Chapitre 10 : Suites séries de fonctions II

Exercice 1

[id=682]

On pose, pour $x \ge 0$,

$$F(x) = \int_0^{+\infty} e^{-xt} \frac{1 - \cos(t)}{t^2} dt$$

- 1 Montrer que F est continue sur $[0; +\infty[$ et tend vers 0 en $+\infty$.
- **2** Montrer que F est deux fois dérivable sur $]0; +\infty[$ et calculer F''(x).
- $oxed{3}$ En déduire la valeur de F(0) puis la valeur de l'intégrale convergente

$$\int_0^{+\infty} \frac{\sin(t)}{t} \, \mathrm{d}t$$

Exercice 2

fid=13

Soit $E = \mathbb{R}[X]$ et pour tout $a \in \mathbb{R}$, on définit : $E_a = \{P \in E/(X-a)|P\}$. Montrer que pour tout $(a,b) \in \mathbb{R}^2$, si $a \neq b$ alors $E = E_a + E_b$. La somme est-elle directe?

Exercice 3

[id=300]

- Pour tout $n \in \mathbb{N}$, on note $W_n = \int_0^{\frac{\pi}{2}} (\sin(t))^n dt$ (intégrale de Wallis) et on se propose de prouver que quand n tends vers $+\infty$ on a $W_n \sim \sqrt{\frac{\pi}{2n}}$.
 - (a) Démontrer que $W_0 = \frac{\pi}{2}, W_1 = 1$ et $\forall n \in \mathbb{N}, W_{n+2} = \frac{n+1}{n+2}W_n$. En déduire que pour tout $n \in \mathbb{N}$, on a $W_{2n} = \frac{(2n)!}{(2^n n!)^2}\pi 2$ et $W_{2n+1} = \frac{(2^n n!)}{(2n+1)!}$.
 - **(b)** Prouver que la suite (W_n) est décroissante et que $\forall n \in \mathbb{N}, (n+1)W_nW_{n+1} = \frac{\pi}{2}$.
 - **c** Montrer que $\forall n \in \mathbb{N}, \frac{n+1}{n+2} \leq \frac{W_{n+1}}{W_n} \leq 1$ (Remarquer que $W_{n+2} \leq W_{n+1} \leq W_n$).
 - **d** En déduire que quand n tends vers $+\infty$ on a $W_n \sim \sqrt{\frac{\pi}{2n}}$.
- On se propose dans cette question de démontrer, en utilisant la question 1) et d'autres résultats que l'intégrale de Gauss $\alpha = \int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$. Pour cela on utilisera la suite de fonctions $(f_n)_{n\geq 1}$ définie par : pour tout $t\in \mathbb{R}_+$, $f_n(t)=\left\{ \begin{array}{cc} \left(1-\frac{t^2}{n}\right)^n & \text{si} & 0\leq t\leq \sqrt{n} \\ 0 & \text{si} & t>\sqrt{n} \end{array} \right.$
 - (a) Démontrer que la suite de fonctions $(f_n)_{n\geq 1}$ converge simplement vers une application $f: \mathbb{R}_+ \to \mathbb{R}$ à préciser.

 - \bigcirc En déduire que $\int_0^{+\infty} e^{-t^2} dt = \lim_{n \to +\infty} I_n \text{ avec } I_n = \int_0^{+\infty} \left(1 \frac{t^2}{n}\right)^n dt.$
 - (d) Conclure.

Exercice 4 [id=301

On donne
$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Démontrer que
$$\int_0^1 \frac{\ln(t)}{t-1} dt = \frac{\pi^2}{6}$$
.

Indication : On pourra remarquer que :
$$\forall t \in]0,1[,\frac{1}{1-t}=\sum_{n=0}^{+\infty}t^n.$$

Exercice 5 [id=302]

Montrer que
$$\int_0^1 x^{-x} dx = \sum_{n=1}^{+\infty} n^{-n}$$
.

Indication : On pourra écrire
$$x^{-x} = e^{-x \ln(x)} = \sum_{n=0}^{+\infty} \frac{(-x \ln(x))^n}{n!}$$
.

