Table des matières

7	Fonction vectorielles à variable réelle			3
	7.1	Dériva	ation	3
		7.1.1	Définitions	3
			7.1.1.1 Dérivabilité en un point	3
			7.1.1.2 Interpretation géométrique	4
			7.1.1.3 Utilisation des coordonnée	4
			7.1.1.4 Fonction dérivée	4
		7.1.2	Opérations	4
			7.1.2.1 linéarité	4
			7.1.2.2 Composé avec une application linéaire	5
			7.1.2.3 Application bilinéaire	5
				5
		7.1.3	Dérivées d'ordre supérieur, fonction de classe C^k	5
			7.1.3.1 interpretation de la dérivée seconde	6
			7.1.3.2 Formule de Leibnitz	6
			7.1.3.3 Composition	6
	7.2	Intégr		6
		7.2.1		6
		7.2.2	Linéarité et additivité de l'intégrale	7
		7.2.3	Sommes de Riemann	7
		7.2.4	Inégalité triangulaire	8
		7.2.5	Intégrale et primitive	8
		7.2.6	Techniques d'intégration	8
			7.2.6.1 Changement de variables	8
			7.2.6.2 Intégration par parties	9
		7.2.7	Inégalité des accroissements finis	9
		7.2.8	Formules de Taylor	9
			7.2.8.1 Taylor avec reste intégrale	9
			7.2.8.2 Taylor avec reste Lagrange	0
			7.2.8.3 Taylor-Young	0
			7.2.8.4 Comparaison des trois formules	0
	7.3	Arcs	paramètrés 1	ſ

Chapitre 7

Fonction vectorielles à variable réelle

7.1 Dérivation

7.1.1 Définitions

7.1.1.1 Dérivabilité en un point

Definition 7.1.1

Soit t_0 un point intérieur de I. On dit que $f: I \to F$ est dérivable au point t_0 si $F_{t_0}: t \mapsto \frac{f(t) - f(t_0)}{t - t_0}$ admet une limite quant $t \to t_0$ et $t \in I \setminus \{t_0\}$. Cette limite si elle existe est appelé vecteur dérivée de f au point t_0 et notée $\ell = f'(t_0)$.

On peut donc dire que f est dérivable au point t_0 si et seulement si il existe un vecteur $\ell \in F$ et une fonction ϕ définie sur un voisinage pointé V de t_0 tel que :

$$\begin{cases} \forall t \in V, & f(t) = f(t_0) + (t - t_0)\ell + (t - t_0)\phi(t) \\ \lim_{\substack{t \to t_0 \\ t \in V}} \phi(t) = 0 \end{cases}$$

En particulier si f est dérivable au point t_0 alors au voisinage de t_0 , on a :

$$f(t) = f(t_0) + (t - t_0)f'(t_0) + o((t - t_0))$$

ce qui revient à dire que pour h voisin de 0, on a :

$$f(t_0 + h) = f(t_0) + hf'(t_0) + o(h)$$

En particulier:

Proposition 7.1.1. f dérivable au point t_0 alors f est continue au point t_0

Definition 7.1.2

Soit $t_0 \in I$ tel qu'il existe $\alpha > 0$ tel que $[t_0, t_0 + \alpha] \subset I$. On dit que f est dérivable au point t_0 à droite si $t \mapsto F_{t_0}(t) = \frac{f(t) - f(t_0)}{t - t_0}$ admet une limite quand t tends vers t_0 et $t > t_0$. Si c'est le cas on note $f'_d(t_0)$ cette limite nommé vecteur dérivé à droite.

On définit aussi la dérivabilité à gauche avec la notation $f'_q(t_0)$.

Proposition 7.1.2. Soit t_0 un point intérieur à I, alors f est dérivable au point t_0 si et seulement si f est dérivable au pint t_0 à droite et à gauche et $f'_d(t_0) = f'_q(t_0)$.

