Table des matières

ESPA	ACE VECTORIELS NORMÉS
4.1	Norme sur un espace vectoriel:
	4.1.1 Norme, semi norme, distance
	4.1.1.1 Norme: Définition, premières remarques
	4.1.1.2 Semi norme
	4.1.1.3 Distance associée à une norme
	4.1.1.4 Distance d'un point à une partie d'un espace vectoriel normé
	4.1.1.5 Norme induite sur un sous-espace vectoriel
	4.1.2 Exemples de normes
	4.1.3 Boule, sphère
	4.1.3.1 Définition d'une boule, sphère
	4.1.3.2 Exemple : Les boules de \mathbb{R}^2 muni des normes usuelles
	4.1.4 Partie bornée d'un espace vectoriel normé, application bornée
	4.1.5 Application lipschitzienne
	4.1.6 Ouvert, Fermé
	4.1.6 Ouvert, Fermé
	4.1.8 Topologie
	4.1.8.1 Introduction
	4.1.8.2 Topologie associée à une norme sur un espace vectoriel
	4.1.9 Normes équivalentes
	4.1.10 Points adhérents, adhérence
	4.1.10.1 Définition, propriétés
	4.1.10.2 Densité
	4.1.11 Points intérieurs,intérieur d'une partie d'un espace vectoriel normé
	4.1.11.1 Définition, propriétés
	4.1.12 Frontière
	4.1.13 Norme produit
	Suites dans un espace vectoriel normé, convergence
	4.2.1 Le \mathbb{K} – espace vectoriel $E^{\mathbb{N}}$ des suites à valeurs dans E
	4.2.1.1 Definitions
	4.2.1.2 Opérations
	4.2.1.3 Suite bornée
	4.2.2 Suites convergentes
	4.2.3 Valeur d'adhérence d'une suite
	4.2.4 Suite dans un espace normé produit
	4.2.5 Caractérisation séquentielle de la fermeture et de l'adhérence d'une partie
4.3	Limites et continuité des fonctions
	4.3.1 Limites
	4.3.1.1 Limite d'une application en un point adhérent à une partie
	4.3.1.2 Extension de la notion de limite
	4.3.1.3 Caractérisation séquentielle
	4.3.1.4 Cas d'un espace produit
	4.3.1.5 Opérations sur les limites
	4.3.1.6 Limite d'un composé d'applications
	4.3.2 Continuité
	4.3.3 Topologie et continuité
	4.3.3.1 Topologie induite
	4.3.4 Continuité uniforme
	4.3.4.1 Exemple

4.4	Compa	${ m acit}{ m \acute{e}}$:3
	4.4.1	Définitions et propriétés	23
4.5	Applie	eations linéaires et multilinéaires continues	25
	4.5.1	Application linéaires continues	25
	4.5.2	Normes subordonnées	26
	4.5.3	Application multilinéaires continues	27
4.6	Espace	es vectoriels normés de dimension finies	29
	4.6.1	Les compacts de $(\mathbb{K}^n, \ .\ _{\infty})$	29
	4.6.2	Equivalence des normes en dimension finie	0
	4.6.3	Compacité en dimension finie	0
		4.6.3.1 Une note sur les normes équivalentes	0
		4.6.3.2 Compacité en dimension finie	1
	4.6.4	Applications linéaires et multiplinéaires continues en dimension finie	1
		4.6.4.1 Applications linéaires	1
		4.6.4.2 Normes subordonnée	2
		4.6.4.3 Applications multilinéaires	2
		4.6.4.4 Conséquence : Continuité des applications polynomiales	3
		4.6.4.5 Exemples à connaître	3
	4.6.5	Autres résultats liés à la dimension finie	3
4.7	Conne	xes par arcs	34
	4.7.1	Définitions	34
	4.7.2	Connexité par arcs et continuité	35
	4.7.3	Composantes connexes par arcs d'une partie	6
	4.7.4	Méthodes pour montrer qu'une partie est connexe par arcs	6
		4.7.4.1 Partie étoilée par rapport à un point	6
		4.7.4.2 Méthode pour démontrer qu'une partie est connexe par arcs	6

Chapitre 4

ESPACE VECTORIELS NORMÉS

4.1 Norme sur un espace vectoriel:

Dans tout ce qui suit \mathbb{K} désigne l'un des corps \mathbb{R} ou \mathbb{C} . Si $\lambda \in \mathbb{K}$ alors $\mod \lambda$ désigne le module de λ (qui coincide avec sa valeur absolue si λ est réel).

