Chapitre 14 : Equations différentielles

Exercice 1

d=678

Chercher les fonctions y développables en série entière au voisinage de 0, solutions de l'équation différentielle

$$(2+x^2)y'' - xy' + y = 0.$$

Exercice 2

[id=427]

Résoudre le système différentiel :

(E)
$$\begin{cases} x' = x + y + z \\ y' = x - y + z \\ z' = x + y - z \end{cases}$$

avec la condition initiale : x(0) = 3, y(0) = 1, z(0) = 1.

Dissiner la projection sur la plan xOy de la courbe intégrale associée à la solution trouvée.

Exercice 3

[id=428]

Résoudre le système linéaire

(S)
$$\begin{cases} x' = x - y + z + e^t \\ y' = -x + y + z \\ z' = -x - y + 3z + e^{3t} \end{cases}$$

Exercice 4

[id=429]

Soit T un nombre réel strictement positif et $A:\mathbb{R}\to\mathcal{M}_n(\mathbb{C})$ une application continue T-périodique. On considère l'équation différentielle :

$$(E): \quad Y' = A(t)Y.$$

Démontrer que (E) admet une solution non nulle X tel qu'il existe un nombre complexe α tel que : $(\forall t \in \mathbb{R})$ $X(t+T) = \alpha X(t)$

Exercice 5

id=430]

a est un nombre réel strictement positif, on pose : $I_a =]-a, a[$. Soit $A \in \mathbf{GL}_n(\mathbb{R}), (n \in \mathbb{N}^*)$ et $X : I_a \to \mathcal{M}_n(\mathbb{R})$ une application dérivable tel que :

$$\begin{cases} (\forall t \in I_a) & X'(t)X(t) = A \\ X(0) = I_n \end{cases}.$$

1 Démontrer que : $(\forall t \in I_a)$ X(t)A = AX(t)

 $\boxed{\mathbf{2}}$ Démontrer que si A est symétrique alors X(t) est symétrique pour tout $t \in I_a$.

Exercice 6 [id=431]

On considère le système différentiel :

(E)
$$\begin{cases} x' = y + t \\ y' = \frac{1}{t^2}x - \frac{1}{t}y + t^2 \end{cases}$$

et soit (EH) le système homogène associé.

 $\boxed{\mathbf{1}} \ I \text{ désigne l'un des intervalles }] - \infty, 0 [\text{ ou }]0, +\infty [\text{. Déterminer les solutions } \varphi \text{ sur } I \text{ de } (EH) \text{ de la forme } : \begin{pmatrix} \alpha t^a \\ \beta t^b \end{pmatrix} \text{ avec } \alpha, \beta, a, b \in \mathbb{R}.$

 $\boxed{\mathbf{2}}$ En déduire la solution généale de (EH)

 $\boxed{\mathbf{3}}$ Résoudre (E)

Exercice 7 $_{[id=432]}$

On considère le système différentiel

(E):
$$\begin{cases} x' = -x + 4z + t \\ y' = -4x + 3y + 4z - t \\ z' = 3z \end{cases}$$

1 Résoudre le système homogène associé :

(a) En résolvant ses équations de proche en proche.

b En diagonalisant la matrice associée.

 $oxed{2}$ Résoudre (E).

Exercice 8 [id=43]

Résoudre le système différentiel :

$$\begin{cases} x' = 5x - 10y + 4z + e^t \\ y' = 2x - 7y + 4z - 1 \\ z' = 2x - 10y + 7z \end{cases}$$

Exercice 9 [id=434]

p et q sont deux application de [0,1] vers $\mathbb{R},$ continues sur $\mathbb{R}.$ On considère l'équation différentielle :

(E)
$$y'' + py' + qy = 0$$
.

- $\boxed{\mathbf{1}}$ Soit y une solution non identiquement nulle de (E).
 - (a) Montrer que les fonctions y et y' ne s'annulent pas simultanément.
 - (\mathbf{b}) Montrer que les zéros de y sont en nombre fini.
- Soient y_1 et y_2 deux solutions linéairement indépendantes de (E); on suppose que y_1 admet au moins deux zéros et on note a et b deux zéros consécutifs.
 - (a) Montrer que y_2 admet au moins un zéro dans l'intervalle ouvert]a,b[(Penser au wronskien).
 - (\mathbf{b}) La fonction y_2 peut elle avoir plusieurs zéros dans [a, b]?

Exercice 10 [id=435]

Soit $q: \mathbb{R} \to \mathbb{R}$ une application continue sur \mathbb{R} et paire et on considère l'équation différentielle :

$$(E_{\lambda}) \quad y'' + (\lambda - q(t))y = 0$$

- $\boxed{\mathbf{1}}$ Énoncer le théorème de Cauchy-Lipschitz adapté à (E_{λ}) .
- **2** En déduire qu'une solution φ de (E_{λ}) est impaire si, et seulement si $\varphi(0) = 0$
- $\fbox{3}$ Prouver, par exemple, à l'aide du wronskien que (E_{λ}) ne peut admettre un système fondamental de solutions constitué de fonctions de même parité.