Exemple : Soit $n \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{K})$ et l'application : $f : \mathbb{R} \to \mathcal{M}_n(\mathbb{K})$; $t \mapsto \exp(tA)$ f est dérivable sur \mathbb{R} et $\forall t \in \mathbb{R}$, $f'(t) = A \exp(tA)$.

En effet, soit $t_0 \in \mathbb{R}$. Pour tout $h \in \mathbb{R}$, on a :

$$f(t_0 + h) - f(t_0)) = \exp(t_0 A)(\exp(hA) - I_n)$$

$$= \exp(t_0 A) \sum_{k=1}^{+\infty} \frac{h^k A^k}{k!}$$

$$= hA \exp(t_0 A) + \exp(t_0 A) \sum_{k=2}^{+\infty} \frac{h^k A^k}{k!}$$

Donc si $h \in \mathbb{R}^*$ alors :

$$\frac{1}{h}(f(t_0+h)-f(t_0)) = A\exp(t_0A) + \exp(t_0A) \sum_{k=2}^{+\infty} \frac{h^{k-1}A^k}{k!}$$

Si on pose $\varphi(h) = \sum_{k=2}^{+\infty} \frac{h^{k-1}A^k}{k!}$, on a $\lim_{h\to 0} \varphi(h) = 0$ car (on munit $\mathcal{M}_n(\mathbb{K})$ d'une norme d'algèbre) :

$$\|\varphi(h)\| \leq \|\exp(t_0 A)\| \sum_{k=2}^{+\infty} \frac{|h|^{k-1} \|A\|^k}{k!}$$

$$= \|\exp(t_0 A)\| \frac{1}{|h|} (\exp(|h| \|A\|) - |h| \|A\| - 1)$$

$$\sim \frac{\|\exp(t_0 A)\| \|A\|^2}{2} |h|$$

de sorte que $\lim_{h\to 0} \varphi(h) = 0$.

Par définition de la dérivabilité, et compte tenu de

$$f(t_0 + h) = f(t_0) + h \exp(t_0 A) + h \varphi(h)$$
 et $\lim_{h \to 0} \varphi(h) = 0$,

on a f dérivable au point t_0 et $f'(t_0) = A \exp(t_0 A)$.

7.1.1.2 Interpretation géométrique

Si (I, f) représente un mouvement $f'(t_0)$ est le vecteur vitesse instantanée à l'instant t_0 .

7.1.1.3 Utilisation des coordonnée

Si F est de dimension p non nulle et $\mathscr{B}=(e_1,\cdots,e_p)$ une base de F, notons $f_k,k\in \llbracket 1,p\rrbracket$ les fonctions coordonnées de f dans \mathscr{B} , alors :

Proposition 7.1.3. f est dérivable au point t_0 si et seulement si chaque f_k est dérivable au point t_0 , auquel cas $f(t_0) = \sum_{k=1}^p f'_k(t_0)e_k$.

C'est une conséquence immédiate de la propriété générale sur les limites en dimension finie.

7.1.1.4 Fonction dérivée

Definition 7.1.3

f est dérivable sur I si f est dérivable en tout point intérieur à I et à droite(resp. gauche) des éventuelles bornes finies de I.

Si $f: I \to F$ dérivable sur I, l'application $f': I \to F, t \mapsto f'(t)$ s'appelle fonction dérivée de f.

7.1.2 Opérations

7.1.2.1 linéarité

7.1. DÉRIVATION 5

Proposition 7.1.4. Soient f et g deux applications d'un intervalle I de \mathbb{R} vers F.

Si t_0 est un point intérieur à I, alors , si f et g sont dérivable au point t_0 alors $f + \lambda g$ est dérivable au point t_0 et $(f + \lambda g)'(t_0) = f'(t_0) + \lambda g'(t_0)$.