4.1.1Norme, semi norme, distance

4.1.1.1 Norme: Définition, premières remarques

Definition 4.1.1

Soit E un \mathbb{K} espace vectoriel. On appelle norme sur E toute application N de E vers \mathbb{R}_+ tel que :

- $(1) (\forall (x,y) \in E^2) N(x+y) \le N(x) + N(y)$
- (2) $(\forall x \in E)(\forall \lambda \in \mathbb{K})$ $N(\lambda x) = |\lambda|N(x)$
- (3) $(\forall x \in E)$ $N(x) = 0 \Rightarrow x = 0$

Remarques. E désigne un \mathbb{K} espace vectoriel, on a les remarques suivantes :

- 1. Dans la pratique, on adopte la notation ||x|| au lieu de N(x). Le lecteur peut réécrire la définition d'une norme à l'aide de cette notation.
- 2. Le couple $(E, \|.\|)$ où E est un \mathbb{K} espace vectoriel et $\|.\|$ une norme sur E s'appelle un espace vectoriel normé (evn en abrégé).
- 3. Si $\|.\|$ est une norme sur E alors : $\|0\| = 0$ et $\|-x\| = \|x\|$ pour tout $x \in E$. En effet, pour $\lambda = -1$, l'axiome de l'homogénéité donne le résultat.
- 4. Si $\|.\|$ est une norme sur E alors on a :

$$\forall (x,y) \in E^2 \quad | \|x\| - \|y\| | \le \|x - y\|$$

Preuve. On a : $||x|| = ||x - y + y|| \le ||x - y|| + ||y||$, donc :

$$||x|| - ||y|| \le ||x - y||$$

Par symétrie des rôles, on a aussi :

$$||y|| - ||x|| \le ||y - x||$$

Comme $\|x-y\|=\|y-x\|,$ on en déduit : $-\|x-y\|\leq \|x\|-\|y\|\leq \|x-y\|$

$$-\|x-y\| \le \|x\| - \|y\| \le \|x-y\|$$

$$|||x|| - ||y||| \le ||x - y||$$

5. Les axiomes (1), (2), (3) définissant une norme sont nommés respectivement :

- (1) : Axiome de l'inégalité triangulaire.
- (2) : Axiome de l'homogénéité.
- (3) : Axiome de la séparation.
- 6. Si N réalise (1) et (2), on dit que N est une semi-norme sur E. Une norme est donc une semi-norme mais une semi-norme n'est pas forcément une norme, ce qui est prouvé par le contre-exemple suivant :
- 7. Si $\nu: E \to \mathbb{R}$ est une application qui satisfait les axiomes (1) et (2) de la définition 4.1.1.1 ci-dessus, alors ν est à valeurs dans \mathbb{R}_+ . En effet : On a tout d'abord $\nu(0) = \nu(0.0) = |0|\nu(0) = 0$ (homogénéité) ; si $x \in E$ alors par homogénéité, on a $\nu(-x) = \nu(x)$; ensuite $\nu(0) = \nu(x-x) = \nu(x+(-x)) \le \nu(x) + \nu(-x) = \le 2\nu(x)$, donc $\nu(x) \ge 0$.

4.1.1.2 Semi norme

Definition 4.1.2

On appelle semi-norme sur E, une application $\nu: E \to \mathbb{R}_+$ tel que :

- 1. $\forall (x,y) \in E^2 \quad \nu(x+y) \le \nu(x) + \nu(y)$.
- 2. $\forall \lambda \in \mathbb{K}, \forall x \in E, \quad \nu(\lambda \cdot x) = |\lambda|\nu(x).$

Remarque. Un norme est donc une semi-norme qui satisfait aussi l'axiome de séparation. Ainsi toute norme est une semi-norme mais une semi-norme peut ne pas être une norme comme le montreront les exemples suivants.

Exemples. Voici des exemples intéressants de semi-normes :

1. Soit $E = \mathcal{CM}([0,1],\mathbb{R})$ l'espace vectoriel réel des fonction continues par morceaux de [0,1] vers \mathbb{R} , et pour tout $f \in E$, posons : $N(f) = \int_0^1 |f(t)| dt$; alors N est une semi-norme sur E, mais ce n'est pas une norme car pour f définie par :

$$f(x) = \begin{cases} 1 & \text{si } x = 0 \\ 0 & \text{si } 0 < x \le 1 \end{cases},$$

on a N(f) = 0 alors que $f \neq 0$.

2. Soit $(E, \|.\|)$ un espace vectoriel normé, X un ensemble non vide et A une partie finie non vide de X. On considère E^X , l'espace vectoriel des applications de X vers E et pour tout $f \in E^X$, on pose :

$$\nu_A(f) = \sum_{a \in A} \|f(a)\|$$

Alors ν_A est une semi-norme sur E^X . On remarque que pour tout $f \in E^X$, on a $\nu_A(f) = 0$ si et seulement si f est nulle sur A. Il en découle que :

- (a) si $A \subseteq X$ alors ν_A n'est pas une norme sur E^X
- (b) X est fini alors ν_X est une norme sur E^X .
- 3. Soit X un ensemble infinie et $E=\mathscr{B}(X,\mathbb{R})$ l'espace vectoriel des applications bornées de X vers \mathbb{R} .

Soit $\varphi: \mathbb{N} \to X$ une application injective. Pour tout $f \in E$, posons:

$$\nu(f) = \sum_{n=0}^{+\infty} \frac{|f(\varphi(n))|}{2^n}$$

Alors ν est bien définie et c'est une semi-norme sur E. De plus ν est une norme sur E si et seulement si φ est bijective, c'est-à-dire $\varphi(\mathbb{N})=X$.