Exercice 6 $_{[id=303]}$

Pour tout $n \in \mathbb{N}^*$, on pose :

$$u_n = \int_0^1 \frac{1}{1 + t + \dots + t^n} \mathrm{d}t$$

et

$$v_n = \int_0^1 \frac{t^n}{1 + t + \dots + t^n} \mathrm{d}t$$

Démontrer que la série $\sum u_n$ est divergente alors que la série $\sum v_n$ est convergente.

Exercice 7 [id=304]

Soit $p \in \mathbb{N}^*$. Pour tout $n \in \mathbb{N}$, on pose : $S_n = \int_0^{+\infty} \frac{t^p}{e^t - 1} e^{-nt} dt$.

- 1 Montrer l'existence de l'intégrale définissant S_n .
- **2** Pour $a, b \in \mathbb{N}^*$, on pose : $T(a, b) = \int_0^{+\infty} t^a e^{-bt} dt$. Simplifier l'expression de T(a, b).
- **3** Montrer que pour tout naturel n, on a : $S_0 = p! \sum_{k=1}^n \frac{1}{k^{p+1}} + S_n$.
- $\boxed{\mathbf{4}} \text{ Montrer que} : \lim_{n \to +\infty} S_n = 0.$
- $\boxed{\mathbf{5}} \text{ Montrer que } S_0 = p! \sum_{k=1}^{+\infty} \frac{1}{k^{p+1}}.$
- Retrouver ce résultat en effectuant une intégration terme à terme et l'expression intégrale de S_0 .

Exercice 8 [id=305]

On pose

$$u_n(x) = (-1)^{n+1}x^{2n+2} \ln x \text{ pour } x \in]0,1] \text{ et } u_n(0) = 0$$

a) Calculer

$$\sum_{n=0}^{+\infty} u_n(x)$$

b) Montrer que la série des u_n converge uniformément sur]0,1].

c) En déduire l'égalité

$$\int_0^1 \frac{\ln x}{1+x^2} \, \mathrm{d}x = \sum_{n=0}^\infty \frac{(-1)^{n+1}}{(2n+1)^2}$$

Exercice 9 [id=306]

Pour $n \geqslant 1$ et $x \in \mathbb{R}$, on pose

$$u_n(x) = (-1)^n \ln \left(1 + \frac{x^2}{n(1+x^2)} \right)$$

a) Étudier la convergence uniforme de la série de fonctions $\sum u_n$.

b) Déterminer la limite de sa somme en $+\infty$. On pourra exploiter la formule de Stirling

Exercice 10 [id=307]

Si x > 1, on pose

$$\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$$

1 Quelle est la limite de $\zeta(x)$ quand $x \to +\infty$?

2 Pour quels réels x la série $\sum \frac{\zeta(n)}{n} x^n$ converge-t-elle?

 $\boxed{\mathbf{3}}$ On considère la fonction F définie par :

$$F(x) = \sum_{n=2}^{+\infty} \frac{\zeta(n)}{n} x^n.$$

Montrer que F est continue sur [-1,1[et de classe C^1 sur]-1,1[

4 Démontrer que :

$$F(x) = \sum_{p=1}^{+\infty} \left(\ln \left(\frac{p}{p-x} \right) - \frac{x}{p} \right)$$

Exercice 11

On se donne deux nombres réels p et q tel que $\sup(p,q) > 1$ et on considère la série de fonctions $\sum f_n$ avec $f_n(x) = \frac{x}{n^p + x^2 n^q}$ pour tout $n \in \mathbb{N}^*$ et on note sa somme f(x) pour tout x tel que la série $\sum f_n(x)$ est convergente.

- 1 Prouver que la série $\sum f_n$ converge simplement sur \mathbb{R} , pour toutes valeurs de p et q.
- Donner une condition suffisante et nécessaire sur p et q pour que $\sum f_n$ converge normalement sur \mathbb{R} .
- Démontrer que si p < q alors $\sum f_n$ converge normalement sur tout intervalle de la forme $I_a = [a, +\infty[$ où $a \in \mathbb{R}$ et a > 0.
- Démontrer que si p > 1 alors la série $\sum f_n$ converge uniformément sur tout compact de \mathbb{R} . En déduire que dans ce cas f est bien définie et continue sur \mathbb{R} .
- **5** Prouver que si $p \le 1$ alors f est continue sur \mathbb{R}^* .

