Table des matières

)	Suit	ites et séries de fonctions $({f I})$:		
	Modes de convergences.			
	9.1	Modes	de convergence	
		9.1.1	Suite de fonctions	
		9.1.2	Série de fonctions	
			9.1.2.1 Convergence simple, convergence uniforme	
			9.1.2.2 Convergence absolue	
			9.1.2.3 convergence normale	
	9.2	Conve	rgence uniforme et continuité	
		9.2.1	Interversion des limites	
			9.2.1.1 Le théorème d'interversion des limites pour les suites de fonctions	
			9.2.1.2 Exemple	
			9.2.1.3 Une extension du théorème	
			9.2.1.4 Le théorème d'interversion des limites pour les séries de fonctions	
		9.2.2	Continuité	
		0.2.2	9.2.2.1 Cas des suites de fonctions	
			9.2.2.2 Cas des séries de fonctions	
			9.2.2.3 Remarques sur ces théorèmes	
	9.3	I 'ogne	ce vectoriel normé $\mathcal{B}(X,F)$	
	9.0			
		9.3.1	L'espace $(\mathcal{B}(X,F),\ .\ _{\infty})$	
		9.3.2	L'espace normé $\mathcal{C}^0([a,b],\mathbb{K})$	
			9.3.2.1 Les trois normes classique de $C^0([a,b],\mathbb{K})$	
			9.3.2.2 Le théorème d'approximation de Weierstrass	
		9.3.3	Les espaces $\mathcal{CM}([a,b],F)$ et $\mathscr{E}([a,b],F)$	

Chapitre 9

Suites et séries de fonctions (I) : Modes de convergences.

9.1 Modes de convergence

Dans tout ce qui suit E est un espace vectoriel normé de dimension finie et X est un ensemble non vide.

9.1.1 Suite de fonctions

Definition 9.1.1

Soit $(f_n: X \to E)$ une suite de fonctions de X vers E, A une partie non vide de X et $f: A \to E$ une application de A vers E.

- 1. On dit que la suite de fonctions (f_n) converge simplement vers f sur A si pour tout $x \in A$ la suite $(f_n(x))$ converge vers f(x).
- 2. On dit que (f_n) converge uniformément vers f sur A s'il existe $N \in \mathbb{N}$ tel que l'application $f_n f$ est bornée sur A, pour tout $n \in \mathbb{N}$ tel que $n \geq N$ et la suite numérique

$$(\sup_{x \in A} ||f_n(x) - f(x)||)_{n \ge N}$$

converge vers 0.

Remarques. Nous faisons les remarques suivantes sur cette définition :

- 1. Si (f_n) converge simplement vers f sur A alors pour tout $n \in \mathbb{N}$, la fonction f_n est bien définie sur A. En particulier il est possible d'avoir A = X.
- 2. Dans la pratique on cherche la partie maximale A de X sur laquelle il y' a convergence simple.
- 3. Si (f_n) converge uniformément vers f sur A elle converge simplement vers f sur A.
- 4. Soit B une partie non vide de A. Si (f_n) converge simplement (resp. uniformément) vers f sur A alors (f_n) converge simplement (resp. uniformément) sur B vers f restreinte à B.

Exemples. Dans chaque exemple, on donne E, X, la suite de fonctions (f_n) . On donnera des exemples de parties de X sur lesquelles il y'a convergence simple et des exemples de telles parties sur lesquelles il y'a convergence uniforme.

1. $X = \mathbb{R}$, $E = \mathbb{R}$ et pour tout $n \in \mathbb{N}$, $f_n(x) = \frac{nx^2 + n}{n + x + 1}$. On voit tout de suite que pour tout $n \in \mathbb{N}$, l'ensemble de définition de la fonction f_n est $D_n = \mathbb{R} \setminus \{-n - 1\}$ de sorte que pour que $f_n(x)$ existe pour tout $n \in \mathbb{N}$, il faut et suffit que

$$x \in D = \bigcap_{n \in \mathbb{N}} D_n = \mathbb{R} \setminus \mathbb{Z}_-^*.$$

• Convergence simple :

Soit donc $x \in D$.

- Si x = 0, on a $f_n(0) = \frac{n}{n+1}$ donc $\lim_{n \to +\infty} f_n(0) = 1$.
- Si $x \neq 0$ alors $\lim_{n \to +\infty} f_n(x) = x^2 + 1$

Il en découle que f_n converge simplement sur D vers f définie par $f(x) = x^2 + 1$.