Preuve

- L'application ν est bien définie car si $f \in E$, il existe $M \in \mathbb{R}$ tel que $\forall n \in \mathbb{N}, |f(x)| \leq M$, donc $0 \leq \frac{|f(\varphi(n))|}{2^n} \leq \frac{M}{2^n}$ et la série géométrique $\sum \frac{1}{2^n}$ est convergente, donc $\nu(f)$ est bien un nombre réel positif.
- Si $f, g \in X$ alors pour tout $n \in \mathbb{N}$, on a :

$$|(f+g)(\varphi(n))| \le |f(\varphi(n))| + |g(\varphi(n))|,$$

ce qui fournit facilement :

$$\nu(f+g) \le \nu(f) + \nu(g)$$

• Finalement, il est aisé de remarquer que pour tout $f \in E$ et tout $\lambda \in \mathbb{R}$, on a : $\nu(\lambda f) = |\lambda|\nu(f)$.

Remarquons que pour tout $f \in E$, on a : $\nu(f) = 0$ si et seulement si f est nulle sur $\varphi(\mathbb{N})$, donc si $\varphi(N) = X$ alors ν est une norme et si $\varphi(\mathbb{N}) \neq X$, soit $b \in X \setminus \varphi(\mathbb{N})$ et f l'application de X vers \mathbb{R} définie par f(b) = 1 et f(x) = 0 pour tout $x \in X \setminus \{b\}$, alors f est bien un élément de E car elle est bornée sur X. On a $\nu(f) = 0$ puisque $f(\varphi(n)) = 0$ pour tout $n \in \mathbb{N}$ car $\forall n \in \mathbb{N}, \varphi(n) \neq b$, par contre $f \neq 0$ puisque f(b) = 1.

4.1.1.3 Distance associée à une norme

Definition 4.1.3

Soi X un ensemble non vide . On appelle distance sur X toute application $d: X^2 \to \mathbb{R}_+$ vérifiant :

- $(1) \ \forall (x,y) \in X^2 \quad d(x,y) = d(y,x)$
- (2) $\forall (x, y, z) \in X^3$ $d(x, y) \le d(x, z) + d(z, y)$
- (3) $\forall (x,y) \in X^2$ $d(x,y) = 0 \Leftrightarrow x = y$

Remarque. on a alors:

$$\forall x \in E, \quad ||x|| = d(x,0) = d(0,x)$$

Exemple. Pour tout $(m, n) \in \mathbb{N}^2$, on pose

$$d(m,n) = \begin{cases} 0 & \text{si} \quad m = n \\ 1 & \text{si} \quad m \neq n \end{cases} = 1 - \delta_{m,n}$$

où $\delta_{m,n}$ est le symbole de Kronnecker. Alors d est une distance sur \mathbb{N} .

Preuve. Soit $m, n, p \in \mathbb{N}$:

- Il est clair que d(m,n) = d(n,m) puisque $\delta_{m,n} = \delta_{n,m}$.
- On a $d(m,n)+d(n,p) \ge d(m,p)$ car si m=p alors d(m,p)=0 et si si $m \ne p$ alors forcément $m \ne n$ ou $n \ne p$ donc d(m,n)=1 ou d(n,p)=1, par suite $d(m,n)+d(n,p)\ge 1=d(m,p)$.
- On a d(m,m)=0 et si $m\neq n$ alors $d(m,n)=1\neq 0$, par suite on a : $d(m,n)=0\Leftrightarrow m=n$.

Proposition 4.1.1. Si (E, ||.||) est un espace vectoriel normé alors l'application :

$$\begin{array}{cccc} d & : & E^2 & \rightarrow & \mathbb{R}_+ \\ & & (x,y) & \mapsto & d(x,y) = \|x-y\| \end{array}$$

est une distance sur E appelé distance associée à la norme $\|.\|$

Preuve. On va établir que l'application d ainsi définie vérifie les trois axiomes d'une distance :

• Soit $(x, y) \in E^2$, on a ||x - y|| = ||y - x||, donc d(x, y) = d(y, x).

• Soit $(x, y, z) \in E^3$ alors, par l'axiome de l'inégalité triangulaire, on a :

$$||x - y|| = ||(x - z) + (z - y)|| \le ||x - z|| + ||y - z||,$$

ce qui donne :

$$\forall (x, y, z) \in E^3 \quad d(x, y) \le d(x, z) + d(z, y)$$

• Soit $(x, y) \in E^2$, alors :

$$d(x,y) = 0 \Leftrightarrow ||x - y|| = 0$$

Par l'axiome de séparation, on a

$$||x - y|| = 0 \Leftrightarrow x - y = 0$$

donc:

$$\forall (x,y) \in E^2 \quad d(x,y) = 0 \Leftrightarrow x = y$$

4.1.1.4 Distance d'un point à une partie d'un espace vectoriel normé

Proposition-Définition 4.1.1. Soit A une partie non vide d'un espace vectoriel normé E et $a \in E$. La partie :

$$Y_A = \{ \|x - a\| / x \in A \},$$

admet une borne inférieure comme partie de \mathbb{R} . le nombre réel inf Y_A est appelé distance du point a à la partie A de E et est noté d(a, A).

Preuve. Comme A est non vide on a $Y_A \neq \emptyset$, et comme $Y_A \subset \mathbb{R}_+$, on a Y_A est non vide minorée (par 0 par exemple), donc Y_A admet une borne inférieure.

