Chapitre 1 : Groupes, anneaux : Rappels et complèments

Exercice 1 [id=66]

- $\boxed{\mathbf{1}}$ Pour tout $(x,y) \in \mathbb{Z}^2$, on pose $x \perp y = x + y + 1$.
 - (a) Montrer que (\mathbb{Z}, \perp) est un groupe commutatif.
 - **(b)** Montrer que les groupes (\mathbb{Z}, \perp) et $(\mathbb{Z}, +)$ sont isomorphes?
 - $\fbox{\bf c}$ Retrouver l'élément neutre de (\mathbb{Z},\bot) et le symétrique de 2025 dans (\mathbb{Z},\bot) en utilisant l'isomorphisme.
- **2** Pour tout $(x,y) \in \mathbb{Z}^2$, on pose $x \star y = x + (-1)^x y$.
 - (a) Montrer que (\mathbb{Z}, \star) est un groupe.
 - (\mathbf{b}) Les groupes (\mathbb{Z}, \star) et (\mathbb{Z}, \perp) sont-ils somorphes?

Exercice 2

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Etablir que les assertions suivantes sont équivalentes :

- (i) Il existe une partie \mathcal{G} de $\mathcal{M}_n(\mathbb{R})$ stable par le produit des matrices tel que (\mathcal{G}, \circ) est un groupe et $A \in \mathcal{G}$.
- (ii) $\operatorname{rg}(A) = \operatorname{rg}(A^2)$
- (iii) $\ker(A) = \ker(A^2)$
- (iv) $\operatorname{Im}(A) \oplus \ker(A) = \mathbb{R}^n$
- (v) $\exists B \in \mathcal{M}_n(\mathbb{R}), AB = BA \text{ et } A^2B = A \text{ et } B^2A = B.$

Exercice 3 [id=666]

Soit
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$
 et $G = \{xA/x \in \mathbb{R}^*\}.$

- $\fbox{1}$ Démontrer que G est stable par la multiplication des matrices carrées.
- Démontrer que (G, \times) est un groupe commutatif. Préciser l'élément neutre E de (G, \times) et pour tout $M = xA \in G$ préciser M' le symétrique de M.
- **3** Démontrer que les groupes (G, \times) et (\mathbb{R}^*, \times) sont isomorphes.

Exercice 4 [id=11]

Soit G un groupe additif et $f:G\to G'$ un morphisme de groupes.

- $\fbox{ \ 1 \ }$ Montrer que pour tout sous-groupe H de G, on a $f^{-1}(f(H))=H+\ker(f)$
- **2** Montrer que pour tout sous-groupe H' de G', on a $f(f^{-1}(H')) = H' \cap \text{Im}(f)$

id=667]

Pour tout $x \in \mathbb{R}^*$, on note M_x la matrice de $\mathcal{M}_2(\mathbb{R})$ tel que

$$M_x = \left(\begin{array}{cc} 0 & x \\ \frac{1}{x} & 0 \end{array}\right).$$

- 1 Calculer $M_x M_y$ pour tout $x, y \in \mathbb{R}^*$.
- Démontrer que pour tout $x \in \mathbb{R}^*$, la matrice M_x est d'ordre fini d dans le groupe $\mathbf{GL}_2(\mathbb{R})$, determiner d.
- 3 Donner un exemple de matrices A et B de $\mathbf{GL}_2(\mathbb{R})$ tel que A et B d'ordres finis et AB n'est pas d'ordre fini.

Exercice 6

[id=19

- 1)Soient (G_1,T) et $(G_2,*)$ deux groupe. On note $G=G_1\times G_2$ et pour tout $x=(x_1,x_2)$ et $y=(y_1,y_2)$ de G, on pose $x\perp y=(x_1Ty_1,x_2*y_2)$. Démontrer que (G,\perp) est un groupe et préciser eon élément neutre et le symétrique de chaque élément
- 2) Démontrer que les groupes additifs $G = (\mathbb{Z}/4\mathbb{Z}, +)$ et $G' = ((\mathbb{Z}/2\mathbb{Z})^2, +)$ ne sont pas isomorphes.

Exercice 7

[id=26

- $\boxed{\mathbf{1}}$ Démontrer que le groupe $(\mathbb{Z}^2,+)$ n'est pas monogène.
- 2 Démontrer que le groupe $(\mathbb{Z}^2, +)$ admet une partie génératrice à deux éléments.
- **3** Soit $(a,b),(c,d) \in \mathbb{Z}^2$. A quelle condition sur a,b,c,d, on a $\mathbb{Z}^2 = \langle (a,b),(c,d) \rangle$?

Exercice 8

d=27]

- Soit (G, .) un groupe et $a, b \in G$ tel que ab = ba et ordre(a) = m et ordre(b) = n et $m \wedge n = 1$. Démontrer que ordre(ab) = mn.
- Soient G_1 et G_2 deux groupes cycliques tel que $\operatorname{card}(G_1) = m$ et $\operatorname{card}(G_2) = n$. Démontrer que si $n \wedge m = 1$ alors $G_1 \times G_2$ est cyclique et si $G_1 = \langle a_1 \rangle$ et $G_2 = \langle a_2 \rangle$ alors $G_1 \times G_2 = \langle (a_1, a_2) \rangle$

Exercice 9

id=32]

1 Soit (G, .) un groupe tel que

$$(\star) \quad \forall x \in G, x^2 = e.$$

Démontrer que G est commutatif.