Si f et g sont dérivables sur I alors $f + \lambda g$ dérivable sur I et $(f + \lambda g)' = f' + \lambda g'$

On a les mêmes résultats pour la dérivabilité au point t_0 à droite (rep. à gauche) avec la condition $[t_0, t_0 + \alpha] \subset I$ et $\alpha > 0$ (resp.] $t_0 - \alpha, t_0] \subset I$).

7.1.2.2 Composé avec une application linéaire

F et G sont deux evn de dime finie et $L \in \mathcal{L}(F,G)$ et $f: I \to F$ une application.

Si f est dérivable au point t_0 alors $L \circ f$ est dérivable au point t_0 et $(L \circ f)'(t_0) = L(f'(t_0))$.

Si f est dérivable sur I alors $L \circ f$ est dérivable sur I et $(L \circ f)' = L \circ f'$.

Exemple : Soit A une matrice donnée de $\mathcal{M}_n(\mathbb{K})$, et pour tout nombre réel t, on pose : $f(t) = \operatorname{tr}(tA)$. Alors f est dérivable et $f'(t) = \operatorname{tr}(A)$. Chose qu'on retrouve en remarquant que $f(t) = t\operatorname{tr}(A)$

7.1.2.3 Application bilinéaire

Proposition 7.1.5. E, F et G sont trois espaces vectoriels normés et I est un intervalle non trivial de \mathbb{R} . Soient $f: I \to E$ et $g: I \to F$ deux applications et $B: E \times F \to G$ une application bilinéaire. Soit h = B(f, g), l'application de I vers G définie par ;

$$\forall t \in I, h(t) = B(f, g)(t) = B(f(t), g(t)).$$

Alors, pour tout $t_0 \in I$, si f et g dérivables en t_0 alors B(f,g) est dérivable au point t_0 et :

$$(B(f,g))'(t_0) = B(f'(t_0), g(t_0)) + B(f(t_0), g'(t_0)).$$

En particulier si E est un espace euclidien et $f, g: I \to E$ dérivables au point t alors $\langle f, g \rangle$ est dérivable au point t et $\langle f, g \rangle'(f) = \langle f'(t), g(t) \rangle + \langle f(t), g'(t) \rangle$, de même $||f||^2$ est dérivable au point t et $||f||^{2'}(t) = \langle f(t), f'(t) \rangle$

7.1.2.4 Composée

I et J sont deux intervalles , $\varphi: I \to \mathbb{R}$ dérivable sur I tel que $\varphi(I) \subset J$ et $f: J \to F$ dérivable , alors $f \circ \varphi$ est dérivable sur I et $(f \circ \varphi)' = \varphi'(f' \circ \varphi)$

7.1.3 Dérivées d'ordre supérieur, fonction de classe C^k

Definition 7.1.4

Si $f: I \to F$ une application. Pour tout $n \in \mathbb{N}$, on définit $f^{(n)}$ si elle existe comme suit :

- Pour n = 0, on définit : $f^{(0)} = f$.
- Pour tout $n \in \mathbb{N}$, si on définit l'application $f^{(n)}: I \to F$ et si $f^{(n)}$ est dérivable, alors $: f^{(n+1)} = (f^{(n)})'$.

On dit que f est au moins n fois dérivable sur I si les $f^{(k)}$ existent pour tout $k \in [0, n]$.

On dit que f est infiniment dérivable sur I, si f est n fois dérivable sur I pour tout $n \in \mathbb{N}$

Proposition 7.1.6. Soit $(n, p, q) \in \mathbb{N}^3$ tel que p + q = n et $f : I \to F$ une application. Si f est au moins n fois dérivable et $m, q \in \mathbb{N}$ tel que m + q = n alors $f^{(p)}$ et $f^{(q)}$ existent et

$$(f^{(p)})^{(q)} = (f^{(q)})^{(p)} = f^{(p+q)} = f^{(n)}.$$

Definition 7.1.5

Soit $n \in \mathbb{N}$, on dit que f est de classe C^n sur I si f est n fois dérivable sur I et $f^{(n)}$ est continue sur I. On dit que f est de classe C^{∞} sur I si f est de classe C^n sur I, pour tout $n \in \mathbb{N}$.