Remarques. Retenons les remarques suivantes :

- 1. Si $a \in A$ alors d(a, A) = 0 mais la réciproque est fausse. **Contre-exemple :** Prenons A =]1, 5[dans \mathbb{R} muni de la valeur absolue(qui est bien une norme). Alors $d(5, A) = \inf_{1 \le x \le 5} |x - 5| = 0$, cependant, $5 \notin A$.
- 2. Si A est un singleton $\{b\}$ alors d(a, A) = ||b a||.
- 3. Soit $x \in E$ et A une partie non vide finie de E, alors il existe $a \in A$ tel que d(x, A) = d(x, a) = ||x a||. En effet, dans ce cas l'ensemble $Y_A = \{||x a|| / x \in A\}$ est une partie finie de non vide de \mathbb{R} , donc admet un plus petit élément de la forme d(x, a) avec $a \in A$.

Exemples. 1. Soit $E = \mathbb{R}^2$ et pour tout $x = (x_1, x_2) \in \mathbb{R}^2$, posons $||x|| = \sqrt{x_1^2 + x_2^2}$, alors c'est une norme de \mathbb{R}^2 . Soit $A = \{(t,0)/t \in \mathbb{R}\}$ et x = (1,2). Pour tout $t \in \mathbb{R}$ on a : $d((t,0),(1,2)) = ||(t,0)-(1,2)|| = \sqrt{(t-1)^2+4}$ est minimal si f(t) est minimal avec $f(t) = (t-1)^2+4$, or pour tout $t \in \mathbb{R}$, on a : f'(t) = 2(t-1) et f''(t) = 2 ce qui donne un minimum absolu pour f au point t = 1 à savoir f(1) = 4, donc d(x,A) = 2

2. Dans l'espace vectoriel normé $(\mathbb{R}, |.|)$, prenons $A = \mathbb{Z}$, alors pour tout nombre réel x, si on note p = [x] la partie entière de x alors :

$$d(x, \mathbb{Z}) = \min(x - [x], 1 + [x] - x)$$

donc

$$d(x,\mathbb{Z}) = \begin{cases} x - p & \text{si} \quad p \le x \le p + \frac{1}{2} \\ p + 1 - x & \text{si} \quad p + \frac{1}{2} < x \le p + 1 \end{cases}$$

4.1.1.5 Norme induite sur un sous-espace vectoriel

Proposition 4.1.2. Soit $(E, \|.\|)$ un espace vectoriel normé et F un sous-espace vectoriel de E. Alors la restriction $\|.\|_F$, de $\|.\|$ à F est une norme sur F

Preuve. Immédiate puisque $F \subset E$ et que $||x||_F = ||x||$, pour tout $x \in F$, par définition, ,donc tous les axiomes d'une norme sont vérifiées par $||.||_F$ sur F.

Remarque. Si aucune confusion n'est à craindre, on adopte la même notation pour la norme de E et celle de F induite par celle de E. En d'autres termes si $x \in F$ alors ||x|| désigne en même temps la norme de x dans l' $evn\ E$ et dans F muni de la norme induite.

Exemple. $E = \mathbb{C}$ muni du module, et $F = \mathbb{R}$, la norme induite : la valeur absolue.

4.1.2 Exemples de normes

On donne ici des exemples fondamentaux de normes et on verra plus loin les liens possibles entre elles quand elles sont définies sur un même espace vectoriel :

Exemples. 1. Soit $n \in \mathbb{N}^*$. Pour tout $x = (x_1, ..., x_n) \in \mathbb{K}^n$, on pose :

$$\begin{cases} ||x||_1 = \sum_{k=1}^n |x_k| \\ ||x||_2 = \left(\sum_{k=1}^n |x_k|^2\right)^{\frac{1}{2}} \\ ||x||_{\infty} = \sup_{1 \le k \le n} |x_k| \end{cases}$$

Alors: $\|.\|_i$ pour $i=1,2,\infty$ respectivement sont trois normes sur \mathbb{K}^n . On a:

$$\left\|.\right\|_{\infty} \leq \left\|.\right\|_{2} \leq \left\|.\right\|_{1} \leq n \left\|.\right\|_{\infty}$$

2. Soit $E = \mathscr{C}([a,b],\mathbb{K})$ le \mathbb{K} – espace vectoriel des fonction continues du segment [a,b] vers \mathbb{K} a,b nombres réels tel que a < b). Pour tout $f \in E$, on pose :

$$\begin{cases} ||f||_1 = \int_a^b |f(t)| dt \\ ||f||_2 = \left(\int_a^b |f(t)|^2 dt\right)^{\frac{1}{2}} \\ ||f||_{\infty} = \sup_{x \in [a,b]} |f(t)| \end{cases}$$

Alors il s'agit de trois normes sur E.