2 Donner des exemples de groupe G vérifiant la condition (\star) dans les cas :

 (\mathbf{b}) G infini.

Démontrer que si G est un groupe fini qui vérifie la condition (\star) ci-dessus alors il existe $m \in \mathbb{N}$ tel que $\operatorname{card}(G) = 2^m$.

Exercice 10 $_{[id=3]}$

Démontrer que tout sous-groupe de $(\mathbb{Z}, +)$ est de la forme $n\mathbb{Z}$ avec $n \in \mathbb{N}$.

Exercice 11

Soient H et K deux sous-groupes d'un groupe (G, \star) . A quelle condition l'ensemble $H \cup K$ est-il un sous-groupe de (G, \star) ?

Exercice 12 [id=39]

Dans chacun des cas ci-dessous, déterminer le nombre de lois de composition internes sur G et le nombre maximale de celles d'entre elles qui fait de G un groupe :

 $\boxed{\mathbf{1}}$ $G = \{a\}$ est un singleton

 $\mathbf{2}$ $G = \{a, b\}$ est une paire

 $G = \{a, b, c\}$ est un ensemble à trois éléments.

Exercice 13 [id=40]

G désigne le groupe additif $\mathbb{Z}/12\mathbb{Z}.$

 $\boxed{\mathbf{1}}$ Préciser les générateurs de G.

 $\fbox{\bf 2}$ Sans faire des calculs, quels sont les ordres possibles des éléments de G?

 $\fbox{3}$ Dresser le tableau donnant les ordres des éléments de G et expliciter le sous-groupe engendré par chaque élément de G.

Monter que si A est l'ensemble des générateurs de G alors (A, \times) est un groupe isomorphe à $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Exercice 14 [id=41]

Pour tout $n \in \mathbb{N}^*$, on pose : $\mathbb{U}_n = \{z \in \mathbb{C}/z^n = 1\}$ et soit $G = \bigcup_{n \in \mathbb{N}^*} \mathbb{U}_n$

1 Prouver que \mathbb{U}_n est un sous-groupe de (\mathbb{C}^*, \times) , pour tout $n \in \mathbb{N}^*$.

- **2** Démontrer que G est un sous-groupe infini de (\mathbb{C}^*, \times) , dans lequel tout élément est d'ordre fini.
- $\fbox{3}$ Donner un exemple de groupe G infini dans lequel tout élément différent de l'élément neutre est d'ordre 2.

Soit n un entier naturel tel que $n \geq 2$.On appelle matrice de transvection de $\mathcal{M}_n(\mathbb{K})$, toute matrice de $\mathcal{M}_n(\mathbb{K})$ de la forme $T_{i,j,a} = I_n + aE_{i,j}$ où $i,j \in [\![1,n]\!]$ et $i \neq j$. On note \mathscr{T} l'ensemble de telles matrices

- $\boxed{\mathbf{1}}$ Est ce que \mathscr{T} est un sous-groupe de $GL_n(\mathbb{K})$?
- **2** Même question pour $\mathscr{T}_{ij} = \{T_{i,j,a}/a \in \mathbb{K}\}$ pour $(i,j) \in [1,n]^2$ fixé tel que $i \neq j$

Exercice 16 [id=43]

 $\boxed{\mathbf{1}}$ Soit (G, \perp) un groupe et \top la loi de composition interne définie par :

$$\forall (x,y) \in G^2, x \top y = y \bot x$$

Montrer que (G, \top) est un groupe isomorphe au groupe (G, \bot) .

- **2** Determiner tous les morphismes de groupe de $(\mathbb{Z}/4\mathbb{Z}, +)$ vers $(\mathbb{Z}/6\mathbb{Z}, +)$.
- **3** Soit $n \in \mathbb{N}^*$. Déterminer tous les morphismes de groupe de (\mathscr{S}_n, \circ) vers (\mathbb{C}^*, \times) .

Exercice 17 [id=44]

- Soit (G, \star) un groupe. Démontrer qu'il existe un morphisme injectif Φ , de (G, \star) vers $(\mathscr{S}(G), \circ)$ où $(\mathscr{S}(G), \circ)$ est le groupe des bijections de G vers G pour la composition des applications.
- $\fbox{\bf 2}$ Précise les cas où Φ est un isomoprphisme.

Exercice 18 [id=45]

Donner un exemple de groupe(non trivial) où :

- 1 Tout élément est d'ordre fini.
- 2 Aucun élément différent de l'élément neutre n'est d'ordre fini.
- 3 Il y'a en même temps des éléments différents de l'élément neutre, d'ordres finis et d'autres qui ne sont pas d'ordre fini.
- $\boxed{\mathbf{4}}$ G est infini et tout élément est d'ordre fini.
- $\fbox{\bf 5}$ G est infini et tous les éléments différents de l'élément neutre sont d'ordre fini et ont le même ordre.

