Chapitre 11 : Séries entières

Exercice 1

[id=674]

- 1 Montrer que la série entière de terme général $\left(1+\frac{1}{n}\right)^{n^2}\frac{x^n}{n!}$ a un rayon de convergence infini.
- 2 Pour tout x réel, on pose

$$f(x) = \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} \frac{x^n}{n!}$$
 et $g(x) = \frac{1}{\sqrt{e}} e^{ex}$.

Montrer que lorsque x tend vers $+\infty$, on a

$$f(x) \sim g(x)$$
.

Exercice 2

id=683

Démontrer que la fonction $x \mapsto f(x) = \exp(\exp(x))$ est développable en série entière et préciser son rayon de convergence.

Exercice 3

[id=324]

1 Déterminer le rayon de convergence des séries entières :

a)
$$\sum_{n\geqslant 0} \frac{n^2+1}{3^n} z^n$$
 b) $\sum_{n\geqslant 0} e^{-n^2} z^n$ c) $\sum_{n\geqslant 1} \frac{\ln n}{n^2} z^{2n}$ d) $\sum_{n\geqslant 0} \frac{n^n}{n!} z^{3n}$

2 Déterminer le rayon de convergence de :

a)
$$\sum_{n\geq 0} n! z^n$$
 b) $\sum_{n\geq 0} {2n \choose n} z^n$ c) $\sum_{n\geq 0} \frac{(3n)!}{(n!)^3} z^n$ d) $\sum_{n\geq 0} {n+\sqrt[n]{n+1} - \sqrt[n]{n}} z^n$

3 Déterminer le rayon de convergence des séries entières :

a)
$$\sum_{n\geqslant 0} z^{n^2}$$
 b) $\sum_{n\geqslant 0} \sin(n)z^n$ c) $\sum_{n\geqslant 1} \frac{\sin(n)}{n^2}z^n$

Exercice 4

 $_{
m id=325]}$

a) Déterminer les rayons de convergence des séries entières

$$\sum \ln \left(\frac{n+1}{n}\right) x^n \text{ et } \sum \sin(e^{-n}) x^n$$

b) Une série entière converge-t-elle normalement sur son disque ouvert de convergence?

Exercice 5

Déterminer le rayon de convergence de la série entière $\sum a_n x^n$ où (a_n) est la suite déterminée par

$$a_0 = \alpha, \ a_1 = \beta \text{ et } \forall n \in \mathbb{N}, a_{n+2} = 2a_{n+1} - a_n$$

avec $(\alpha, \beta) \in \mathbb{R}^2$.

Exercice 6 [id=327]

Déterminer le rayon de convergence des séries entières suivantes :

$$\sum_{n\geqslant 1} d(n)z^n \text{ et } \sum_{n\geqslant 1} s(n)z^n$$

où d(n) et s(n) désignent respectivement le nombre de diviseurs supérieurs à 1 de l'entier n et la somme de ceux-ci.

Exercice 7 [id=328]

On considère un nombre réel strictement positif a et soit (a_n) la suite réelle définie par $a_0 = a$ et $\forall n \in \mathbb{N}, a_{n+1} = \ln(1+a_n)$.

- 1 Déterminer le rayon de convergence R de la série $\sum a_n x^n$.
- $\fbox{\textbf{2}}$ Donner un équivalent de a_n et retrouver le résultat de la question 1).
- 3 On note $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ la fonction associée à la série entière en question. Donner un équivalent de f(x) quand x tends vers R à gauche.

Exercice 8 [id=329]

On considère la série entière $\sum a_n z^n$ où $a_n = \frac{1}{\sin(n\pi\sqrt{3})}$ pour tout $n \in \mathbb{N}^*$. On note R son rayon de convergence

- 1 Prouver que $R \leq 1$.
- **2** a Prouver que : $\forall t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \frac{2}{\pi}|t| \le |\sin(t)| \le |t|$.
 - **(b)** Prouver que pour tout $n \in \mathbb{N}^*$ il existe un et un seule entier naturel k_n tel que $(n\sqrt{3}-k_n)\pi \in \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
 - $oxed{c}$ En déduire l'existence d'une suite (b_n) tel que $|a_n| \leq b_n$ pour tout $n \in \mathbb{N}$ et $b_n = O(n)$ quand n tends vers $+\infty$.
 - (\mathbf{d}) En déduire que R=1.

Exercice 9

[14-220]

- Soit $(a_n)_{n\geq 1}$ une suite de nombres complexes. On suppose que la série $\sum a_n z^n$ a pour rayon de convergence R. Déterminer les rayons de convergence respectifs des séries entières $\sum a_n \ln(n) z^n$ et $\sum a_n H_n z^n$ où $H_n = \sum_{k=1}^n \frac{1}{k}$, pour tout $n \in \mathbb{N}^*$.
- **2** Donner un équivalent simple de $S(x) = \sum_{n=1}^{+\infty} \ln(n) x^n$ quand x tend vers 1 à gauche.