Exercice 11 [id=436]

Soit p une application de \mathbb{R}_+ vers \mathbb{R} continue et intégrable et on considère l'équation différentielle :

(E)
$$y'' + (p(t) + 1)y = 0$$

 $oxed{1}$ Soit φ une solution de (E). Prouver que φ est une solution de l'équation différentielle :

$$(F) \quad z^{"} + z = g(t)$$

où g est à determiner.

2 En déduire que toute solution de (E) est bornée sur \mathbb{R}_+ .

Exercice 12 [id=437]

On considère l'équation différentielle :(E) $(x^2 - 1)y' + xy = x^3 - x$

- $oxed{1}$ Déterminer une fonction polynomiale p solution de (E) sur \mathbb{R} .
- **2** Résoudre (E) sur chacun des intervalles $]-\infty,-1[,]-1,1[,]1,+\infty[$.

 $\overline{\mathbf{3}}$ Expliquer pourquoi la seule solution de (E) sur \mathbb{R} est p.

Exercice 13 [id=438]

On considère un intervalle I non trivial de $\mathbb{R},$ des applications a,b de I vers \mathbb{R} et l'équation différentielle

$$(E) \quad y'' = a(t)y' + b(t)y$$

- $\boxed{\mathbf{1}}$ Démontrer que si (I, ϕ) est une solution maximale de (E) alors les zéros de ϕ sont isolés.
- Montrer que si (I, ϕ) et (J, ψ) sont deux solutions maximales de (E) alors soit elles sont proportionnelles soit pour tous zéros x_1, x_2 de ϕ , il existe un zéro x_0 de ψ tel que $x_1 < x_0 < x_2$

Exercice 14 [id=439]

Soit $p: \mathbb{R} \to \mathbb{R}$ une application strictement positive et continue sur \mathbb{R} .

1 Démontrer que toute solution de l'équation différentielle :

$$(E1) \quad y'' + p(t)y = 0$$

admet au moins un zéro sur $\mathbb R$

 $oxed{2}$ Démontrer que toute solution non identiquement nulle de l'équation différentielle :

$$(E_2) \quad y'' - p(t)y) = 0$$

admet au plus un zéro sur \mathbb{R} .

Exercice 15 [id=440]

Trouver les $y \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$ solutions de l'équation différentielle :

Exercice 16 [id=44]

Soit I un intervalle non trivial de $\mathbb R$ et a et b deux applications de I vers $\mathbb R$, continues sur I. On considère l'équation différentielle :

(E)
$$y'' + a(t)y' + b(t)y = 0$$

et soit φ une solution non identiquement nulle de (E).

 $oxed{1}$ Montrer que pour tout sous intervalle compact K de I, l'ensemble :

$$Z_{\varphi,K} = \{t \in K/\varphi(t) = 0\}$$

est fini. Que peut-on en déduire pour l'ensemble Z_{φ} des zéros de φ sur I?

- On suppose que φ s'annule au moins deux fois sur I et on considère α, β deux zéros consécutifs de φ (on expliquera pourquoi cela a un sens). Montrer que, si ψ est une autre solution sur I de (E), non proportionnelle à φ , alors $\psi(\alpha)\psi(\beta) \neq 0$ et que ψ s'annule une seule fois sur α, β .
- 3 On considère deux équations différentielles :

$$(E_f) \quad y'' + f(t)y = 0$$

 et

$$(E_g) \quad y'' + g(t)y = 0$$

avec $f,g:I\to\mathbb{R}$ continues tel que $f\geq g$. Montrer que, si v est une solution de (E_g) dont α et β sont deux zéros consécutifs et u une solution de (E_f) tel que $u(\alpha)u(\beta)\neq 0$ alors u admet un zéro dans α .

Exercice 17 $_{[id=442]}$

Pour tout $x \in \mathbb{R}$, on pose :

$$u(x) = \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} \cos(tx) dt, v(x) = \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} \sin(tx) dt$$

- $\fbox{1}$ Montrer que u et v sont solutions de classe C^1 d'un système différentiel de premier ordre.
- **2** En déduire les valeurs de u(x) et v(x) pour tout $x \in \mathbb{R}$.

Exercice 18 [id=443]

Soit $A: \mathbb{R} \to \mathcal{M}_2(\mathbb{C})$ une application continue et 2π -périodique. On considère l'équation différentielle linéaire homogène suivante :

$$(E) \quad x' = A(t)x.$$

Soit φ_1 et φ_2 deux solutions linéairement indépendantes de (E) et $M: \mathbb{R} \to \mathcal{M}_2(\mathbb{C})$ la matrice dont les colonnes sont celles des coordonnées de φ_1 et φ_2 dans la base canonique de \mathbb{C}^2 .