• Convergence uniforme: Soit A = [0, 1/2]. Pour tout $x \in A$, on a: $|f_n(x) - f(x)| = \frac{(x^2+1)(x+1)}{x+n+1}$ donc $\sup_{x \in A} |f_n(x) - f(x)| \le \frac{4}{n+1}$ et par suite (f_n) converge uniformément vers f sur A.

- On peut démontrer qu'il y' a convergence uniforme sur tout compact K de \mathbb{R} tel que $K \subset D$.
- Il n'y a pas convergence uniforme sur D car par exemple pour tout $n \in \mathbb{N}$, on a $|f_n(n) f(n)| =$ $\frac{(n^2+1)(n+1)}{2n+1} \sim \frac{n^2}{2} \text{ donc } f_n - f \text{ n'est pas bornée sur } D.$
- 2. X = [0,1], $E = \mathbb{R}$ et pour tout $n \in \mathbb{N}$ et $t \in [0,1]$, $f_n(t) = t^n$. La suite de fonctions (f_n) converge simplement sur [0,1] vers f définie par $f(x)=\begin{cases} 0 & \text{si} & 0 \leq x < 1 \\ 1 & \text{si} & x=1 \end{cases}$. Il n'y a pas convergence uniforme sur [0,1] car $\sup_{t \in [0,1]} |f_n(t)-f(t)| = \sup_{t \in [0,1]} t^n = 1$ ne tends pas vers 0. Il y'a convergence sur A=[0,a] pour tent $a \in [0,1]$
 - Il y'a convergence sur A = [0, a] pour tout $a \in [0, 1[$ car sup $t^n = a^n$ et $\lim_{n \to +\infty} a^n = 0$.

Série de fonctions 9.1.2

Convergence simple, convergence uniforme 9.1.2.1

Si (f_n) est une suite de fonctions de X vers E, on dispose de la suite (S_n) définie par $S_n = \sum_{k=0}^n f_k$. On définit la convergence simple et uniforme de la série de fonctions $\sum f_n$ comme suit :

Definition 9.1.2

On dit que la série de fonctions $\sum f_n$ converge simplement vers f sur une partie A de X si la suite de fonctions (S_n) converge simplement vers f sur A.

On dit que la série de fonctions $\sum f_n$ converge uniformément vers f sur A si la suite (S_n) converge uniformément vers f sur A.

Proposition 9.1.1. Si $\sum f_n$ converge simplement vers f alors la suite de fonctions (f_n) converge simplement vers θ la fonction nulle.

Proposition 9.1.2. Si la série $\sum f_n$ converge simplement sur A vers f alors en posant pour tout $n \in \mathbb{N}$: $R_n(x) = \sum_{k=n+1}^{\infty} f_k(x)$, R_n est bien définie et la suite de fonctions (R_n) converge simplement sur A vers la fonction nulle θ .

Proposition 9.1.3. Si $\sum f_n$ converge uniformément sur A vers f alors la suite de fonctions (f_n) converge uniformément sur A vers θ la fonction nulle.

Preuve. Pour tout $n \in \mathbb{N}$, on a: $f_n = (S_n - f) + (f - S_{n-1})$ donc pour tout $x \in A$, on a $||f_n(x)|| \le C$ $||S_n(x) - f(x)|| + ||S_{n-1}(x) - f(x)||$ donc $||f_n||_{\infty,A} \le ||S_n - f||_{\infty,A} + ||S_n - f||_{\infty,A}$ et ce dernier tends vers 0 quand n tends vers $+\infty$ par convergence uniforme.

Proposition 9.1.4. Si la série $\sum f_n$ converge simplement sur A vers f alors la convergence est uniforme sur A si et seulement si la suite de fonctions (R_n) converge uniformément sur A vers la fonction nulle θ .

Preuve. C'est exactement la définition de la convergence uniforme.

9.1.2.2 Convergence absolue

Definition 9.1.3

On dit que la série de fonctions $\sum f_n$ converge absolument sur A si pour tout $x \in A$ la série numérique $\sum ||f_n(x)||$ converge.

Exemples. Voici quelques exemples :

- 1. $f_n(x) = \frac{(-1)^n}{n^x}$, pour tout $x \in \mathbb{R}$. La série $\sum f_n$ converge absolument sur $]1, +\infty[$. En effet, $|f_n(x)| = \frac{1}{n^x}$ et la série $\sum \frac{1}{n^x}$ est convergente si et seulement si x > 1 (série de Riemann). Remarquons que la série $\sum f_n$ converge simplement sur $]0, +\infty[$. En effet il s'agit d'une série alternée qui satisfait les hypothèses du CSSA sur $]0, +\infty[$.
- 2. Si on reprends l'exemple ci-dessus avec la variable complexe : $g_n(z) = \frac{(-1)^n}{z^n}$, on a convergence absolue sur $D = \{z \in \mathbb{C}/\Re e(z) > 1\}$.

