Table des matières

0 Sui	$ ext{tes et s\'eries de fonctions (II)}:$
Dér	rivabilité et Intégration.
10.1	Convergence uniforme et intégration
	10.1.1 Segment, convergence uniforme
	10.1.2 Intervalle quelconque
	10.1.2.1 Théorème de convergence dominée
	10.1.2.2 Intégration terme à terme
10.2	Périvation
	10.2.1 Théorème pour les fonctions de classe C^1
	10.2.2 Extension des théorèmes ci-dessus : classe $C^k, k \geq 1, \ldots, \ldots$
10.3	Intégrale avec paramètre
	10.3.1 Continuité
	10.3.1.1 Énoncés des théorèmes
	10.3.1.2 Exemples
	10.3.2 Dérivabilité
	10.3.2.1 Dérivées partielles
	10.3.2.2 Les théorèmes

Chapitre 10

Suites et séries de fonctions (II) : Dérivabilité et Intégration.

10.1 Convergence uniforme et intégration

10.1.1 Segment, convergence uniforme

Proposition 10.1.1. Soient I un intervalle non trivial de \mathbb{R} , x_0 un point de I et $(f_n:I\to F)_{n\geq 0}$ une suite de fonctions continues de I dans F. On suppose que la suite $(f_n)_{n\geq 0}$ converge uniformément sur tout segment [a,b] contenu dans I vers une fonction $f:I\to F$. Pour n dans \mathbb{N}^* et x dans I, on pose : $g_n(x)=\int_{x_0}^x f_n(t)\mathrm{d}t$ et $g(x)=\int_{x_0}^x f(t)\mathrm{d}t$. Alors la suite de fonctions $(g_n)_{n\geq 0}$ converge uniformément vers g sur tout segment contenu dans I. En particulier si $(f_n:[a,b]\to E)_{n\geq 0}$ avec les f_n continues sur le segment [a,b] et la suite (f_n) converge uniformément vers $f:[a,b]\to E$ sur [a,b], alors

$$\lim_{n \to +\infty} \int_a^b f_n(t) dt = \int_a^b \left(\lim_{n \to +\infty} f_n(t) \right) dt = \int_a^b f(t) dt.$$

Preuve. Soit $(a,b) \in I$ tel que a < b et $[a,b] \subset I$. Comme $x_0 \in I$, il existe $\alpha, \beta \in I$ tel que $[\alpha,\beta] \subset I$ et $x_0, a, b \in [\alpha,\beta]$. Pour tout $x \in [a,b]$, on a

$$||g_n(x) - g(x)|| = \left\| \int_{x_0}^x (f_n(t) - f(t)) dt \right\|$$

$$\leq \int_{\alpha}^{\beta} ||f_n(t) - f(t)|| dt$$

$$\leq \int_{\alpha}^{\beta} \sup_{u \in [\alpha, \beta]} ||f_n(u) - f(u)|| dt$$

$$= (\beta - \alpha) ||f_n - f||_{\infty} [\alpha, \beta]$$

et comme (f_n) converge uniformément vers f sur le segment $[\alpha, \beta]$, on a

$$\lim_{n \to +\infty} \|g_n - g\|_{\infty, [a,b]} = 0.$$

Proposition 10.1.2. Soient I un intervalle non trivial de \mathbb{R} , x_0 un point de I et $(f_n:I\to F)_{n\geq 0}$ une suite de fonctions continues de I dans F. On suppose que la suite $\sum f_n$ converge uniformément sur tout segment [a,b] contenu dans I vers une fonction $f:I\to F$. Pour n dans \mathbb{N}^* et x dans I, on pose : $g_n(x)=\int_{x_0}^x f_n(t)\mathrm{d}t$ et $g(x)=\int_{x_0}^x f(t)\mathrm{d}t$. Alors la série de fonctions $\sum g_n$ converge uniformément vers g sur tout segment contenu dans I. En particulier si $(f_n:[a,b]\to E)_{n\geq 0}$ avec les f_n continues sur le segment

[a,b] et la série $\sum f_n$ converge uniformément vers $f:[a,b]\to E$ sur [a,b], alors

$$\int_a^b f(t) dt = \int_a^b \left(\sum_{n=0}^{+\infty} f_n(t) \right) dt = \sum_{n=0}^{+\infty} \left(\int_a^b f_n(t) dt \right).$$

10.1.2 Intervalle quelconque

10.1.2.1 Théorème de convergence dominée

Théorème 10.1.1. Soit I un intervalle non trivial de \mathbb{R} et $(f_n: I \to \mathbb{K})_n$ une suite d'applications continues par morceaux tel que :

- 1. La suite de fonctions (f_n) converge simplement vers une fonction $f: I \to \mathbb{K}$ continue par morceaux sur I.
- 2. Il existe une application $\varphi: I \to \mathbb{R}$ continue par morceaux intégrable sur I tel que :

$$\forall n \in \mathbb{N}, |f_n| \leq \varphi$$
; (hypothèse de domination)

Alors:

- 1. les f_n et f sont intégrables sur I.
- 2. $\lim_{n \to +\infty} \int_I f_n = \int_I f = \int_I \lim f_n$.

