & a_n^{k-1} & a_n^{k+1} & \cdots & a_n^n \end{vmatrix}$$