Remarque : que f est de classe C^{∞} si et seulement si f est infiniment dérivable.

Notations: On note:

 $\mathbb{D}^n(I,F)$: l'ensemble des applications de I vers F , n fois dérivables.

 $C^n(I,F)$: l'ensemble des applications de I vers F de classe C^n .

 $D^{\infty}(I,F)$:
l'ensemble des applications infiniment dérivables;

 $C^{\infty}(I,F)$: l'ensemble des applications C^{∞}

Remarques:

1. Pour tout $n \in \mathbb{N}$, on a :

$$\begin{cases} D^{\infty}(I,F) \subset D^{n+1}(I,F) \subset D^{n}(I,F) \\ C^{\infty}(I,F) \subset C^{n+1}(I,F) \subset C^{n}(I,F) \\ C^{n}(I,F) \subset D^{n}(I,F) \\ D^{\infty}(I,F) = C^{\infty}(I,F) = \bigcap_{n \in \mathbb{N}} D^{n}(I,F) = \bigcap_{n \in \mathbb{N}} C^{n}(I,F) \end{cases}$$

- 2. $D^n(I,F)$ est un sous-espace vectoriel de F^I et $D^{n+1}(I,F)$ et $C^n(I,F)$ sont des sev de $D^n(I,F)$.
- 3. Soit $n \in \mathbb{N} \cup \{\infty\}$ et $f: I \to F$ une application. Si F est muni d'une base $\mathscr{B} = (e_1, \cdots, e_p)$ et si $(f_k)_{1 \le k \le p}$ sont les composantes de f alors f est n fois dérivable (rep. de classe C^n) si et seulement si tous les f_k sont n fois dérivables (resp. de classe C^n), auquel cas on a $(\forall m \in [0, n])$ $f^{(m)} = \sum_{k=1}^p f_k^{(m)} e_k$.

7.1.3.1 interpretation de la dérivée seconde

Si $f: t \mapsto f(t)$ est la loi horaire d'un mouvement sur F dans l'intervalle de temps I alors si f est deux fois dérivable au point $t_0 \in I$, le vecteur $f''(t_0)$ est le vecteur acceleration à l'instant t_0 .

7.1.3.2 Formule de Leibnitz

Proposition 7.1.7. E, F, G sont des espaces vectoriels normés de dimensions finies et $B: E \times F \to G$ une application bilinéaire.

Soit $f: I \to E$ et $g: I \to F$ deux applications n fois dérivables (resp. de classe C^n) alors B(f,g) est n fois dérivable (resp. de classe C^n) et :

$$(B(f,g))^{(n)} = \sum_{k=0}^{n} \binom{n}{k} B(f^{(n-k)}, g^{(k)})$$

7.1.3.3 Composition

Proposition 7.1.8. Soit $f: J \to F$ et $\varphi: I \to \mathbb{R}$ tel que $\varphi(I) \subset J$. Si φ est n fois dérivables (resp. de classe C^n) sur I et f est n fois dérivable (resp. de classe C^n) sur J alors $f \circ \varphi$ est n fois dérivable (resp. de classe C^n) sur I

7.2 Intégrales

Dans tout ce qui suit F est un espace vectoriel de dimension finie non nulle et [a,b] est un segment de \mathbb{R} .

7.2.1 Définition de l'intégrale sur un segment d'un fonction \mathcal{CM}

Definition 7.2.1

Soit $f:[a,b]\to F$ une application. On dit que f est continue par morceaux sur [a,b] si les fonctions coordonnées f_1,\cdots,f_p de f relativement à une base $\mathscr{B}=(e_1,\cdots,e_p)$ sont continues par morceaux sur [a,b].