3. Soit $E = \mathbb{K}[X]$ le \mathbb{K} – espace vectoriel des polynômes à coefficients dans \mathbb{K} . Si $P \in \mathbb{K}[X]$ alors P s'écrit : $P = \sum_{k=0}^{+\infty} a_k X^k$ où (a_k) est la suite des coefficients de P (on sait qu'elle est nulle à partir d'un certain rang d'où le sens de l'écriture précédente). On vous inspirant de l'exemple 1 définir trois normes sur $\mathbb{K}[X]$ en donnant les expressions en fonction des coefficients de P. Par exemple :

$$||P||_1 = \sum_{k=0}^{\infty} |a_k|$$

4. Soit E un \mathbb{K} – espace vectoriel et soit φ un automorphisme de E. Démontrer que si $\|.\|$ est une norme sur E alors $\|.\|_{\varphi}$ définie par :

$$\forall x \in E \quad \|x\|_{\varphi} = \|\varphi(x)\|$$

est une norme sur E.

On suppose que $E = \mathbb{R}^2$ sous quelles conditions sur les nombres réels a, b, c et d on définit une norme en associant $x = (x_1, x_2) \in \mathbb{R}^2$ le nombre réel positif :

$$||x|| = \sqrt{(ax_1 + cx_2)^2 + (bx_1 + dx_2)^2}$$

5. Soit $n \in \mathbb{N}^*$ et $E = \mathcal{M}_n(\mathbb{R})$. Pour tout $A \in E$, on pose $||A|| = \sqrt{\operatorname{tr}({}^{\mathbf{t}}AA)}$. Si $A = (a_{ij})$ alors $||A|| = \sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2$ et c'est une norme sur E.

4.1.3 Boule, sphère

4.1.3.1 Définition d'une boule, sphère

Definition 4.1.4

Soit $(E, \|.\|)$ un espace vectoriel normé et soit $a \in E$ et $r \in \mathbb{R}_+$. Alors, les sous ensembles de E respectifs suivants :

- 1. $B(a,r) = \{x \in E/||x-a|| < r\}.$
- 2. $B_f(a,r) = \{x \in E/||x-a|| \le r\}.$
- 3. $S(a,r) = \{x \in E/||x-a|| = r\}.$

sont respectivement appelés : boule ouverte, boule fermée et sphère toutes de centre a et de rayon r.

Remarques. Nous retenons:

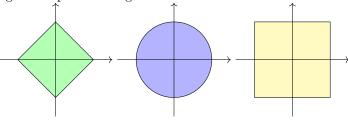
- 1. Le cas r = 0: On a : $B(a, 0) = \emptyset$ et $B_f(a, 0) = S(a, 0) = \{a\}$
- 2. On a $B_f(a,r) = B(a,r) \cup S(a,r)$ et $B(a,r) \cap S(a,r) = \emptyset$
- 3. Lorsque a=0 et r=1, on parle de la boule unité (fermée et ouverte) et la sphère unité.

Preuve. le 1) est facile à faire

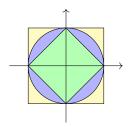
le 2) par définition des boules et de la sphere , pour la réunion et pour l'intersection : supposons que c'est non vide et soit x un élément de l'intersection , alors ||x - a|| = r et ||x - a|| < r; absurde.

4.1.3.2 Exemple : Les boules de \mathbb{R}^2 muni des normes usuelles

La sphère unité de \mathbb{R}^2 muni des normes usuelles respectives $\|.\|_1, \|.\|_2, \|.\|_\infty$ sont représentée ci-dessous par les figures respectives de gauche à droite :



Rassemblées dans une seule figure :



4.1.4 Partie bornée d'un espace vectoriel normé, application bornée

Definition 4.1.5

Soit $(E, \|.\|)$ un espace vectoriel normé et A une partie de E. On dit que A est bornées si A est contenue dans une boule fermée de E de centre l'origine de. Autrement dit s'il existe $R \ge 0$ tel que :

$$\forall x \in A \quad ||x|| \le R$$

Remarques. On a les remarques suivantes :

- 1. A est bornée si et seulement si A est contenue dans une boule fermée ou ouverte de centre $a \in E$ et de rayon $r \in \mathbb{R}_+$
- 2. Une boule ouverte, une boule fermée et une sphère sont des parties bornées de E
- 3. Si A est bornée alors toute partie de A est bornée.
- 4. Toute intersection de parties bornées est bornée.
- 5. Toute réunion finie de parties bornées est bornée
- 6. Si $E \neq \{0\}$ alors E n'est pas une partie bornée de E
- 7. Tout sous espace vectoriel non nul de E n'est pas une partie bornée de E

Definition 4.1.6

Soit $(E, \|.\|)$ un espace vectoriel normé et X un ensemble non vide. Une application f de X vers E est dite bornée si f(X) est une partie bornée de l'espace vectoriel normé $(E, \|.\|)$

Proposition 4.1.3. Soit A une partie non vide bornée de E. Alors l'ensemble :

$$X_A = \{ \|x - y\| / (x, y) \in A^2 \}$$

admet une borne supérieure. Le nombre réel positif $\sup(X_A)$ s'appelle le diamètre de A. On le note $\delta(A)$ ou d(A).