[id=46]

Soit (G,.) un groupe et pour tout $a \in G$, on note φ_a l'application :

$$\varphi_a: G \to G; x \mapsto \varphi_a(x) = axa^{-1}$$

et

$$C_a = \{x \in G/xa = ax\}.$$

On note : $\mathscr{S}(G)$ le groupe des bijections de G vers G, $\operatorname{Aut}(G)$ l'ensemble des automorphismes de G ,

$$\operatorname{Int}(G) = \{ \varphi_a / a \in G \}$$

et

$$Z(G) = \{x \in G / \forall g \in G, xg = gx\},\$$

appelé le centre de G.

- $\boxed{\mathbf{1}_{\mathbf{a}}}$ Montrer que pour tout $a \in G, C_a$ est un sous-groupe de G.
 - (b) En déduire que Z(G) est un sous-groupe de G.
 - \bigcirc Soit $g \in G$. On pose

$$gZ(G)g^{-1} = \{gxg^{-1}/x \in Z(G)\}.$$

Prouver que $gZ(G)g^{-1} = Z(G)$.

- Démontrer que $\operatorname{Aut}(G)$ est un sous-groupe de $(\mathscr{S}(G), \circ)$ et que $\operatorname{Int}(G)$ est un sous-groupe de $(\operatorname{Aut}(G), \circ)$.
- 3 Démontrer que $\Phi: G \to \mathscr{S}(G); x \mapsto \Phi(x) = \varphi_x$ est un morphisme et préciser son image et son noyau.
- Exemple de détermination du centre d'un groupe : Démontrer que $Z(\mathbf{GL}_2(\mathbb{R})) = \mathbb{R}I_2$.

Exercice 20

[id=47]

Soit G un groupe fini de cardinal n et $k \in \mathbb{N}$. On considère l'application :

$$\varphi_k: G \to G; x \mapsto x^k$$

- Démontrer que si le groupe G est commutatif alors φ_k est un morphisme, et que φ_k est un isomorphisme si et seulement si $k \wedge n = 1$.
- Donner un exemple de groupe G de cardinal n et d'entier naturel k tel que $k \wedge n = 1$ et φ_k n'est pas un morphisme.

Exercice 21

[id=48]

- Soit H un sous-groupe additif de \mathbb{R} . Prouver que soit H est de la forme $H = \omega \mathbb{Z}$ avec $\omega \in \mathbb{R}_+$ (on dit que H est discret), soit H est partout dense dans \mathbb{R} .
- Soit $H = a\mathbb{Z} + b\mathbb{Z}$ où $a, b \in \mathbb{R}$ et $b \neq 0$. Montrer que H est discret si et seulement si $\frac{a}{b} \in \mathbb{Q}$.
- $\boxed{\mathbf{3}}$ Démontrer que pour tout $(x,y) \in [-1,1]^2$, tel que x < y, il existe au moins un entier

naturel n tel que $x < \cos n < y$.

Exercice 22

[id=49

G est un groupe multiplicatif. Soient H et K deux sous-groupes de G et on note

$$HK = \{hk/(h, k) \in H \times K\}.$$

- 1 Démontrer que les assertions suivantes sont équivalentes :
 - (i) $HK \subset KH$
 - (ii) $KH \subset HK$
 - (iii) HK = KH
 - (iv) HK est un sous-groupe de G.
- **2** En considérant le groupe symétrique \mathcal{S}_3 , donner un contre exemple où HK n'est pas un sous-groupe.

Exercice 23

[id=50]

Soit (G,\star) un magma tel que G est fini et \star est associative et tout élément est régulier dans (G,\star) . Démontrer que (G,\star) est un groupe.

Exercice 24

id=51

Soit G un groupe de cardinal p avec p un entier naturel premier. Démontrer que G est cyclique.

Exercice 25

[id=52]

- 1 Démontrer que les groupes $G_1 = \mathbb{Z}/4\mathbb{Z}$ et $G_2 = (\mathbb{Z}/2\mathbb{Z})^2$ ne sont pas isomorphes.
- **2** Démontrer que tout groupe H de cardinal 4 est isomorphe à G_1 ou G_2 .

Exercice 26

id=53]

On rappelle que pour tout $n \in \mathbb{N}$ tel que $n \geq 2$, le groupe symétrique \mathscr{S}_n est engendré par les transpositions.

1 Soit $\sigma \in \mathscr{S}_n$. Démontrer que pour toute transposition $\tau_{i,j}$ de \mathscr{S}_n , on a

$$\sigma \tau_{i,j} \sigma^{-1} = \tau_{\sigma(i),\sigma(j)}$$

- **2** (a) Prouver que les transpositions de la forme $\tau_{1,k}$, $2 \le k \le n$ engendrent \mathscr{S}_n .
 - **(b)** Même question pour les transpositions de la forme $\tau_{k,k+1}$, $1 \le k \le n-1$,

© Montrer que \mathscr{S}_n est engendré par le cycle : $s=(1,2,\cdots,n)$ et la transposition $\tau=(1,2).$

Indication: Considérer pour tout $k \in [1, n]$, le composé : $s^k \tau s^{-k}$.