Cette définition a un sens car si $\widehat{\mathscr{B}}=(\widehat{e}_1,\cdots,\widehat{e}_p)$ est une autre base de F et $P=\mathscr{P}_{\mathscr{B}}^{\widehat{\mathscr{B}}}$ la matrice de passage alors si $\widehat{f}_1,\cdots,\widehat{f}_p$ sont les fonctions coordonnées de f relativement à $\widehat{\mathscr{B}}$ alors :

$$f = \sum_{k=1}^{p} f_k e_k = \sum_{k=1}^{p} \widehat{f_k} \widehat{e_k}$$

7.2. INTÉGRALES

7

et

(1)
$$\forall t \in I$$
, $\begin{pmatrix} f_1(t) \\ \vdots \\ f_p(t) \end{pmatrix} = P \begin{pmatrix} \widehat{f}_1(t) \\ \vdots \\ \widehat{f}_p(t) \end{pmatrix}$

Montre que les f_k sont \mathcal{CM} sur [a,b] si et seulement si les \widehat{f}_k le sont.

Remarques:

- 1. On note $\mathcal{CM}([a,b],F)$ l'ensemble des fonctions continues par morceaux de [a,b] vers F. C'est un sous-espace vectoriel du \mathbb{K} -espace vectoriel $F^{[a,b]}$ des applications de [a,b] vers F.
- 2. Si I est un intervalle quelconque de \mathbb{R} , une application $f:I\to F$ est continue par morceaux sur I si f est continue par morceaux sur tout segment contenu dans I. On note $\mathcal{CM}(I,F)$ le sous-espace vectoriel de telles applications.

Le (1) ci dessus montre que l'on a :

$$\begin{pmatrix} \int_a^b f_1(t) \\ \vdots \\ \int_a^b f_p(t) \end{pmatrix} = P \begin{pmatrix} \int_a^b \widehat{f}_1(t) \\ \vdots \\ \int_a^b \widehat{f}_p(t) \end{pmatrix}$$

et par suite:

$$\sum_{k=1}^{p} \left(\int_{a}^{b} f_{k}(t) dt \right) e_{k} = \sum_{k=1}^{p} \left(\int_{a}^{b} \widehat{f}_{k}(t) dt \right) \widehat{e}_{k}$$

ce qui permet de donner :

Proposition-Définition 7.2.1. Soit $f \in \mathcal{CM}([a,b],F)$ de coordonnées f_1, \dots, f_p relativement à une base \mathscr{B} de F. Alors le vecteur :

$$\sum_{k=1}^{p} \left(\int_{a}^{b} f_{k}(t) dt \right) e_{k}$$

ne dépends pas de la base \mathcal{B} . On l'appelle l'intégrale de f sur le segment [a,b]

Notation : On note $\int_{[a,b]} f$ ou $\int_a^b f$ ou $\int_a^b f(t)dt$

7.2.2 Linéarité et additivité de l'intégrale

Proposition 7.2.1. 1. Linéarité : Pour tout $f, g \in \mathcal{CM}([a, b], F)$ et tout $\lambda \in \mathbb{K}$, on a : $\int_a^b (f + \lambda g) = \int_a^b f + \lambda \int_a^b g$

2. Relation de Chasles :Soit I un intervalle de \mathbb{R} , $f \in \mathcal{CM}(I, F)$ et $a, b, c \in I$, alors : $\int_a^b f = \int_a^c f + \int_c^b f f$

Proposition 7.2.2. E et F sont deux espaces vectoriels normés de dimensions finies.

Soit $L: E \to F$ une application linéaire et $f: [a,b] \to E$ une application continue par morceaux, alors $L \circ f$ est continue par morceaux de [a,b] vers F et

$$\int_{a}^{b} L \circ f = L \left(\int_{a}^{b} f \right)$$

7.2.3 Sommes de Riemann

Proposition 7.2.3. Pour tout $f \in \mathcal{CM}([a,b],F)$, on a :

$$\int_{a}^{b} f(t)dt = \lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right)$$

Preuve. Il suffit de raisonner sur les fonctions coordonnées relativement à une base de F.