Exercice 12 [id=309]

On considère la fonction ζ de Riemann définie par $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$.

- $\boxed{\mathbf{1}}$ Prouver que l'ensemble de définition de ζ est $D =]1, +\infty[$.
- Démontrer que la série de fonctions définissant ζ converge normalement sur tout intervalle de la forme $D_a = [a, +\infty[$ avec a > 0. En déduire que ζ est continue sur D.
- 3 Démontrer que : $\forall x \in]1, +\infty[, 1 + \frac{2^{1-x}}{x-1} \le \zeta(x) \le \frac{x}{x-1}.$
- 4 En déduire que :
 - (a) Au voisinage de 1 à droite : $\zeta(x) \sim \frac{1}{x-1}$.
 - **(b)** Au voisinage de $+\infty: \zeta(x) \sim \frac{x}{x-1}$.
- $\boxed{\bf 5}$ Démontrer que la série définissant ζ ne converge pas uniformément sur $]1,+\infty[$.
- **6** On considère la fonction η définie par $\eta(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^x}$.
 - (a) Prouver que l'ensemble de définition de η est $]0, +\infty[$.
 - **b** Démontrer que la série définissant η est uniformément convergente sur tout intervalle de la forme $I_a = [a, +\infty[$ avec $a \in \mathbb{R}$ et a > 0.
 - (c) Prouver que η est continue sur $]0, +\infty[$.
 - **d** Démontrer que : $\forall x \in]1, +\infty[, \zeta(x) = \frac{2^x}{2-2^x}\eta(x).$

Exercice 13 [id=310]

On considère la fonction Γ définie par : $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$

- $\fbox{ \ 1\ }$ Déterminer l'ensemble de définition D de Γ
- **2** Montrer que Γ est continue sur tout segment [a,b] contenu dans D.
- 3 Montrer que Γ est de classe C^1 puis C^2 sur tout segment $[a,b] \subset D$. En déduire que Γ est de classe C^2 sur D et déterminer Γ' et Γ''
- **4** Montrer que Γ est une fonction convexe.

- **5** Montrer que pour tout x > 0, on a $\Gamma(x+1) = x\Gamma(x)$
- **6** Calculer $\Gamma(1)$, et montrer que pour tout $n \in \mathbb{N}$, on a $\Gamma(n+1) = n!$
- **7** Déterminer un équivalent de $\Gamma(x)$ lorsque x tend vers 0. En déduire la limite de Γ en 0.
- **8** Donner la limite de Γ en $+\infty$, ainsi que celle de $x\mapsto \frac{\Gamma(x)}{x}$

Exercice 14 [id=311]

Dans cet exercice, on admet la formule de Sterling : $n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$, quand n tends vers $+\infty$. Pour tout $n \in \mathbb{N}$, on note : $I_n = \int_0^{+\infty} t^n e^{-t} dt$.

On considère la suite de fonctions $(f_n)_{n\geq 0}$ définies sur \mathbb{R}^+ par $f_n(t)=\frac{t^ne^{-t}}{n!}$

- $\boxed{\mathbf{1}}$ Démontrer que $\forall n \in \mathbb{N}, I_n = n!$.
- **2** Etudier la convergence simple puis uniforme de la suite de fonctions (f_n) . On note $f(x) = \lim_{n \to +\infty} f_n(x)$, quand celle-ci existe.
- 3 Comparer $\lim_{n \to +\infty} \int_0^{+\infty} f_n(t) dt$ et $\int_0^{+\infty} f(t) dt$
- 4 Que peut-on en conclure?