3 Déterminer tous les morphismes de groupe de (\mathscr{S}_n, \circ) vers (\mathbb{C}^*, \times) .

Exercice 27

On considère les matrices carrées de $\mathbf{GL}_2(\mathbb{R})$ suivantes : $R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et $S = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et soit $G = \langle R, S \rangle$ le sous-groupe de $\mathbf{GL}_2(\mathbb{R})$ engendré par $\{R, S\}$ et $H = \langle A \rangle$ le sous-groupe engendré par R.

- 1) Démontrer que $\langle R \rangle$ est cyclique de cardinal 4 et que tout élément de G est de la forme $\prod_{k=1}^m M_k$ avec $m \in \mathbb{N}^*$ et pour tout $k \in [\![1,m]\!], M_k \in \{R,R^3,S\}$
- 2) Démontrer que $\forall p \in \mathbb{Z}, \exists q \in \mathbb{Z}, R^p S = SR^q$.
- 3) En déduire que card(G) = 8 et préciser les éléments de G.
- 4) Dans le groupe symétrique \mathcal{S}_4 , on considère le cycle s=(1,2,3,4) et la permutation $t=(1,2)\circ(3,4)$ produit des transpositions (1,2) et (3,4). Démontrer que $G\simeq\langle s,t\rangle$.

Exercice 28

[id=55]

- 1 Démontrer que le groupe $(\mathbb{Z}^2, +)$ n'est pas monogène.
- Soit A une partie finie de \mathbb{Q} . Démontrer que le sous-groupe $\langle A \rangle$ du groupe additif $(\mathbb{Q}, +)$ engendré par A est strictement inclus dans \mathbb{Q} .

Exercice 29

[id=56]

Soit $A = \{m + n\sqrt{2}/m, n \in \mathbb{Z}\}.$

- Prouver que A est un sous-anneau de $(\mathbb{R}, +, \times)$. On note U(A) le groupe des inversibles de A.
- Pour tout $x = m + n\sqrt{2} \in A$, on pose $N(x) = |m^2 2n^2|$. Démontrer que pour tout $x, y \in A$, on a N(xy) = N(x)N(y).
- **3** Démontrer que $U(A) = \{ \varepsilon (1 + \sqrt{2})^n / \varepsilon \in \{-1, 1\}, n \in \mathbb{Z} \}.$

Exercice 30 [id=57]

Soit A un anneau commutatif non réduit à un singleton et on note $\mathscr{U}(A)$ le groupe des inversibles de A.

- 1) Démontrer que si I est un idéal de A tel que $I \cap \mathcal{U}(A) \neq \emptyset$ alors I = A.
- 2) Montrer que si les seuls idéaux de A sont A et $\{0_A\}$ alors A est un corps.
- 3) Montrer que si A est intègre et n'admet qu'un nombre fini d'idéaux alors A est un corps.

[id=58]

- $\boxed{1}$ Prouver que le groupe additif \mathbb{Z}^2 n'est pas monogène.
- **2** Démontrer que si A est une partie finie de \mathbb{Q} alors le groupe $\langle A \rangle$ engendré par A est strictement inclus dans \mathbb{Q} .
- Soit $A = \left\{ \frac{1}{p^{\alpha}}/p \in \mathbb{P}, \alpha \in \mathbb{N} \right\}$ où \mathbb{P} est l'ensemble des nombres premiers positifs. Démontrer que $\langle A \rangle = \mathbb{Q}$.

Exercice 32

[id=59

Soit G un groupe. On considère deux éléments a et b de G d'ordres respectifs p et q et on suppose de plus que ab = ba et $p \land q = 1$. Démontrer que ab est d'ordre pq.

Exercice 33

[id=60

Soit E un ensemble non vide et \star une loi de composition interne associative et admettant un élément neutre e (on dit que (E,\star) est un monoïde). Pour tout élément a de E et tout entier naturel n non nul, on note :

$$a^n = \underbrace{a \star \cdots \star a}_{n \text{ fois}}$$

- 1 Donner un exemple de monoïde fini qui n'est pas un groupe.
- $\fbox{\textbf{2}}$ Démontrer que si (G,\star) est un groupe fini alors on a :

(1):
$$\forall x \in G, \forall \nu \in \mathbb{N}, \exists p \in \mathbb{N}, \begin{cases} p \ge \nu \\ x^p = x \end{cases}$$

- Bémontrer que (1) peut ne pas être vrai si on suppose juste que (G, \star) est un monoïde fini(on pourra donner un contre-exemple).
- Soit M un ensemble non vide et \star une loi de composition interne sur M (On dit que (M, \star) est un magma). On suppose que M est fini et que la loi \star est associative. Démontrer que :

(2):
$$\exists x \in M, \forall p \in \mathbb{N}^*, x^p = x$$

Exercice 34

 $_{
m id=61]}$

Determiner tous les morphismes du groupe \mathscr{S}_n vers le groupe \mathbb{C}^*

Exercice 35

[id=6

Soit $m, n \in \mathbb{N}^*$. Déterminer tous les morphismes de $(\mathbb{Z}/n\mathbb{Z}, +)$ vers $(\mathbb{Z}/m\mathbb{Z}, +)$, et notamment leur nombre.