Remarque: Valable si on remplace $\sum_{k=0}^{n-1}$ par $\sum_{k=1}^{n}$

7.2.4 Inégalité triangulaire

Proposition 7.2.4. Soit
$$f \in \mathcal{CM}([a,b],F)$$
, alors : $\left\| \int_a^b f \right\| \leq \int_a^b \|f\|$

Preuve. Pour tout $n \in \mathbb{N}^*$, on a :

$$\left\| \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{k}\right) \right\| \le \frac{b-a}{n} \sum_{k=1}^{n} \left\| f\left(a + k \frac{b-a}{k}\right) \right\|$$

Le résultat en découle par passage à la limite.

7.2.5 Intégrale et primitive

Definition 7.2.2

Soit $f: I \to F$ une application. On appelle primitive de f sur I toute application $\Phi: I \to F$ tel que Φ est dérivable sur I et $\Phi' = f$ sur I.

Proposition 7.2.5. si $(f_k)_{1 \le k \le p}$ sont les composantes de f dans une base $\mathscr{B} = (e_1, \dots, e_p)$, donc : $f = \sum_{k=1}^p f_k e_k$, et Φ_k une primitive de f_k sur I, pour tout $k \in [1, p]$ alors $\Phi = \sum_{k=1}^p \Phi_k e_k$ est une primitive de f_k sur I.

Preuve. En posant $\Phi = \sum_{k=1}^p \Phi_k e_k$, on sait que : $\Phi' = \sum_{k=1}^p \Phi'_k e_k$ et comme $\Phi'_k = f_k$, on a $\Phi' = \sum_{k=1}^p f_k e_k = f_k$.

Proposition 7.2.6. Soit $f: I \to F$ une application. Alors:

Si Φ_1 et Φ_2 sont deux primitives de f sur I alors $\Phi_2 - \Phi_1 = C$ où C est un vecteur constant de F. Si Φ est une primitive de f alors le primitives de f sont $\Phi_c = \Phi + c$ avec $c \in F$

Preuve. Il suffit de raisonner en utilisant les composantes et le même résultat pour les fonction à valeurs dans \mathbb{K} , vu en première année.

Proposition 7.2.7. Soit I un intervalle de \mathbb{R} , $a \in I$ et $f: I \to F$ une application continue sur I. l'application F définie par $F(x) = \int_a^x f(t)dt$ est une primitive de f. C' est l'unique primitive de f qui s'annule au point a.

Preuve. Il suffit de raisonner en utilisant les composantes et le même résultat pour les fonction à valeurs dans \mathbb{K} , vu en première année.

7.2.6 Techniques d'intégration

7.2.6.1 Changement de variables

Théorème 7.2.1. I et J sont deux intervalle de \mathbb{R} et $\varphi: I \to J$ une application de classe C^1 . Soit $f: J \to F$

7.2. INTÉGRALES 9

une application continue, alors:

$$\forall (a,b) \in I^2, \quad \int_{\varphi(a)}^{\varphi(b)} f(s) ds = \int_a^b \varphi'(t).f(\varphi(t)) dt$$

Preuve. Comme f est continue elle admet une primitive Φ sur J et on a :

$$\int_{\varphi(a)}^{\varphi(b)} f(s)ds = \int_{\varphi(a)}^{\varphi(b)} \Phi'(s)ds$$

$$= \Phi(\varphi(b)) - \Phi(\varphi(a))$$

$$= \int_{a}^{b} (\Phi \circ \varphi)'(t)dt$$

$$= \int_{a}^{b} \varphi'(t)f(\varphi(t))dt$$

7.2.6.2 Intégration par parties

E, F et G sont des espaces vectoriels normés de dimensions finies.