Proposition 9.1.5. Si la série de fonctions $\sum f_n$ converge absolument sur A alors elle converge simplement sur A vers une application $f: A \to E$.

9.1.2.3 convergence normale

Definition 9.1.4

On dit que la série de fonctions $\sum f_n$ converge normalement sur A si f_n est bornée sur A pour tout $n \in \mathbb{N}$ et si en plus la série numérique $\sum \|f_n\|_{\infty,A}$ est convergente.

Proposition 9.1.6. Si la série de fonctions $\sum f_n$ est normalement convergente sur A alors elle est simplement convergente sur A vers une application $f:A\to E$ et la convergence est uniforme sur A. Si la série de fonctions $\sum f_n$ est normalement convergente elle est absolument convergente.

Remarque. Dans la pratique, on utilise la méthode suivante pour démontrer que la série de fonctions $\sum f_n$ converge normalement sur A: On essaye de faire une majoration uniforme de la forme :

$$\forall x \in A, \quad \|f_n\| \le \alpha_n$$

où (α_n) est une suite à termes positifs, indépendante des éléments x de A tel que la série $\sum \alpha_n$ est convergente.

Exemples. Voici des exemples où l'on utilise la remarque ci-dessus :

1. La série $\sum \frac{x^n}{n!}$ converge normalement sur tout compact non vide contenue dans \mathbb{R} . En effet , soit K un tel compact, il existe M>0 tel que $\forall x\in K, |x|\leq M$, donc pour tout $x\in K$, on a :

$$\left|\frac{x^n}{n!}\right| \le \frac{M^n}{n!},$$

et comme la série $\sum \frac{M^n}{n!}$ converge (de somme e^M), on a la convergence normale sur K de la série $\sum \frac{x^n}{n!}$

2. La série de fonctions $\sum xn\cos(nx)$ converge normalement sur tout segment [-r,r] pour tout $r \in [0,1[$, en effet si $r \in]0,1[$ alors pour tout $x \in [-r,r]$, on a $|x^n\cos(nx)| \le r^n$ et comme 0 < r < 1, la série $\sum r^n$ est convergente, ce qui prouve la convergence normale désirée.

9.2 Convergence uniforme et continuité

9.2.1 Interversion des limites

9.2.1.1 Le théorème d'interversion des limites pour les suites de fonctions

Théorème 9.2.1. E et F sont des espaces vectoriels normés des dimensions finies. Soit X une partie non vide de E et a un point adhérent à X. On considère une suite d'application (f_n) de X vers F tel que :

- La suite (f_n) converge uniformément vers une application $f: X \to E$.
- pour tout $n \in \mathbb{N}$, $\ell_n = \lim_{x \to a} f_n$ existe dans F.

Alors la suite (ℓ_n) est convergente et $\lim_{n \to +\infty} \ell_n = \lim_{x \to a} f(x)$. Autrement dit :

$$\lim_{x \to a} \lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \lim_{x \to a} f_n(x)$$

Ce théorème s'appelle le théorème d'interversion des limites car on peut écrire : On souligne l'importance du fait F est de dimension finie et la convergence uniforme sur X.

Preuve. On va démontrer que la suite (ℓ_n) est une suite de Cauchy, ce qui permettra de conclure qu'elle converge car F est de dimension finie, donc complet. Puisque (f_n) converge uniformément vers f, alors en posant $\alpha_n = \sup_{x \in X} \|f_n(x) - f(x)\|$, pour tout $n \in \mathbb{N}$, la suite réelle (α_n) converge vers 0 donc c'est une suite de Cauchy dans \mathbb{R} , donc :

$$(\forall \varepsilon > 0)(\exists N \in \mathbb{N})(\forall x \in X) \quad ||f_p(x) - f_q(x)|| < \varepsilon/2$$

Par passage à al limite quand $x \to a$ il vient :

$$(\forall \varepsilon > 0)(\exists N \in \mathbb{N}) \quad \|\ell_p - \ell_q\| \le \varepsilon/2 < \varepsilon$$

Donc la suite (ℓ_n) est de Cauchy dans F, donc elle converge vers $\ell \in F$.