Preuve. Puisque A est bornée, il existe un nombre réel M tel que : $||x|| \le M$ pour tout $x \in A$. Il en résulte que : pour tout $(x,y) \in A^2$, on a :

$$||x - y|| \le ||x|| + ||y|| \le 2M$$

La partie X_A de \mathbb{R} est non vide car $0 \in X_A$ (prendre $a \in A$ et x = y = a). Elle est majorée en plus donc elle admet une borne supérieure $\delta(A)$

Exercice:

Soit E un espace vectoriel normé. Soit $a \in E$ et $r \in]0, +\infty[$. Prouver que : $\delta(B(a,r)) = \delta(B_f(a,r)) = \delta(S(a,r)) = 0$

Exemple. Diamètre de la boule ouverte A = B(a, r) avec r > 0 et $a \neq 0$.

Remarquons que si $(x,y) \in A^2$ alors $||x-y|| \le ||x-a|| + ||y-a|| \le 2r$ Donc 2r est un majorant de l'ensemble :

$$Y = \{ \|x - y\| / (x, y) \in A^2 \}$$

On va construire une suite (y_n) de points de Y qui converge vers 2r. Posons alors pour tout $n \in \mathbb{N}$, $y_n = \|u_n - v_n\|$ avec $u_n = a + \frac{nr}{n+1} \frac{a}{\|a\|}$ et $v_n = a - \frac{nr}{n+1} \frac{a}{\|a\|}$. On a alors : $\|u_n - a\| = \|v_n - a\| = \frac{n}{n+1}r < r$, donc $y_n \in Y$ et on a d'autre part : $y_n = 2r \frac{n}{n+1}$ de sorte que : $\lim_{n \to +\infty} y_n = 2r$.

Conclusion : sup Y = 2r, par suite $\delta(A) = \delta(B(a,r)) = 2r$

4.1.5 Application lipschitzienne

Definition 4.1.7

Soient E et F deux espaces vectoriels normés dont les normes prennent la même notation $\|.\|$. Soit A une partie non vide de E et f une application de A vers F. On dit que f est lipshitzienne sur A s'il existe une constante réelle positive k tel que :

$$\forall (x, y) \in A^2 \quad ||f(x) - f(y)|| \le k ||x - y||$$

Remarques. 1. Si une constante positive k réalise la condition ci-dessus alors toute constante k' tel que $k' \ge k$ la réalise, par suite on peut toujours choisir k > 0.

2. L'application $\|.\|: E \to \mathbb{R}, x \mapsto \|x\|$ est une application lipschitzienne de $(E, \|.\|)$ vers \mathbb{R} muni de la valeur absolue (k = 1 convient.)

Exemple. Si $f: I \to \mathbb{R}$ est une application dérivable d'un intervalle de \mathbb{R} non trivial I vers \mathbb{R} et si de plus f' est bornée sur I alors f est lipschitzienne. En effet il existe M>0 tel que $\forall t\in I, |f'(t)|\leq M$. Soit $(x,y)\in I^2$ tel que x< y. Par le théorème des accroissement finis appliqué à la restriction de f à [x,y], il existe un réel c tel que f(y)-f(x)=f'(c)(x-y), donc $|f(x)-f(y)|\leq |f'(c)||x-y|\leq M|x-y|$. Si y< x, le résultat est le même par symétrie et finalement, si x=y, le résultat reste valable car c'est une égalité.

4.1.6 Ouvert, Fermé

Definition 4.1.8

Soit A une partie de l'espace vectoriel normé $(E, \|.\|)$. On dit que A est une partie ouverte (ou simplement un ouvert) de E si A est vide ou A est non vide et : $(\forall a \in A)(\exists \varepsilon > 0)$ $B(a, \varepsilon) \subset A$. On dit que A est une partie fermée (ou un fermé) si son complémentaire dans E est un ouvert.

Remarques. 1) \emptyset et E sont à la fois des ouverts et des fermés

2) Si A est une partie de E et si $A \neq E$ alors A est fermée si pour tout $x \notin A$ il existe $\varepsilon > 0$ tel que $B(x, \varepsilon) \cap A = \emptyset$.

Proposition 4.1.4. Soit $(E, \|.\|)$ un espace vectoriel normé . Alors :

- (1) \emptyset et E sont des ouverts.
- (2) Toute réunion (finie ou infinie) d'ouverts est un ouvert.
- (3) Toute intersection finie d'ouverts est un ouvert.

Contre-exemple: Famille d'ouverts dont l'intersection n'est pas un ouvert:

Prenons $E = \mathbb{R}$ muni de la valeur absolue et pour tout $n \in \mathbb{N}^*$, posons $O_n = \left] -\frac{1}{n}, \frac{1}{n} \right[$. Alors $(O_n)_{n \in \mathbb{N}^*}$ est une famille d'ouvert et $\bigcap_{n \in \mathbb{N}^*} O_n = \{0\}$ n'est pas un ouvert.

Proposition 4.1.5. Soit (E, ||.||) un espace vectoriel normé. Alors :

- (1) \emptyset et E sont des fermés
- (2) Toute intersection (finie ou infinie) de fermés est un fermé.
- (3) Toute réunion finie de fermés est un fermé.