Théorème 7.2.2. Soit $B: E \times F \to G$ une application bilinéaire et $u: I \to E$ et $v: I \to F$ des applications de classe C^1 . Alors :

$$\forall (a,b) \in I^2 \quad \int_a^b B(u'(t),v(t)) = [B(u(t),v(t))]_a^b - \int_a^b B(u(t),v'(t))dt$$

Preuve. Conséquence immédiate de la formule de dérivation de B(u, v).

7.2.7 Inégalité des accroissements finis

Théorème 7.2.3. Soit $f:[a,b]\to F$ une application de classe C^1 et soit

$$M = \sup_{t \in [a,b]} \|f'(t)\|$$

Alors

$$||f(b) - f(a)|| \le M(b - a)$$

Preuve. Comme f est de classe C^1 sur [a,b], on a $f(b)-f(a)=\int_a^b f'(t)dt$, donc : $||f(b)-f(a)||=||\int_a^b f'(t)dt|| \le \int_a^b ||f'(t)||dt \le \int_a^b Mdt = M(b-a)$.

Remarques:

- 1. Si M est un majorant de ||f'||([a,b]), l'inégalité est valable.
- 2. Si $f: I \to F$ de classe C^1 et f' est bornée sur I alors on a :

$$\forall (x, y) \in I^2, \quad ||f(y) - f(x)|| \le M|y - x|$$

pour tout majorant M de ||f'||sur I.

3. Il est possible de ne jamais avoir l'égalité : exemple $f(t) = e^{it}$ de $[0, 2\pi]$ vers \mathbb{C} . Si on a une égalité il vient : $||f(2\pi) - f(0)|| = M.2\pi$ par suite M = 0, chose fausse car ||f'(t)|| = 1, montre que $M \ge 1$.

7.2.8 Formules de Taylor

7.2.8.1 Taylor avec reste intégrale

Théorème 7.2.4. Soit $f:[a,b]\to F$ de classe C^{n+1} alors :

$$f(b) = \sum_{k=0}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) + \int_a^b \frac{(b-t)^n}{n!} f^{(n+t)}(t) dt$$

7.2.8.2 Taylor avec reste Lagrange

Théorème 7.2.5. Soit $f: I \to F$ de classe C^{n+1} . Si $f^{(n+1)}$ est bornée sur I alors alors :

$$\forall (a,b) \in I^2 \quad \left\| f(b) - \sum_{k=0}^n \frac{(b-a)^k}{k!} f^{(k)}(a) \right\| \le \frac{|b-a|^{n+1}}{(n+1)!} \sup_{t \in I} \|f^{(n+t)}(t)\|$$

Remarque : C'est une généralisation de l'inégalité des accroissements finis.

7.2.8.3 Taylor-Young

Théorème 7.2.6. Soit $f: I \to F$ de classe C^n et $a \in I$, alors :

$$f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + (x-a)^n \varepsilon(x), \quad \text{avec} \quad \lim_{x \to a} \varepsilon(x) = 0$$

 ε étant définie sur $I \cap]a - \alpha, a + \alpha[$, avec $\alpha > 0$

Remarque: On écrit:

$$f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + o((x-a)^n)$$

et on l'appelle un développement limité de f au voisinage de a d'ordre n.

7.2.8.4 Comparaison des trois formules

La formule de Taylor-Young est locale : comportement asymptotique de f au voisinage de a. Les deux autres formules sont globales : comportement de f sur tout l'intervalle, elles nécessitant plus d'hypothèses.

7.3 Arcs paramètrés

Un arc paramètré est un couple $\gamma = (I, f)$ où I est un intervalle et f une application de I vers F. Si f est de classe C^k , on dit que γ est un arc de classe C^k .

Le sous ensemble f(I) de F s'appelle support de l'arc paramètré γ

Si $x \in f(I)$ et $f^{-1}(\{x\})$ est fini, son cardinal s'appelle la multiplicité du point x.

Si γ est de classe C^1 , un point de paramètre est dit régulier si $f'(t) \neq 0$. Si c'est le cas alors f'(t) est un vecteur tangent au support.