Exercice 10

[64-221

- Soit une série entière de coefficient $a_n, n \ge 0$ de rayon de convergence R avec R > 0. Montrer que la série entière de coefficient $\frac{a_n}{n!}$ est de rayon de convergence infini.
- $\boxed{\mathbf{2}}$ Pour tout nombre réel t on pose :

$$f(t) = \sum_{n=0}^{+\infty} \frac{a_n}{n!} t^n$$

Montrer qu'il existe r > 0 tel que, pour tout x > r, la fonction φ définie par

$$\varphi(t) = f(t)e^{-xt}$$

soit intégrable sur $[0, +\infty[$ et exprimer cette intégrale sous la forme de série entière en $\frac{1}{x}$.

Exercice 11

[id=332

 $\boxed{\mathbf{1}}$ Montrer que, pour tout entier naturel p, il existe un polynôme R_p tel que :

$$\forall x \in]-1,1[, \sum_{n=0}^{\infty} n^p x^n = \frac{R_p(x)}{(1-x)^{p+1}}$$

Que vaut $R_p(1)$?

- Soit $(a_n)_{n\geq 0}$ une suite de nombres réels admettant un développement asymptotique de la forme $a_n = P(n) + \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right)$ où P est un polynôme de degré p
 - (a) Trouver le rayon de convergence R de la série entière de coefficient a_n
 - **(b)** Pour $x \in]-R, R[$, on pose $S(x) = \sum_{n=0}^{\infty} a_n x^n$. Montrer que S admet en R une limite infinie et en -R une limite finie.

Exercice 12

[id=333]

Pour tout nombre réel x, on note E(x) la partie entière de x. Pour tout $n \in \mathbb{N}^*$, on pose :

$$a_n = \frac{\sqrt{n} - E(\sqrt{n})}{n},$$

et on considère la série entière $a = \sum a_n x^n$.

1 Déterminer le rayon de convergence R de la série entière a.

2 On note:

$$\begin{cases} \mathscr{C} = \{ z \in \mathbb{C} / \sum a_n z^n \text{ converge} \} \\ \mathscr{A} = \{ z \in \mathbb{C} / \sum a_n z^n \text{ converge absolument} \} \end{cases}$$

Déterminer \mathscr{C} et \mathscr{A} .

Exercice 13 [id=334]

Pour tout entier naturel n, on pose :

$$a_n = \frac{n^{n+1}}{n!}$$

et on considère la série entière $a = \sum a_n x^n$.

 $\boxed{\mathbf{1}}$ Determiner le rayon de convergence de la série entière a.

2 Determiner $\mathscr{C}_a = \{x \in \mathbb{R}/\sum a_n x^n \, \mathbf{CV}\}\$ et $\mathscr{A}_a = \{x \in \mathbb{R}/\sum a_n x^n \, \mathbf{ACV}\}\$. On pourra utiliser la formule de Stirling : quand n tends vers $+\infty$, on a $n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$.

Exercice 14 [id=335]

Pour tout $n \in \mathbb{N}^*$, on note $a_n = \sin\left(\frac{1}{\sqrt{n}}\right)$ et on considère la série entière $a = \sum a_n x^n$ et la fonction associée : $f: x \mapsto \sum_{n=1}^{+\infty} a_n x^n$.

 $\boxed{\mathbf{1}}$ Déterminer le rayon de convergence R de la série entière $\sum a_n x^n$.

2 Étudier la convergence de $\sum a_n x^n$ aux points x = -R et x = R.

3 (a) Soit M > 0. Montrer que:

$$\exists N \in \mathbb{N}^*, \exists \delta > 0, \forall x \in]1-\delta, 1[, \quad \sum_{n=1}^N \sin\left(\frac{1}{\sqrt{n}}\right) x^n \geq M.$$

 $oxed{\mathbf{b}}$ En déduire la limite de f(x) quand x tends vers 1 à gauche.

4 On considère la série entière $\sum b_n x^n$ avec :

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, b_n = \left(\sin\left(\frac{1}{\sqrt{n}}\right) - \sin\left(\frac{1}{\sqrt{n-1}}\right)\right) x^n,$$

et soit $g: x \mapsto \sum_{n=2}^{+\infty} b_n x^n$ la fonction qui lui est associée.

(a) Démontrer que la série $\sum b_n x^n$ converge normalement sur [0,1].

b En déduire que $\lim_{x\to 1^-} (1-x)f(x) = 0$

Exercice 15

[id=336]

Soit $\sum a_n z^n$ une série entière de rayon de convergence R>0. Pour tout $z\in\mathbb{C}$ tel que |z|< R, on pose : $f(z)=\sum_{n=0}^{+\infty}a_nz^n$.

1 Soit $r \in]0, R[$. Montrer que :

$$a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f(re^{i\theta}) e^{-in\theta} d\theta.$$

- **2** En déduire que si $M(r) = \max_{|z|=r} |f(z)|$ alors, $|a_n| \leq \frac{M(r)}{r^n}$.
- **3** Application : Supposons f bornée sur \mathbb{C} , développable en série entière de rayon de convergence infini. Montrer qu'alors f est constante.