Démontrons maintenant que $\lim_{x\to a} f(x) = \ell$. Pour cela soit $\varepsilon > 0$. Comme $f_n \stackrel{\text{CVU}}{\longrightarrow} f$ sur X, on a :

$$(1) \qquad (\exists N_1 \in \mathbb{N})(\forall n \ge N_1)(\forall x \in X) \quad ||f_n(x) - f(x)|| < \varepsilon/3$$

et comme $\lim_{n\to+\infty} \ell_n = \ell$, on a :

$$(2) \qquad (\exists N_2 \in \mathbb{N})(\forall n > N_2) \quad \|\ell_n - \ell\| < \varepsilon/3$$

Soit $N = \max(N_1, N_2)$, alors, compte tenu de (1) et (2) ci-dessus, on a pour tout $x \in X$:

$$||f(x) - \ell|| \le ||f(x) - f_N(x)|| + ||f_N(x) - \ell_N|| + ||\ell_N - \ell|| < \frac{2\varepsilon}{3} + ||f_N(x) - \ell_N||$$

Comme $\lim_{x\to a} f_N(x) = \ell_N$, on a:

$$(\exists \eta > 0)(\forall x \in X) \quad ||x - a|| < \eta \Rightarrow ||f_N(x) - \ell_N|| < \varepsilon/3$$

Par suite:

$$(\exists \eta > 0)(\forall x \in X) \quad \|x - a\| < \eta \Rightarrow \|f(x) - \ell\| < \frac{2\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

ce qui prouve que : $\lim_{x \to a} f(x) = \ell$.

9.2.1.2 Exemple

Considérons pour tout $n \in \mathbb{N}^*$, l'application : $f_n : \mathbb{R}_+^* \to \mathbb{R}$ tel que $f_n(x) = \left(\frac{x}{n}\right)^{nx}$ alors on a $f_n \xrightarrow{\text{CVS}} \theta$ sur \mathbb{R}_+^* où θ est la restriction à \mathbb{R}_+^* de l'application nulle de \mathbb{R} vers \mathbb{R} , mais la convergence n'est pas uniforme. En effet, pour la convergence simple il suffit de voir que $\ln(f_n(x)) = n \ln n \left(\frac{x \ln x}{\ln n} - x\right) \xrightarrow[n \to +\infty]{} -\infty$, ce qui donne $f_n(x) \xrightarrow[n \to +\infty]{} 0$. La convergence n'est pas uniforme car pour tout $n \in \mathbb{N}^*$, on a $\lim_{x \to 0^+} f_n(x) = 1$ puisque $\ln f_n(x) = n(x \ln x) - (n \ln n)x \xrightarrow[x \to 0^+]{} 0$ puisque $\lim_{0^+} x \ln x = \lim_{0^+} 0$. Si la convergence était uniforme on aurait d'après le théorème d'interversion des limites : $\lim \theta(x) = 1$, ce qui n'est pas le cas.

Une extension du théorème 9.2.1.3

Si $E=\mathbb{R}$ et X une partie contenant un intervalle de la forme $[a,+\infty[$ on a le théorème suivant en supposant comme ci-dessus que F est un espace vectoriel normé complet.

Théorème 9.2.2. Si $(f_n) \stackrel{\text{CVU}}{\longrightarrow} f$ sur X et $\lim_{x \to +\infty} f_n(x) = \ell_n \in F$ alors la suite (ℓ_n) converge vers $\ell \in F$ et $\lim_{x \to +\infty} f(x) = \ell$.

Preuve. se fait comme celle du premier théorème.

Remarque. Dans cet exemple on a la convergence uniforme sur tout segment $[a,b] \subset \mathbb{R}_+^*$, pourtant cela ne suffit pas pour intervertir les limites. En effet si $x \in [a,b]$ tel que $0 < a < b < +\infty$ alors pour tout $n \ge N = [b] + 1$, il est aisé de vérifier que :

$$f_n(x) = \exp\left(nx\ln\left(\frac{x}{n}\right)\right) \le \exp\left(na\ln\left(\frac{b}{n}\right)\right) \underset{n \to +\infty}{\longrightarrow} 0$$

9.2.1.4 Le théorème d'interversion des limites pour les séries de fonctions

En appliquant le théorème ci-dessus aux sommes partielles , on obtient :

Théorème 9.2.3. E et F sont des espaces vectoriels normés des dimensions finies. Soit X une partie non vide de E et a un point adhérent à X. On considère une série d'application (f_n) de X vers F tel que :