Exercice 15 [id=312]

Montrer que la fonction

$$f(x) = \sum_{n=2}^{+\infty} \frac{1}{n^2 + \sin nx}$$

est \mathcal{C}^1 sur \mathbb{R}

Exercice 16 $_{[id=313]}$

Etudier l'ensemble de définition, la continuité et la dérivabilité de la fonction

$$f(x) = \sum_{n=1}^{+\infty} \frac{1}{x^2 + n^2}$$

Exercice 17 [id=314]

Montrer que la fonction

$$f(x) = \sum_{n=1}^{+\infty} \frac{x}{\sqrt{n}(1 + nx^2)}$$

est définie sur \mathbb{R} et dérivable sur \mathbb{R}^* .

Exercice 18 [id=31

- Montrer que $t\mapsto t^{x-1}e^{-t}$ est integrable sur] $0,+\infty[$ si et seulement si x>0 On note alors $\Gamma(x)=\int_0^{+\infty}t^{x-1}e^{-t}dt$
- **2** Montrer que, pour t > 0, $\frac{1}{e^{t}-1} = \sum_{n=0}^{+\infty} e^{-(n+1)t}$
- **3** En déduire que pour tout x > 0, $\int_0^{+\infty} \frac{t^x}{e^t 1} dt = \sum_{n=1}^{+\infty} \frac{\Gamma(x+1)}{(n+1)^{x+1}}$

Exercice 19 [id=316

$$f(x) = \int_{-\infty}^{+\infty} e^{(-t^2 + itx)} dt$$

- $\boxed{\mathbf{1}}$ Existence de f?
- 2 Continuité de f?
- $\overline{\mathbf{3}}$ Dérivabilité de f?
- $\boxed{\mathbf{4}}$ En intégrant par partie, montrer que f vérifie : xf(x)+f'(x)=0
- **5** Trouver f sachant que $f(0) = \sqrt{\pi}$

Exercice 20 [id=317]

Soit f la fonction définie par $f(x) = \int_0^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt$.

- 1 Justifier que f est bien définie sur $\mathbb R$ et que f est continue sur $\mathbb R$.
- **2** Montrer que f est de classe C^1 sur \mathbb{R} et donner f'(x) sous forme intégrale.
- **3** Démontrer que $\forall x \in \mathbb{R}, F(x) = \arctan(x)$.

Exercice 21 $_{[id=318]}$

Montrer que la fonction $S: x \mapsto \sum_{n=0}^{+\infty} e^{-nx} \sin(nx)$ est définie sur $[0, +\infty[$ et qu'elle est continue sur $[0, +\infty[$. Expliciter S(x). La fonction S est elle continue en 0?

Exercice 22

 $\boxed{1}$ Soit $(K_n)_{n\in\mathbb{N}}$ une famille de parties compactes de \mathbb{R} tel que :

$$\forall n \in \mathbb{N}, \left\{ \begin{array}{l} K_n \neq \emptyset \\ K_{n+1} \subset K_n \end{array} \right..$$

Démontrer que $\bigcap_{n\in\mathbb{N}} K_n \neq \emptyset$.

- Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications d'un segment [a,b] de \mathbb{R} vers \mathbb{R} tel que $\forall n\in\mathbb{N}, f_n\leq f_{n+1}$ et (f_n) converge simplement vers f, application de [a,b] vers \mathbb{R} et que les f_n et f sont continues sur [a,b]. On se propose de prouver que la convergence de $(f_n)_{n\in\mathbb{N}}$ vers f est uniforme sur [a,b]. Pour cela, pour tout $n\in\mathbb{N}$, on note $g_n=f-f_n$.
 - (a) Démontrer que : $\forall n \in \mathbb{N}, \left\{ \begin{array}{l} g_n \geq 0 \\ g_{n+1} \leq g_n \end{array} \right.$
 - Démontrer que pour tout $n \in \mathbb{N}$, l'application g_n est bornée sur [a,b]. On note alors $\alpha_n = \sup_{x \in [a,b]} g_n(x)$.
 - **c** Démontrer que la suite $(\alpha_n)_{n\in\mathbb{N}}$ est convergente vers $\ell\in\mathbb{R}$ tel que $\ell\geq 0$. On suppose désoramis que $\ell>0$ et pour tout $n\in\mathbb{N}$, on pose : $K_n=\{x\in[a,b]/g_n(x)\geq\frac{\ell}{2}\}$.
 - (d) Démontrer que $\cap_{n\in\mathbb{N}} K_n \neq \emptyset$ et en déduire une contradiction puis conclure.