[id=63]

 $\mathcal{M}_2(\mathbb{R})$ designe l'ensemble des matrices carrées à coefficients réels. On rappelle que $\mathbf{GL}_2(\mathbb{R}) = \{A \in \mathcal{M}_2(\mathbb{R}) / \det(A) \neq 0\}$ et on note $\mathbf{SL}_2(\mathbb{R}) = \{A \in \mathbf{GL}_2(\mathbb{R}) / \det(A) = 1\}$. Pour tout nombre réel α , on note $\Gamma_{\alpha} = \begin{pmatrix} 1 & 0 \\ \alpha & 1 \end{pmatrix}$ et $\Lambda_{\alpha} = \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}$. On appelle matrice de transvection de $\mathcal{M}_2(\mathbb{R})$, toute matrice de la forme Γ_{α} ou Λ_{α} avec $\alpha \in \mathbb{R}$.

- 1 Soit $\gamma \in \mathbb{R}$ tel que $\gamma(\gamma 1) \neq 0$. On pose $M_{\gamma} = \begin{pmatrix} \gamma^{-1} & 0 \\ 0 & \gamma \end{pmatrix}$.
 - (a) Démontrer que M_{γ} ne peut être produit de m matrices de transvection pour tout $m \in \mathbb{N}^*$ tel que $m \leq 3$.
 - $oxed{b}$ Démontrer que M_{γ} est un produit de matrices de transvections.
- $\boxed{\mathbf{2}} \text{ Soit } A = \left(\begin{array}{cc} a & c \\ b & d \end{array} \right) \text{ une matrice de } \mathbf{GL}_2(\mathbb{R}) \text{ tel que } a \neq 0 \text{ et } ad bc = 1.$
 - (a) Soit $A_1 = \begin{pmatrix} a_1 & c_1 \\ b_1 & d_1 \end{pmatrix}$ la matrice obtenue à partir de A par l'opération élémentaire $L_2 \leftarrow L_2 \frac{b}{a} L_1$. Démontrer qu'il existe une matrice de transvection T_1 à préciser tel que $A_1 = T_1 A$.
 - **b** Démontrer que si la matrice A_2 est celle obtenue à partir de A_1 par l'opération élémentaire $C_2 \leftarrow C_2 \frac{c}{a}C_1$ alors il existe une matrice de transvection T_2 tel que $A_2 = A_1T_1$.
- 3 Déduire de tout ce qui précéde que toute matrice $A \in \mathbf{SL}_2(\mathbb{R})$ est un produit de matrices de transvections.

Exercice 37

[id=64

Si X est une partie de \mathbb{Q} , on note $\langle X \rangle$, le sous-groupe de $(\mathbb{Q},+)$ engendré par X. Soit A une partie de \mathbb{Q} tel que

$$\langle A \rangle = \mathbb{Q}.$$

Démontrer que :

$$\forall a \in A, \quad \langle A \backslash \{a\} \rangle = \mathbb{Q}.$$

Exercice 38

[id=6]

n est un entier naturel tel que $n \geq 2$ et \mathfrak{S}_n le groupe symetrique. On considère deux transpositions t et τ éléments de \mathfrak{S}_n et soit $\sigma = t \circ \tau$. Quelles sont les valeurs possibles de l'ordre de la permutation σ ?

Exercice 39

[id=6]

Soit G un groupe et H un sous-groupe de G tel que H est strictement inclus dans G. On pose $A=G\backslash H$. Démontrer que $\langle A\rangle=G$

Soit $(A, +, \times)$ un anneau. On note 0_A et 1_A respectivement, l'élément neutre de la première et la deuxième loi de A. Un élément x de A est dit nilpotent s'il existe $k \in \mathbb{N}^*$ tel que $x^k = 0_A$. On appelle indice de nilpotence de x, l'entier naturel $\nu = \min\{k \in \mathbb{N}^*/x^k = 0_A\}$.

- Démontrer que pour tout élément nilpotent x de A, d'indice de nilpotence ν , on a 1-x est inversible et exprimer son inverse $(1-x)^{-1}$ en fonction de x et ν .
- Démontrer que si a et b sont deux éléments nilpotents de A tel que ab = ba, il en est de même de a + b et ab.
- 3 Démontrer que si A est commutatif l'ensemble $\mathcal{N}(A)$ des éléments nilpotents de A est un idéal de A.

Exercice 41 [id=68]

Soit $(A, +, \times)$ un ensemble non vide tel que tous les axiomes d'un anneau sont satisfait sauf celui de la commutativité de la première loi +. Démontrer que $(A, +, \times)$ est tout de même un anneau.

Exercice 42 [id=69]

Soit A un anneau et x un élément de A.

- $oxed{1}$ Démontrer que si x est inversible à gauche et régulier à droite. Démontrer que x est inversible.
- **2** Démontrer que s'il existe $n \in \mathbb{N}^*$ tel que x^n est inversible alors x est inversible.

Exercice 43 [id=70]

- $oxed{1}$ Démontrer qu'il existe au moins un corps $\mathbb K$ ayant quatre éléments.
- Pour tout $x = (x_1, x_2) \in (\mathbb{Z}/2\mathbb{Z})^2$ et $y = (y_1, y_2) \in (\mathbb{Z}/2\mathbb{Z})^2$, on pose $x \otimes y = (x_1y_1, x_1y_2 + x_2y_1)$. Démontrer que $((\mathbb{Z}/2\mathbb{Z})^2, +, \otimes)$ est un anneau.
- 3 Démontrer qu'il y'a au moins quatre anneaux non isomorphes à quatre éléments.