Exercice 16

[id=337]

Soit $\sum u_n x^n$, $(n \ge 0)$ une série entière de rayon de convergence 1, de somme f(x) sur]-1,1[. On suppose que : $\lim_{x\to 1^-} f(x) = S$, et que $\lim_{n\to +\infty} nu_n = 0$.

 $\boxed{\mathbf{1}}$ Soient $n \in \mathbb{N}^*, x \in [0,1[$ et $S_n = \sum_{k=0}^n u_k.$ Montrer que :

$$|S_n - f(x)| \le (1 - x) \left(\sum_{k=0}^n |ku_k| \right) + \frac{1}{n} \sum_{k=n+1}^{+\infty} |ku_k| x^k$$

2 En déduire que :

$$\lim_{n \to +\infty} \left(S_n - f\left(1 - \frac{1}{n}\right) \right) = 0$$

3 Montrer alors que la série $\sum u_n$ converge et a pour somme S

Exercice 17

[id=338]

On étudie la série entière $\sum a_n x^n$ avec :

$$a_n = \ln\left(1 + \frac{(-1)^n}{\sqrt{n}} + \frac{2}{n}\right).$$

Préciser le convergence, le domaine de définition de la somme puis en donner un équivalent en 1

Exercice 18

[id=33

Soit $\sum a_n z^n$ une série entière de rayon de convergence $R \in \mathbb{R}_+^*$ et soit z_0 un complexe tel que $|z_0| = R$ et la série numérique $\sum a_n z_0^n$ est convergente, alors la série entières $\sum a_n z^n$ converge uniformèment sur la segmant $[0, z_0]$. On pourra remarquer qu'en postant $z = tz_0$, on peut se ramener à R = 1 et le segment [0, 1]

Exercice 19 [id=340]

Soit $\varphi:[0,1]\to\mathbb{R}$ une application continue tel que : $\forall t\in[0,1]\quad \varphi(t)>0$. Pour tout $n\in\mathbb{N}$, on pose : $a_n=\int_0^1\frac{t^n}{t^n+\varphi(t)}\mathrm{d}t$.

- 1 Calculer de façon triés simple le rayon de convergence de la série entière $\sum a_n x^n$.
- On se propose de donner un équivalent simple de a_n et de déduire le résultat trouvé dans 1).
 - (a) Démontrer que

$$\lim_{n\to +\infty} na_n = \ln \frac{1+\varphi(0)}{\varphi(0)}.$$

(b) Retrouver le résultat de la question 1) ci-dessus.

Exercice 20 [id=341]

- $\boxed{\mathbf{1}}$ On considère une série entière $\sum a_n x^n$ de rayon de convergence R.
 - (a) Démontrer que pour tout nombre réel non nul q le rayon de convergence de la série entière $\sum q^n a_n x^n$ est $R_q = \frac{R}{|q|}$
 - (b) Démontrer que pour tout nombre réel α , le rayon de convergence de la série entière $\sum n^{\alpha}a_{n}x^{n}$ est $R_{\alpha}=R$.
- **2** Soit (α_n) une suite de complexes non nuls tel que $\lim_{n\to+\infty} \left| \frac{\mu_{n+1}}{\mu_n} \right| = \ell \in \mathbb{R}_+ \cup \{+\infty\}.$
 - (a) Démontrer que pour toute série entière $\sum a_n x^n$ de rayon de convergence R, le rayon de convergence de $\sum \mu_n a_n x^n$ est $R_{\alpha} = \frac{R}{\ell}$.
 - (b) Retrouver le résultat établit dans 1)b) ci-dessus avec $\mu_n = n^{\alpha}$

Exercice 21 [id=342]

Pour tout $n \in \mathbb{N}$, on note $a_n = \int_1^{+\infty} e^{-t^n} dt$

- 1 Déterminer le rayon de convergence R de la séries entière $\sum a_n x^n$.
- $\boxed{\mathbf{2}}$ Étudier la convergence de $\sum a_n R^n$ et celle de $\sum (-1)^n a_n R^n$.

Exercice 22 [id=348]

Pour tout $n \in \mathbb{N}$, on note $a_n = \cos(\pi \sqrt{n^2 + n + 1})$

- 1 Déterminer le rayon de convergence R de la séries entière $\sum a_n x^n$.
- **2** Étudier la convergence de $\sum a_n R^n$ et celle de $\sum (-1)^n a_n R^n$.

Exercice 23 [id:

Soit E un $\mathbb{K}-$ espace vectoriel de dimension finie non nulle n et f et g deux endomorphismes de E tel que $f \circ g = \theta$ et $f + g \in \mathbf{GL}(E)$. Démontrer que $\mathrm{Im}(f) = \ker(g)$.

Une question qu'on peut ajouter :

Donner des exemples de tels endomorphismes.

Exercice 24

[id=677]

Soit la série entière de terme général

$$a_n = \frac{1}{n} \int_0^{\pi/2} \frac{\sin^n t}{1+t} dt$$

Déterminer le rayon de convergence R de cette série et écrire sa somme sous forme d'intégrale lorsque x appartient à l'intervalle [-R,R].

Mohamed Ait Lhoussain page 7 SPÉ MP