Exercice 23

[id=320

En utilisant le théorème de convergence dominée calculer les limites suivantes :

- $2 \lim_{n \to +\infty} \int_0^{+\infty} \frac{\arctan(t)}{t^n + e^t} dt$

Exercice 24 [id=32

Soit $(a,b) \in \mathbb{R}^2$ et $(f_n)_{n \geq 0}$ une suites d'applications de [a,b] vers \mathbb{R} et $f:[a,b] \to \mathbb{R}$ une application. On suppose que :

- (1) les applications f_n et f sont continues sur [a, b];
- (2) Pour tout $n \in \mathbb{N}$, l'application f_n est croissante sur [a, b];
- (3) la suite $(f_n)_{n\geq 0}$ converge simplement sur [a,b] vers f.

Démontrer que $(f_n)_{n\geq 0}$ converge uniformément sur [a,b] vers f.

Exercice 25 [id=322]

Pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}_+$, on pose $f_n(x) = nx \sin(x)e^{-nx}$.

- Démontrer que la suite de fonctions (f_n) converge simplement sur \mathbb{R}_+ vers la fonction f nulle sur \mathbb{R}_+ .
- Démontrer que la fonction $t \mapsto u(t) = te^{-t}$ est décroissante sur $[1, +\infty[$. En déduire que (f_n) converge uniformément vers 0 sur $[1, +\infty[$
- Démontrer que pour tout $n \in \mathbb{N}$, la fonction f_n est dérivable sur [0,1] et calculer $f'_n(x)$, pour tout $x \in [0,1]$.
 - (b) Démontrer que pour tout $n \in \mathbb{N}^*$ et tout $x \in [1, \frac{1}{n}]$, on a $f'_n(x) > 0$.

 $oxed{c}$ Soit $n \in \mathbb{N}^*$ tel que $n \geq 2$. En écrivant $f'_n(x)$ sous la forme $f'_n(x) = g_n(x)h_n(x)$ avec

$$h_n(x) = \tan(x) - \frac{x}{nx - 1}$$

et g_n est une fonction à préciser et en calculant $f'_n\left(\frac{2}{n}\right)$ étudier les variations de f_n sur [0,1].

- (d) Démontrer que (f_n) converge uniformément vers 0 sur [0,1].
- Déduire de ce qui précède que la suite (f_n) converge uniformément sur \mathbb{R}_+ vers la fonction nulle.

Exercice 26 [id=3]

Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^{+\infty} e^{-t^n} dt$.

- $\boxed{\mathbf{1}} \text{ Démontrer que } \lim_{n \to +\infty} I_n = 0.$
- **2** Démontrer que quand n tend vers $+\infty$, on a $I_n \sim \frac{1}{n} \int_1^{+\infty} \frac{e^{-t}}{t} dt$.

Exercice 27 [id=544

En utilisant le théorème de convergence dominée, démontrer que $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} = \ln(2)$.

Exercice 28 [id=659

Pour tout entier $n \in \mathbb{N}^*$, on considère l'application f_n définie par

$$\forall x \in \mathbb{R}, \quad f_n(x) = \frac{(-1)^n}{n+x^2}.$$

- $oldsymbol{1}$ Tracer l'allure du graphe de f_n .
- **2** Soit $x \in \mathbb{R}$, fixé. La série $\sum f_n(x)$ est-elle convergente?
- **3** Démontrer qu'il existe une suite $(\varepsilon_n)_{n\in\mathbb{N}}$ qui converge vers 0 et telle que

$$\forall x \in \mathbb{R}, \forall n \geqslant 1, \quad \left| \sum_{k=n+1}^{+\infty} f_k(x) \right| \leqslant \varepsilon_n.$$

4 Pour tout $n \in \mathbb{N}^*$, on pose

$$M_n = \sup_{x \in \mathbb{R}} |f_n(x)|.$$

Déduire M_n de l'étude des variations de f_n . La série $\sum M_n$ est-elle convergente ?