- 1 a Vérifier que $t \mapsto \varphi_1(x+2\pi)$ et $t \mapsto \varphi_2(x+2\pi)$ sont encore deux solutions de (E).
 - **b** En déduire qu'il existe $P \in \mathcal{M}_2(\mathbb{C})$ inversible telle que

$$\forall t \in \mathbb{R}, \quad M(t+2\pi) = M(t)P.$$

2 Déduire qu'il existe $B \in \mathcal{M}_2(\mathbb{C})$ telle que $P: t \mapsto P(t) = M(t)e^{tB}$ soit 2π -périodique.

Exercice 19 [id=4]

On considère l'équation différentielle : (E) $y'=y^3+t^3$. Pour tout $a\in [0,+\infty[$, on note (I_a,φ_a) la solution maximale de (E) tel que $\varphi_a(0)=a$.

- $\boxed{\mathbf{1}}$ Démontrer que φ_a est strictement croissante sur I_a
- $\fbox{\bf 2}$ Démontrer que I_a est majoré, soit alors $b=\sup(I_a)$
- 3 Prouver que : $\lim_{t \to b^{-}} \varphi_a(t) = +\infty$

Exercice 20 [id=448]

On considère le problème de Cauchy :

$$(\mathcal{C}) \quad \left\{ \begin{array}{l} y' = y^2 + t^2 \\ y(0) = 0 \end{array} \right.$$

- 1 Justifier l'existence d'une solution maximale (I, φ) pour (\mathcal{C})
- $oxed{2}$ Démontrer que φ est impaire
- $f{3}$ Étudier la monotonie et la concavité de φ
- $\boxed{\mathbf{4}}$ Démontrer que l'intervalle I est borné
- $\fbox{\bf 5}$ Dresser le tableau de variations de φ et donner une allure de sa courbe représentative
- Généralisation du 4) : Soit $n \in \mathbb{N}$ tel que $n \geq 2$ et h une fonction continue positive sur un intervalle $I \subset \mathbb{R}_+$ de \mathbb{R} . Démontrer que si (J,g) est une solution maximale du problème de Cauchy :

$$\begin{cases} y' = y^n + h(t) \\ y(t_0) = y_0 \end{cases}$$

alors l'intervalle J est majoré.

Exercice 21 [id=446]

Montrer que si (J,φ) est une solution maximale de l'équation différentielle :

$$(E) \quad y' = \sqrt{y^2 + t^2}$$

sur un intervalle J contenu dans $]0, +\infty[$ alors $J =]0, +\infty[$

Exercice 22 [id=447]

On considère l'équation différentielle : (E) $y'=y^3+t^3$. Pour tout $a\in [0,+\infty[$, on note (I_a,φ_a) la solution maximale de (E) tel que $\varphi_a(0)=a$.

- $\ensuremath{\mathbf{1}}$ Démontrer que φ_a est strictement croissante sur I_a
- 2 Démontrer que I_a est majoré, soit alors $b = \sup(I_a)$
- **3** Prouver que : $\lim_{t \to b^-} \varphi_a(t) = +\infty$

- Déterminer les séries entières solutions au voisinage de 0 de l'équation différentielle (E) y'' + 2xy' + 2y = 0.
- 2 Exprimer parmi celles-ci, celles dont la somme est une fonction paire.

Exercice 24

[id=477]

On considère l'équation différentielle

$$(E): \quad y'' + \cos^2(t)y = 0$$

- 1 Justifier l'existence d'une solution u de (E) telle que u(0) = 1 et u'(0) = 0.
- **2** Démontrer l'existence de deux réels α, β vérifiant

$$\alpha < 0 < \beta, u'(\alpha) > 0$$
 et $u'(\beta) < 0$

En déduire que u possède au moins un zéro dans \mathbb{R}_{-}^{*} et \mathbb{R}_{+}^{*} .

3 Justifier l'existence de réels

$$\gamma = \max\{t < 0 \mid u(t) = 0\} \text{ et } \delta = \min\{t > 0 \mid u(t) = 0\}$$

 $\boxed{\textbf{4}}$ Soit v une solution de (E) linéairement indépendante de u. En étudiant les variations de

$$W = uv' - u'v$$

montrer que v possède au moins un zéro dans $\gamma; \delta[$.

Soit w une solution non nulle de (E). Démontrer que w admet une infinité de zéros. On pourra introduire pour $n \in \mathbb{N}$, la fonction

$$w_n: \mathbb{R} \to \mathbb{R}, t \mapsto w(t - n\pi)$$

Exercice 25

[id=55]

Soit $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$ une fonction 2π -périodique. Existe-t-il $y \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$, une fonction 2π -périodique et solution de

$$y'' + y = f?$$