Contre-exemple: Famille de fermés dont la réunion n'est pas un fermé:

Prenons $E = \mathbb{R}$ muni de la valeur absolue et pour tout $n \in \mathbb{N}^*$, posons $F_n = \left[-1 + \frac{1}{n}, 1 - \frac{1}{n}\right]$. Alors $(F_n)_{n \in \mathbb{N}^*}$ est une famille de fermés et $\bigcup_{n \in \mathbb{N}^*} F_n =]-1, 1[$ n'est pas un fermé.

4.1.7 Voisinage

Dans tout ce qui suit $(E, \|.\|)$ est un espace vectoriel normé.

Definition 4.1.9

Soit $a \in E$ et V une partie de E. On dit que V est un voisinage de a si V contient une boule ouverte de centre a. Autrement dit si :

$$(\exists \varepsilon > 0)(\forall x \in E) \quad \|x - a\| < \varepsilon \Rightarrow x \in V$$

Remarques. On retient les remarques suivantes sur les voisinages :

- 1. V est un voisinage de a s'il existe un ouvert U de E tel que $x \in U$ et $U \in V$.
- 2. E est un voisinage de tout point a de E
- 3. L'intersection de deux voisinages de a est un voisinage de a
- 4. Si une partie W de E contient un voisinage de a alors W est elle même un voisinage de a.

Preuve. 1. Par définition d'un ouvert.

- 2. Clair puisque E est un ouvert.
- 3. Si V_1 et V_2 sont deux voisinages de a, alors il existe U_1, U_2 ouverts de E tel que $a \in U_1$ et $a \in U_2$ et $U_1 \subset V_1$ et $U_2 \subset V_2$. Soit $U = U_1 \cap U_2$, alors U est un ouvert de E et $a \in U$ et $U \subset V_1 \cap V_2$, donc $V_1 \cap V_2$ est bien un voisinage de a.
- 4. Si V est un voisinage de a alors il existe U ouvert de E tel que $a \in U \subset V$, donc pour toute partie W de E contenant V, on a aussi : $a \in U \subset V$, ce qui prouve que W est un voisinage de a.

Proposition 4.1.6. Une partie non vide U de E est un ouvert de E si et seulement si U est voisinage de chacun de ses points.

Preuve. Conséquence immédiate de la définition d'un ouvert.

4.1.8 Topologie

4.1.8.1 Introduction

Topologie de topo et logos : science du lieu.

Lorsqu'un espace vectoriel est muni d'une norme, cela permet de définir des notions topologiques comme : partie ouverte, fermé, compacte, connexe par arcs, point adhérent, adhérence, intérieur et frontière d'une partie. La topologie permet aussi de définir les suites convergents, les fonction continues.

4.1.8.2 Topologie associée à une norme sur un espace vectoriel

Soit $(E, \|.\|)$ un espace vectoriel normé. On note $\mathscr O$ l'ensemble des ouverts de $(E, \|.\|)$. On peut ainsi dire que l'on a les trois points suivants :

- (i) $\emptyset \in \mathscr{O}$ et $E \in \mathscr{O}$
- (ii) Si $(O_i)_{i\in I}$ est une famille d'éléments de \mathscr{O} alors $\bigcup_{i\in I} O_i \in \mathscr{O}$
- (iii) Si O et O' sont deux éléments de \mathscr{O} $O \cap O' \in \mathscr{O}$

Definition 4.1.10

On exprime ça en disant que (E, \mathcal{O}) est l'espace topologique associé à E et à la norme $\|.\|$. On dit aussi que \mathcal{O} est la topologie sur E associée à la norme $\|.\|$

4.1.9 Normes équivalentes

Definition 4.1.11

Soit E un \mathbb{K} – espace vectoriel et N et N' deux normes sur E. on dit que N et N' sont équivalentes s'il existe deux constantes réelles, strictement positives, c et C tel que :

$$cN \le N' \le CN$$
,

ce qui veut dire exactement :

$$\forall x \in E, \quad cN(x) \le N'(x) \le CN(x)$$

Remarques. N et N' étant deux normes d'un espace vectoriel normé E, on a les remarques suivantes :

1. Pour démontrer dans la pratique que N et N' sont équivalentes, on démontre l'existence de deux constantes strictement positives k et k' tel que :

$$N \le kN'$$
 et $N' \le k'N$

En effet cela est équivalent à :

$$\frac{1}{k}N \le N' \le k'N$$

donc si on prends $c = \frac{1}{k}$ et C = k', on tombe sur la condition de la définition ci-dessus.

- 2. On peut dire que N et N' sont équivalentes si et seulement si les fonctions $\frac{N}{N'}$ et $\frac{N'}{N}$ sont bornées sur $E\setminus\{0\}$.
- 3. N et N' sont équivalentes si et seulement si il eixiste m, M > 0 tel que $m \leq \frac{N'(x)}{N(x)} \leq M$, pour tout $x \in E \setminus \{0\}$. Ce qui donne une méthode pratique pour prouver que deux normes ne sont pas équivalentes qui est :
- 4. Pour que N et N' ne soient pas équivalentes, il suffit de trouver une suite $(x_n) \in E^{\mathbb{N}}$ tel que $x_n \neq 0, \forall n \in \mathbb{N}$ et

$$\lim_{n \to +\infty} \frac{N'(x_n)}{N(x_n)} = +\infty \quad \text{ou} \quad \lim_{n \to +\infty} \frac{N'(x_n)}{N(x_n)} = 0$$

- 5. Si on note S_N^1 la sphère unité de (E,N), on peut dire que N et N' sont équivalentes si et seulement si S_N^1 est bornée dans (E,N') et $S_{N'}^1$ est bornée dans (E,N).
- 6. On verra plus lois que les assertions suivantes sont équivalentes :
 - (a) N et N' sont équivalentes.
 - (b) (E, N) et (E, N') ont les mêmes ouverts.
 - (c) (E, N) et (E, N') ont les mêmes fermés.
 - (d) (E, N) et (E, N') ont les mêmes parties bornées.