Exercice 44 [id=71]

On note:

$$\mathcal{A} = \left\{ \left(\begin{array}{cc} a & c \\ b & d \end{array} \right) \in \mathcal{M}_2(\mathbb{R})/a + b = c + d \right\}.$$

Démontrer que \mathcal{A} est un sous-anneau de $\mathcal{M}_2(\mathbb{R})$ isomorphe au sous-anneau $\mathcal{T}(\mathbb{R})$ des matrices triangulaires inférieures de $\mathcal{M}_2(\mathbb{R})$.

Soit A un anneau et u et v deux éléments de A tel que Au = Av. Démontrer qu'il existe une et une seule application $f: uA \to vA$ telle que :

$$\left\{ \begin{array}{l} f(u) = v \\ \forall (x,y) \in (uA)^2, \forall (\lambda,\mu) \in A^2, \quad f(x\lambda + y\mu) = f(x)\lambda + f(y)\mu \end{array} \right. .$$

Exercice 46 [id=7]

Soit $\mathbb{Z}(i) = \{a + ib \mid (a, b) \in \mathbb{Z}^2\} \cdot \mathbb{Z}(i)$ est un anneau. On pose :

$$N(a+ib) = a^2 + b^2$$

1 Montrer que :

$$\forall (x,y) \in \mathbb{Z}(i)^2, \quad N(xy) = N(x)N(y).$$

En déduire les éléments inversibles de $\mathbb{Z}(i)$.

- Si $x \in \mathbb{Z}(i)$ et si N(x) est un entier premier, montrer que x est irréductible (i.e. $x = \alpha.\beta \Rightarrow \alpha$ ou β inversible). La réciproque est-elle vraie?
- 3 Division euclidienne dans $\mathbb{Z}(i)$: Soient $x \in \mathbb{Z}(i), y \in \mathbb{Z}(i)^*$. On pose $\frac{x}{y} = u + iv$, où $(u, v) \in \mathbb{Q}^2$. On prend $(u_0, v_0) \in \mathbb{Z}^2$ tel que $|u - u_0| \leq \frac{1}{2}$ et $|v - v_0| \leq \frac{1}{2}$. Montrer qu'on a : $x = y(u_0 + iv_0) + r$ avec N(r) < N(y). Dans quel cas $u_0 + iv_0$ et r sont-ils uniques?
- $\boxed{\mathbf{4}}$ En déduire que $\mathbb{Z}(i)$ est principal.
- Soit p un nombre premier dans \mathbb{Z} . Montrer que p est irréductible ssi il n'existe pas $(a,b) \in \mathbb{N}^2$ tel que $p=a^2+b^2$
- **6** Montrer que si p est un nombre premier tel que $p \equiv 3 \pmod{4}$, alors

$$a^2 + b^2 \equiv 0 \pmod{p} \Rightarrow a \equiv 0 \pmod{p}$$
 et $b \equiv 0 \pmod{p}$

En déduire que tout nombre premier $\geqslant 3$ est irréductible dans $\mathbb{Z}(i)$ ssi $p \equiv 3 \pmod{4}$.

Montrer q'un entier n peut se mettre sous la forme d'une somme de 2 carrés ssi il est de la forme :

$$n = \left(\prod_{j} p_j^{\alpha_j}\right) \left(\prod_{4k+3 \text{ premier}} (4k+3)^{2\beta_k}\right)$$

où p_j est un nombre premier tel que $p_j \not\equiv 3 \pmod{4}$, i.e. les exposants des facteurs premiers de la forme 4k+3 sont pairs.

8 Donner une C.N.S. pour que $x \in \mathbb{Z}(i)$ soit irréductible.

Exercice 47 [id=74]

Soit $G=\langle \omega \rangle$ un groupe cyclique de cardinal n. Pour tout diviseur d de n on note \tilde{d} l'unique entier naturel tel que $d\tilde{d}=n$ et on note $\omega_d=\omega^{\tilde{d}}$ et $G_d=\{x\in G/x^d=e\}$.

- Démontrer que pour tout diviseur d de n, l'ordre de ω_d est égal à d et que G admet au moins un sous-groupe H de cardinal d.
- **2** Démontrer que si H est un sous-groupe de G alors H est cyclique et d = |H| divise n.
- Démontrer que pour tout diviseur d de n, on a G_d est un sous-groupe de G, et en déduire qu' il existe un seul sous-groupe H de G de cardinal d et expliciter un générateur de H en fonction de a, n et d.

Exercice 48 [id=7]

On considère deux groupes monogènes G_1 et G_2 dont les lois sont notées multiplicativement et les éléments neutres respectifs sont notées e_1 et e_2 .

- On suppose de plus que $G_1 \neq \{e_1\}$ et $G_2 \neq \{e_2\}$. Démontrer que si $G_1 \times G_2$ est monogène alors G_1 et G_2 sont cycliques.
- On suppose que G_1 et G_2 sont cycliques de cardinaux respectifs n_1 et n_2 . Démontrer que $G_1 \times G_2$ est cyclique si et seulement si $n_1 \wedge n_2 = 1$.