10.1.2.2 Intégration terme à terme

On rappelle que $[0, +\infty] = \mathbb{R}_+ \cup \{+\infty\}$. I désigne un intervalle non trivial de \mathbb{R} et si $f: I \to \mathbb{R}$ est une application positive non intégrable alors $\int_I f(t) dt = +\infty$. On va donner deux théorèmes concernant l'integration terme à terme.

Le premier théorème concerne les fonctions positives \mathcal{CM} sur l'intervalle I.

Théorème 10.1.2. Soit $(f_n: I \to \mathbb{K})_{n \geq 0}$ une suite d'applications \mathcal{CM} sur I tel que la série $\sum f_n$ converge simplement sur I vers une application $f: I \to \mathbb{K}$. Alors dans $[0, +\infty]$, on a

(1)
$$\int_{I} f(t)dt = \int_{I} \sum_{n=1}^{+\infty} f_n(t)dt = \sum_{n=0}^{+\infty} \int_{I} f(t)dt$$

De plus f est intégrable sur I si et seulement si la série $\sum \int_I f_n(t) dt$ est convergente et dans ce cas on a l'égalité (1) ci-dessus dans \mathbb{R}_+ .

Le deuxième théorème concerne les fonctions à valeurs dans \mathbb{K} avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , qui sont \mathcal{CM} sur I non forcément positives.

Théorème 10.1.3. Soit $(f_n: I \to \mathbb{K})_n$ une suite de fonctions de l'intervalle I vers \mathbb{K} tel que :

- 1. La série de fonctions $\sum f_n$ converge simplement sur I vers une application $f: I \to \mathbb{K}$ continue par morceaux sur I.
- 2. Pour tout $n \in \mathbb{N}$, l'application f_n est continue par morceaux sur I et f_n est intégrable sur I.
- 3. La série numérique $\sum \int_I |f_n|$ est convergente.

Alors:

- 1. La fonction f est intégrable sur I.
- 2. On a: $\int_I f(t) dt = \sum_{n=0}^{+\infty} \int_I f_n(t) dt$. Autrement dit:

$$\int_{I} \left(\sum_{n=0}^{+\infty} f_n(t) \right) dt = \sum_{n=0}^{+\infty} \left(\int_{I} f_n(t) dt \right)$$

10.2. DÉRIVATION 5

10.2 Dérivation

10.2.1 Théorème pour les fonctions de classe C^1

Proposition 10.2.1. Soit I un intervalle non trivial de \mathbb{R} et (f_n) une suite d'applications de I vers F tel que :

- 1. Pour tout $n \in \mathbb{N}$, la fonction f_n est de classe C^1 sur I;
- 2. La suite (f_n) converge simplement sur I vers une application $f: I \to F$.
- 3. La suite de fonctions (f'_n) converge simplement vers une application $g: I \to F$ et la convergence est uniforme sur tout segment contenu dans I

Alors:

- 1. La convergence de (f_n) vers f est uniforme sur tout segment $[a,b] \subset I$.
- 2. La fonction f est de classe C^1 sur l'intervalle I.
- 3. f' = g, c'est-à-dire : $\left(\lim_{n \to +\infty} f_n\right)' = \lim_{n \to +\infty} f'_n$.
- 4. La convergence de (f_n) vers f est uniforme sur tout segment $[a,b] \subset I$.

Proposition 10.2.2. Soit I un intervalle non trivial de \mathbb{R} et (f_n) une suite d'applications de I vers F tel que :

- 1. Pour tout $n \in \mathbb{N}$, la fonction f_n est de classe C^1 sur I;
- 2. La série de fonctions $\sum f_n$ converge simplement sur I vers une application $f: I \to F$.
- 3. La suite de fonctions $\sum f'_n$ converge simplement vers une application $g:I\to F$ et la convergence est uniforme sur tout segment contenu dans I

Alors:

- 1. La fonction f est de classe C^1 sur l'intervalle I.
- 2. f' = g, c'est-à-dire :

$$\left(\sum_{n=0}^{+\infty} f_n\right)' = \sum_{n=0}^{+\infty} f_n'$$

3. La convergence de $\sum f_n$ vers f est uniforme sur tout segment $[a,b] \subset I$.

10.2.2 Extension des théorèmes ci-dessus : classe C^k , $k \ge 1$.

Théorème 10.2.1. Soit $k \in \mathbb{N}, k \geq 1$ et $(f_n : I \to F)_n$ une suite d'applications de $I \to F$ tel que :

- 1. Pour tout $n \in \mathbb{N}$, la fonction f_n est de classe C^k sur I.
- 2. Pour tout $p \in [0, k-1]$, la suite de fonctions $((f_n)^{(p)})_n$ converge simplement vers une fonction $f_p: I \to F$.
- 3. La suite de fonctions $((f_n)^{(k)})_n$ converge simplement vers une fonction $g: I \to F$ et la convergence est uniforme sur tout segment contenu dans I.