- La série $\sum f_n$ converge uniformément sur X vers une application $f: X \to F$.
- pour tout $n \in \mathbb{N}$, $\ell_n = \lim_{x \to a} f_n$ existe dans F. Alors la série $(\sum \ell_n)$ est convergente dans F et $: \sum_{n=0}^{+\infty} \ell_n = \lim_{x \to a} f(x)$. Autrement dit :

$$\sum_{n=0}^{+\infty} \left(\lim_{x \to a} f_n \right) = \lim_{x \to a} \left(\sum_{n=0}^{+\infty} f_n \right).$$

9.2.2 Continuité

Une conséquence immédiate de l'interversion des limites est le cas particulier où $a \in X$ et on a la continuité des f_n

9.2.2.1 Cas des suites de fonctions

Théorème 9.2.4. E et F étant des espaces vectoriels normés de dimensions finies , X une partie non vide de E, a est un élément de X et (f_n) est une suite d'applications de X vers F qui converge uniformément vers $f: X \to F$

- Si les f_n sont continues au point a alors f est continue au point a.
- Si les f_n sont continues sur X, alors f est continue sur X.

9.2.2.2 Cas des séries de fonctions

Théorème 9.2.5. E et F étant des espaces vectoriels normés de dimensions finies , X une partie non vide de E, a est un élément de X et $\sum f_n$ est une série d'applications de X vers F qui converge uniformément vers $f: X \to F$.

- Si les f_n sont continues au point a alors f est continue au point a.
- Si les f_n sont continues sur X, alors f est continue sur X.

9.2.2.3 Remarques sur ces théorèmes

Remarques. Les théorèmes ci-dessus ont des applications pratiques dont :

- 1. Ils fournissent un critère de convergence uniforme : Si (f_n) converge simplement vers f et il existe un point a de X tel que les f_n sont continues au point a et f est discontinue en a alors la convergence n'est pas uniforme sur X. Par exemple , soit $f_n: [0,1] \to \mathbb{R}; t \mapsto t^n$ alors (f_n) converge simplement sur [0,1] vers f définie par f(x) = 0 si $0 \le x < 1$ et f(1) = 1. Comme f est discontinue au point 1 et que les f_n sont continues sur [0,1], la convergence n'est pas uniforme sur [0,1].
- 2. Ils permettent de prouver qu'une application f est continue quand on sait déjà que f est limite uniforme d'une suite de fonctions (f_n) ou somme (uniforme) d'une série de fonctions $\sum f_n$.

9.3 L'espace vectoriel normé $\mathcal{B}(X,F)$

Dans ce paragraphe, nous allons étudier l'espace vectoriel $\mathcal{B}([a,b],\mathbb{K})$ des applications de [a,b] vers \mathbb{K} , bornées sur [a,b] ainsi que certains de ses sou-espaces vectoriels, à savoir $\mathcal{C}^0([a,b],\mathbb{K})$ des applications continues de [a,b] vers \mathbb{K} , l'espace $\mathcal{CM}([a,b],\mathbb{K})$ des applications continues par morceaux de [a,b] vers \mathbb{K} et l'espace $\mathcal{E}([a,b],\mathbb{K})$ des fonctions en escaliers de [a,b] vers \mathbb{K} et nous allons examiner les diverses inclusions entre ces sous-espaces et les questions de densité.

9.3.1 L'espace $(\mathcal{B}(X, F), ||.||_{\infty})$

Soit F un espace vectoriel normé et X un ensemble non vide. On note $\mathcal{B}(X,F)$ l'ensemble des applications de X vers F, bornées sur X et pour tout $f \in \mathcal{B}(X,F)$, on pose :

$$||f||_{\infty,X} = \sup_{x \in X} ||f(x)||$$

Proposition 9.3.1. $\|.\|_{\infty,X}$ ainsi définie est une norme sur $\mathcal{B}(X,F)$. De plus pour toute suite $(f_n) \in (\mathcal{B}(X,F))^{\mathbb{N}}$, et tout $f \in \mathcal{B}(X,F)$, on a : La suite (f_n) converge uniformément vers f sur X si et seulement si la suite (f_n) converge vers f dans l'espace vectoriel normé $(\mathcal{B}(X,F),\|.\|_{\infty,X})$.

Proposition 9.3.2. Si X est une partie non vide d'un espace vectoriel normé E, alors $C_b(X, F)$ l'ensemble des applications de X vers F continues et bornées sur X est un sous-espace vectoriel fermé de $\mathcal{B}(X, F)$.