Exercice 49 [id=76]

 $\boxed{\mathbf{1}}$ Soit x un entier relatif impair. Démontrer que :

$$\forall n \in \mathbb{N} \quad n > 3 \Rightarrow x^{2^{n-2}} \equiv 1 \ [2^n]$$

Démontrer que pour tout $n \in \mathbb{N}$ tel que $n \geq 3$, le groupe $\mathscr{U}(\mathbb{Z}/2^n\mathbb{Z})$ des inversibles de l'anneau $\mathbb{Z}/2^n\mathbb{Z}$ n'est pas cyclique.

Exercice 50 [id=77]

Pour toute partie A de \mathbb{C} , et tout sous-corps \mathbb{K} de \mathbb{C} , on note $\mathbb{K}(A)$ le plus petit sous-corps \mathbb{L} de \mathbb{C} tel que $A \subset \mathbb{L}$ et $\mathbb{K} \subset \mathbb{L}$. Si A est finie non vide, $A = \{x_1, \dots, x_n\}$ on notera $\mathbb{K}(x_1, \dots, x_n)$ au lieu de $\mathbb{K}(A)$.

- 1 Démontrer que $\mathbb{Q}(\sqrt{2}) = \mathbb{Q} + \mathbb{Q}\sqrt{2}$ et que $\mathbb{Q}(\sqrt{2})(\sqrt{3}) = \mathbb{Q}(\sqrt{2}) + \mathbb{Q}(\sqrt{2})\sqrt{3}$.
- **2** Démontrer que $\mathbb{Q}(\sqrt{2})(\sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.
- **3** Démontrer que $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q} + \mathbb{Q}\sqrt{2} + \mathbb{Q}\sqrt{3} + \mathbb{Q}\sqrt{6}$
- $\boxed{\mathbf{4}} \text{ Soit } \theta = \sqrt{2} + \sqrt{3}.$
 - (a) Démontrer que $\mathfrak{I}_{\theta} = \{P \in \mathbb{Q}[X]/P(\theta) = 0\}$ est un idéal non nul de $\mathbb{Q}[X]$. En déduire qu'il existe un unique polynôme unitaire $\pi_{\theta} \in \mathbb{Q}[X]$ tel que $\mathfrak{I}_{\theta} = \pi_{\theta}\mathbb{Q}[X]$.
 - **b** Démontrer que π_{θ} est irréductible dans $\mathbb{Q}[X]$. En déduire que la famille $(1, \theta, \theta^2, \theta^3)$ est libre dans le \mathbb{Q} espace vectoriel \mathbb{R}
 - (c) Démontrer que :

$$\mathbb{Q}(\theta) = \mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q} + \mathbb{Q}\theta + \mathbb{Q}\theta^2 + \mathbb{Q}\theta^3.$$

[id=466

Trouver tous les sous-groupes de $\mathbb{Z}/12\mathbb{Z}$. Soignez vos réponses

Exercice 52

[id=472]

Soit $f: \mathbb{R} \to \mathbb{R}$ un morphisme d'anneaux non nul.

- 1 Calculer f(0), f(1), f(n) pour tout $n \in \mathbb{N}$, puis \mathbb{Z} , puis \mathbb{Q} .
- **2** Montrer que $x \ge 0$ entraı̂ne $f(x) \ge 0$ (dans \mathbb{R} , tout positif est un carré).
- $\boxed{\mathbf{3}}$ En déduire f croissante, puis $f = \mathrm{id}_{\mathbb{R}}$.

Exercice 53

[id=49

Soit G une partie de $\mathcal{M}_n(\mathbb{R})$ non réduite à la matrice nulle. On suppose que (G, \times) est un groupe. Montrer qu'il existe $r \in \mathbb{N}^*$ tel que le groupe (G, \times) soit isomorphe à un sous-groupe de $(GL_r(\mathbb{R}), \times)$

Exercice 54

[id=504

Soient \mathbb{K} un corps et

$$f(X) = \frac{(1+X)(1+X^{15})}{(1+X^3)(1+X^5)}$$

- $\boxed{\mathbf{1}}$ Montrer que $f(X) \in \mathbb{K}[X]$.
- $\boxed{\mathbf{2}}$ En calculant modulo X^9 , montrer que

$$f(X) = X^8 + X^7 - X^5 - X^4 - X^3 + X + 1$$

Exercice 55

[id=50

- Démontrer que si \mathbb{K} est un sous-corps de \mathbb{C} alors \mathbb{K} est un \mathbb{Q} espace vectoriel pour l'addition naturelle et la loi externe induite par la multiplication naturelle.
- $\fbox{\ 2\ }$ Donner des exemple de sous-corps $\mathbb K$ de $\mathbb C$ pour lesquels :
 - $oxed{a}$ $\mathbb K$ est un $\mathbb Q-$ espace vectoriel de dimension finie .
 - $oxed{\mathbf{b}}$ \mathbb{K} est un $\mathbb{Q}-$ espace vectoriel de dimension infinie .