Alors:

- 1. $f = f_0$ est de classe C^k sur I.
- 2. $f^{(k)} = g$. Autrement dit :

$$\left(\lim_{n\to+\infty} f_n\right)^{(k)} = \lim_{n\to+\infty} (f_n)^{(k)}.$$

3. La convergence de $(f_n^{(j)})$ vers $f^{(j)}$ est uniforme sur tout segment $[a,b] \subset I$ pour tout $j \in [0,k]$.

Théorème 10.2.2. Soit $k \in \mathbb{N}, k \ge 1$ et $(f_n : I \to F)_n$ une suite d'applications de $I \to F$ tel que :

- 1. Pour tout $n \in \mathbb{N}$, la fonction f_n est de classe C^k sur I.
- 2. Pour tout $p \in [0, k-1]$, la série de fonctions $\sum (f_n)^{(p)}$ converge simplement vers une fonction

$$f_n: I \to F$$
.

3. La série de fonctions $\sum (f_n)^{(k)}$ converge simplement vers une fonction $g:I\to F$ et la convergence est uniforme sur tout segment contenu dans I.

- 1. $f = f_0$ est de classe C^k sur I.
- 2. $f^{(k)} = g$. Autrement dit :

$$\left(\sum_{n=0}^{+\infty} f_n\right)^{(k)} = \sum_{n=0}^{+\infty} (f_n)^{(k)}.$$

3. Pour tout $j \in [0, k]$ la convergence de $\sum (f_n)^{(j)}$ vers g_p est uniforme sur tout segment $[a, b] \subset I$.

10.3Intégrale avec paramètre

10.3.1 Continuité

10.3.1.1 Énoncés des théorèmes

Théorème 10.3.1. Soit A une partie de E, I un intervalle de \mathbb{R} et $f: A \times I \to \mathbb{K}$ une application tel que:

- (1) Pour tout $x \in A$, l'application $f(x, \cdot): I \to \mathbb{K}; t \mapsto f(x, t)$ est continue par morceaux sur I.
- (2) Pour tout $t \in I$, l'application $f(.,t): A \to \mathbb{K}; x \mapsto f(x,t)$ est continue sur A.
- (3) Il existe une application $\varphi: I \to \mathbb{R}$ continue par morceaux, integrable tel que :

$$\forall (x,t) \in A \times I, \quad |f(x,t)| \leq \varphi(t)$$
 (hypothèse de domination)

Alors: la fonction $F: A \to K; x \mapsto F(x) = \int_{L} f(x,t) dt$ est bien définie et continue sur A.

Remarques. Les remarque suivantes sont les plus utilisées en pratique :

- 1. Si on remplace l'hypothèse de domination (3) par :
 - (3)': Pour toute partie compacte K de E tel que $K \subset A$, il existe une application $\varphi_K : I \to \mathbb{R}$ continue par morceaux et intégrable sur I tel que :

$$\forall (x,t) \in K \times I, \quad |f(x,t)| \le \varphi_K(t)$$

La conclusion du théorème 10.3.1 reste valable.

- 2. Si I = [a, b] est un segment de \mathbb{R} , la condition (4): L'application $(x,t) \mapsto f(x,t)$ est continue sur $A \times [a,b]$ implique les conditions (1),(2) et (3)' par suite la conclusion du théorème 10.3.1 reste valable
- 3. Une conséquence immédiate : Si $f:[c,d]\times[a,b]\to\mathbb{K}$ est une application continue alors $F:x\mapsto$ $\int_a^b f(x,t) dt$ est continue sur [c,d].

10.3.1.2 Exemples

Pour tout $x \in]0, +\infty($, on pose :

$$F(x) = \int_0^{+\infty} \frac{\sin(xt)}{t^2 + x} dt$$

- Alors $f(x,t) = \frac{\sin(xt)}{t^2 + x}$ vérifie $\forall x > 0, t \mapsto f(x,t)$ est continue sur $]0, +\infty[$.
 - $\forall t > 0, x \mapsto f(x, t)$ est continue sur $]0, +\infty[$.
 - Hypothèse de domination : Pour tout a > 0, on a :

$$\forall (x,t) \in [a, +\infty[\times]0, +\infty[\quad |f(x,t)| \le \frac{1}{t^2 + a} = \varphi_a(t)$$

avec φ_a continue et intégrable sur $]0, +\infty[$.