Remarques. On fait des les remarques suivantes concernant un cas particulier pour X:

- 1. Si X est une partie compacte non vide de E alors $C_b(X, F) = C(X, F)$.
- 2. Nous allons donner ci-dessous la théorème d'approximation de Weierstrass dans le cas où $E = \mathbb{R}, F = \mathbb{K}$ et X = [a, b] est un segment de \mathbb{R} .

9.3.2 L'espace normé $C^0([a,b],\mathbb{K})$

9.3.2.1 Les trois normes classique de $C^0([a,b],\mathbb{K})$

Soit $(a, b) \in \mathbb{R}^2$ tel que a < b. On rappelle que $\mathcal{C}^0([a, b], \mathbb{K})$ est l'espace vectoriel des applications continues de [a, b] vers \mathbb{K} . On le munit des trois normes classiques :

1. La norme de la convergence uniforme $\|.\|_{\infty}$ définie par :

$$\forall f \in \mathcal{C}^0([a, b], \mathbb{K}), ||f||_{\infty} = \sup_{t \in [a, b]} |f(t)|$$

2. La norme de la convergence en moyenne quadratique $\|.\|_2$ définie par :

$$\forall f \in \mathcal{C}^0([a,b],\mathbb{K}), ||f||_2 = \sqrt{\left(\int_a^b |f(t)|^2 dt\right)}$$

3. La norme de la convergence en moyenne $\|.\|_1$ définie par :

$$\forall f \in \mathcal{C}^0([a, b], \mathbb{K}), ||f||_1 = \int_a^b |f(t)| dt$$

Ces trois normes ne sont pas équivalentes mais il y' a des relations entre elles précisées par la proposition suivante :

Proposition 9.3.3. Pour tout $f \in C^0([a, b], \mathbb{K})$, on a :

$$||f||_1 \le \sqrt{b-a}||f||_2$$
 et $||f||_2 \le \sqrt{b-a}||f||_\infty$ et $||f||_1 \le (b-a)||f||_\infty$

Remarque. On fait les remarques suivantes sur la proposition ci-dessus :

- 1. En d'autres termes la nome de convergence uniforme est plus fine que la norme de convergence en moyenne quadratique, laquelle est plus fine que la norme de convergence en moyenne.
- 2. On peut démontrer par des contre-exemples que ces comparaisons sont strictes.

9.3.2.2 Le théorème d'approximation de Weierstrass

Si une fonction f est continue sur un segment [a,b], on peut l'approcher par une fonction polynomiale sur [a,b] au sens de la convergence uniforme comme le précise le théorème suivant :

Théorème 9.3.1. Soit [a, b] un segment de \mathbb{R} et \mathbb{K} désigne \mathbb{R} ou \mathbb{C} . Soit $\mathcal{P}([a, b], \mathbb{K})$ l'ensemble des fonctions polynomiales de [a, b] vers \mathbb{K} . Alors \mathcal{P} est dense dans $\mathcal{C}([a, b], \mathbb{K})$, muni de la norme de convergence uniforme sur [a, b].

Preuve. On peut démontrer ce théorème par plusieurs méthodes dont les plus célèbres sont : celle qui utilise les polynômes dits de Bernestein, ou celle qui utilise une méthode probabiliste. Pour plus de détails voir le devoir e libre 5 et l'épreuve de math 1 du C.N.C. 2016 qui comporte dans le détail les deux méthodes.

9.3.3 Les espaces $\mathcal{CM}([a,b],F)$ et $\mathscr{E}([a,b],F)$

F est un espace vectoriel normé de dimension finie. Deux autres sous-espaces vectoriels de $\mathcal{B}([a,b],F)$ sont l'espace $\mathcal{CM}([a,b],F)$ des applications de [a,b] vers F continues par morceaux sur [a,b] et l'espace $\mathcal{E}([a,b],F)$ des fonctions en escaliers de [a,b] vers F qui est en même temps un sous-espace vectoriel de $\mathcal{CM}([a,b],F)$. On a un autre théorème d'approximation :

Théorème 9.3.2. Pour toute fonction f continue par morceaux de [a,b] vers E, il existe une suite (φ_n) de fonctions en escaliers de [a,b] vers F qui converge uniformément sur [a,b] vers f.

Ce théorème traduit aussi le fait que dans l'espace normé $(\mathcal{B}([a,b],F),\|.\|_{\infty})$, l'espace $\mathcal{E}([a,b],F)$ est dense dans $\mathcal{CM}([a,b],F)$.