Si \mathbb{K} est un sous-corps de \mathbb{C} tel que $\dim_{\mathbb{Q}}(\mathbb{K})$ est finie, on notera $[\mathbb{K}:\mathbb{Q}]=\dim_{\mathbb{Q}}(\mathbb{K})$. Pour tout $\theta\in\mathbb{C}$, on notera $\mathbb{Q}(\theta)$ le plus petits sous corps de \mathbb{C} contenant $\{\theta\}$. On dit que θ est algébrique sur \mathbb{Q} si et seulement si $\mathbb{Q}(\theta)$ est de dimension finie. Dans ce cas on dira que $[\mathbb{Q}(\theta):\mathbb{Q}]$ est le degré de l'extension $\mathbb{Q}(\theta)$.

- 3 Soit $\theta \in \mathbb{C}$ et $\mathfrak{I}_{\theta} = \{P \in \mathbb{Q}[X]/P(\theta) = 0\}$. Montrer que \mathfrak{I}_{θ} est un idéal de l'anneau $\mathbb{Q}[X]$ et que $\mathfrak{I}_{\theta} \neq \{0\}$ si et seulement si θ est algébrique sur \mathbb{Q} .
- **4** Démontrer que si $\theta \in \mathbb{C}$ est algébrique alors il existe un et unseul polynôme unitaire π_{θ} tel que $\mathfrak{I}_{\theta} = \pi_{\theta}\mathbb{Q}[X]$. Démontrer alors que π_{θ} est irréductible dans $\mathbb{Q}[X]$ et que $\deg(\pi_{\theta}) = [\mathbb{Q}(\theta) : \mathbb{Q}]$.
- 5 Démontrer que $\mathbb{Q}(\sqrt{2})$ et $\mathbb{Q}(i\sqrt{2})$ sont isomorphes en tant que \mathbb{Q} —espaces vectoriels mais ne sont pas isomorphes en tant que corps.

[id=506]

Soit $\alpha \in \mathbb{C}$ une racine de

$$f(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$$

avec $a_0, a_1, \dots a_n \in \mathbb{Z}$ premiers dans leur ensemble, $n \geq 1$ et $a_n \neq 0$.

- $\boxed{1}$ On suppose que $\alpha \in \mathbb{Z}$, montrer que α divise a_0 .
- On suppose que $\alpha = p/q \in \mathbb{Q}$, la fraction p/q étant irréductible, démontrer que p divise a_0 et que q divise a_n . Démontrer que pour tout entier m, l'entier p-mq divise f(m). (En particulier p-q divise f(1) et p+q divise f(-1)). Enoncer le résultat obtenu lorsque $a_n = 1$.
- 3 Soit

$$\varphi(Y) = Y^n + a_{n-1}Y^{n-1} + a_n a_{n-2}Y^{n-2} + \dots + a_n^{n-2}a_1Y + a_n^{n-1}a_0$$

Montrer que $a_n^{n-1}f(X) = \varphi(Y)$ avec $Y = a_nX$. En déduire le lien entre les racines rationnelles de f(X) et celles de $\varphi(Y)$.

Déterminer les racines rationnelles de $f_1(X) = 2X^3 - 12X^2 + 13X - 15$ et de $f_2(X) = 4X^3 - 8X^2 + 15X - 3$.

Exercice 57

[id=507]

Soit $f(X) \in \mathbb{Q}[X]$ un polynôme irréductible de degré ≥ 3 .

- On suppose que f(X) admet exactement deux racines non réelles $z_1 = \alpha + i\beta$ et $z_2 = \overline{z}_1$ avec $\alpha, \beta \in \mathbb{R}$. Montrer que $\beta \notin \mathbb{Q}$.
- On suppose que f(X) admet une seule racine réelle r. Soit $z = \alpha + i\beta$ avec $\alpha, \beta \in \mathbb{R}$ une autre racine de f. Montrer que $\alpha \notin \mathbb{Q}$.

Exercice 58

[id=512

Soit (G, \star) un groupe et $\omega \in G$.

- 1 Démontrer que les assertions suivantes sont équivalentes :
 - (i) $\forall A \subset G, \langle A \rangle = G \Rightarrow \langle A \setminus \{\omega\} \rangle = G.$
 - (ii) $\forall A \subset G, \langle A \cup \{\omega\} \rangle = G \Rightarrow \langle A \rangle = G.$
 - (iii) $\forall A \subset G, \langle A \rangle = G \Rightarrow \langle \omega A \rangle = \langle \omega^{-1} A \rangle = G.$

Si ω satisfait l'une des conditions (i),(ii),(iii) on dit que ω est superflu.

- $\fbox{\bf 2}$ On note \mathfrak{T}_G l'ensemble des éléments superflus de G. Démontrer que \mathfrak{T}_G est un sous groupe de $(G,\star).$
- $\fbox{\bf 3}$ Determiner $\frak T_G$ dans chacun des cas suivants :
 - $\begin{picture}(\mathbf{a})\end{picture} G = \mathbb{Z}$ muni de l'addition.
 - **b** $G = \mathbb{Q}$ muni de l'addition.
 - $\begin{picture}(\mathbf{c})\end{picture} G = \mathbb{Z}/6\mathbb{Z}$ muni de l'addition.