10.3.2 Dérivabilité

10.3.2.1 Dérivées partielles

Si $f: I \times J \to \mathbb{K}$ est une application et $A = (a, b) \in I \times J$.

- L'application : $\varphi_A: x \mapsto f(x,b)$ de I vers $\mathbb K$ est une fonction d'une variable réelle définie sur I.

Si φ_A est dérivable au point a, on note

$$\varphi_A'(a) = \frac{\partial f}{\partial x}(a, b)$$

le nombre dérivée de φ_A au point a.

Si φ_A est k fois dérivable au point a avec $k \in \mathbb{N}^*$, on note :

$$\varphi_A^{(k)}(a) = \frac{\partial^k f}{\partial x^k}(a, b)$$

- L'application : $\psi_A : y \mapsto f(a, y)$ de J vers \mathbb{K} est une fonction d'une variable réelle définie sur J.

Si ψ_A est dérivable au point b, on note

$$\psi_A'(b) = \frac{\partial f}{\partial y}(a, b)$$

le nombre dérivée de ψ_A au point b.

Si ψ_A est k fois dérivable au point b avec $k \in \mathbb{N}^*$, on note :

$$\psi_A^{(k)}(b) = \frac{\partial^k f}{\partial u^k}(a, b)$$

10.3.2.2 Les théorèmes

Théorème 10.3.2. Soit I et J des intervalles de \mathbb{R} et $f: J \times I \to K$ une application tel que :

- (1) Pour tout $x \in J$, l'application $f(x, .): I \to K; t \mapsto f(x, t)$ est continue par morceaux et intégrable sur I.
- (2) Pour tout $t \in I$, l'application $f(.,t): J \to \mathbb{K}; x \mapsto f(x,t)$ est de classe C^1 sur J et pour tout $x \in J$, l'application $\frac{\partial f}{\partial x}(x,.); t \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur I.
- (3) Il existe une application $\psi: I \to \mathbb{R}$ continue par morceaux, intégrable tel que :

$$\forall (x,t) \in A \times I, \quad \left| \frac{\partial f}{\partial x}(x,t) \right| \leq \psi(t)$$
 (hypothèse de domination)

Alors:

- 1. L'application $F: x \mapsto \int_I f(x,t) dt$ est de classe C^1 sur l'intervalle J.
- 2. Pour tout $x \in J$, on a (Formule de Leibniz) :

$$F'(x) = \int_{I} \frac{\partial f}{\partial x}(x, t) dt$$

Remarque. Si $(J_k)_{k\in K}$ est une famille d'intervalles de \mathbb{R} tel que $\bigcup_{k\in K} \operatorname{Int}(J_k) = J$ (où $\operatorname{Int}(J_k)$ désigne l'intérieur de J_k), et si on remplace la condition (3) ci-dessus par la condition (3)' suivante : Pour tout $k\in K$, il existe une application ψ_k , \mathcal{CM} sur et intégrable sur I tel que :

$$\forall (x,t) \in J_k \times I, \quad \left| \frac{\partial f}{\partial x}(x,t) \right| \le \psi_k(t)$$

alors la conclusion reste la même.

Théorème 10.3.3. Soit k un entier naturel non nul, I et J des intervalles de \mathbb{R} et $f: J \times I \to \mathbb{K}$ une application à valeurs réelles ou complexes tel que :

- 1. Pour tout $p \in [0, k-1]$, et tout $t \in I$, l'application $f(.,t): J \to \mathbb{K}; x \mapsto f(x,t)$ est de classe C^p et pour tout $x \in J$, l'application $\frac{\partial^p f}{\partial x^p}(x,.): t \mapsto \frac{\partial^p f}{\partial x^p}(x,t)$ est continue par morceaux et intégrable sur I.
- 2. Pour tout $t \in I$, l'application f(.,t) est de classe C^k et pour tout $x \in J$, l'application $\frac{\partial^k f}{\partial x^k}(x,.)$ est continue par morceaux.

3. Il existe $\psi:I\to\mathbb{R}$ continue par morceaux et intégrable sur I tel que :

$$\forall (x,t) \in J \times I, \quad \left| \frac{\partial^k f}{\partial x^k}(x,t) \right| \leq \psi(t)$$

Alors:

- 1. $F:J\to \mathbb{K}; x\mapsto \int_I f(x,t)\mathrm{d}t$ est de classe C^k sur J. 2. On a la formule de Leibniz :

$$\forall x \in J, \quad F^{(k)}(x) = \int_{I} \frac{\partial^{k} f}{\partial x^{k}}(x, t) dt$$