Exemple. Les normes $\|.\|_k$, $k \in \{1, 2, \infty\}$ de \mathbb{R}^n sont équivalentes puisque :

$$\|.\|_{\infty} \le \|.\|_2 \le \|.\|_1 \le n \|.\|_{\infty}$$

4.1.10 Points adhérents, adhérence

4.1.10.1 Définition, propriétés

Dans tout ce qui suit , on considère un espace vectoriel normé $(E, \|.\|)$

Definition 4.1.12

Soit A une partie de E. Un point a de E est dit adhérent à A si toute boule ouverte de centre a rencontre A en au moins un point.

Autrement dit:

$$(\forall r > 0)(\exists x \in A) \quad ||x - a|| < r$$

On note \overline{A} ou Adh(A) l'ensemble des points adhérents à A et on l'appelle l'adhérence de A.

Proposition 4.1.7. Soit (E, ||.||) un espace vectoriel normé, alors, pour toute partie A de E, l'adhérence Adh(A) de A est un fermé de E et $A \subset Adh(A)$.

Preuve. Pour tout $a \in A$ et pour tout r > 0, on a $a \in B(a,r) \cap A$, donc $(\star\star) : B(a,r) \cap A \neq \emptyset$, donc $a \in Adh(A)$ et par suite $A \subset Adh(A)$.

Démontrons que Adh(A) est fermé, pour cela soit $x \in E$ tel que $x \notin Adh(A)$. Par définition de l'adhérence, il existe r > 0 tel que $B(x,r) \cap A = \emptyset$. Démontrons que $(\star) : B(x,\frac{r}{2}) \cap Adh(A) = \emptyset$. Si on n'a pas (\star) , il existe $b \in Adh(A)$ tel que $\|b-x\| < \frac{r}{2}$, et comme $b \in Adh(A)$, on a $B(b,\frac{r}{2}) \cap A \neq \emptyset$, donc il existe $a \in A$ tel que $\|b-a\| < \frac{r}{2}$. Il en découle que $\|x-a\| \le \|x-b\| + \|b-a\| < r$, donc $a \in B(x,r)$, ce qui contredit $(\star\star)$ ci-dessus. Ainsi on a (\star) et finalement Adh(A) est un fermé.

Proposition 4.1.8. Soit $(E, \|.\|)$ un espace vectoriel normé. Pout toutes parties A et B de E, on a

$$A \subset B \Rightarrow Adh(A) \subset Adh(B)$$
.

Preuve. Supposons que $A \subset B$. Soit $x \in Adh(A)$. Pour tout r > 0, on a $B(x,r) \cap A \neq \emptyset$. Or $A \subset B$, donc $B(x,r) \cap A \subset B(x,r) \cap B$ et par suite $B(x,r) \cap B \neq \emptyset$ et $x \in Adh(B)$, donc $Adh(A) \subset Adh(B)$.

Proposition 4.1.9. Soit $(E, \|.\|)$ un espace vectoriel normé. Pour toute partie A de E on a A est fermée si et seulement si Adh(A) = A.

Preuve. En effet, si $A = \operatorname{Adh}(A)$ alors d'après la proposition 4.1.7, on déduit que A est fermée. Réciproquement, si A est fermée, on sait déjà que $A \subset \operatorname{Adh}(A)$, réciproquement pour tout $x \in E$, si $x \notin A$, comme A est fermé, $\exists r > 0$ tel que $B(x,r) \cap A = \emptyset$, et cela signifie que $x \notin \operatorname{Adh}(A)$, donc $\forall x \in E, x \notin A \Rightarrow x \notin \operatorname{Adh}(A)$ et par contraposée, on a : $\forall x \in E, x \in \operatorname{Adh}(A) \Rightarrow x \in A$, donc $\operatorname{Adh}(A) \subset A$ et finalement $A = \operatorname{Adh}(A)$.

Proposition 4.1.10. Soit $(E, \|.\|)$ un espace vectoriel normé. Pour toute partie A de E, l'adhérence de A est l'intersection de tous les fermés contenant A. C'est donc le plus petit fermé (au sens de l'inclusion) contenant A.

Preuve. Soit I l'ensemble des fermés F de E tel que $A \subset F$. Alors $F_0 = \bigcap_{F \in I} F$ est un fermé de E et $A \subset F_0$. Par ailleurs pour tout $F \in I$, on a $F_0 \subset F$, donc F_0 est le plus petit fermé de E contenant A. Démontrons que $Adh(A) = F_0$. Puisque, en vertu de la proposition 4.1.7, on a Adh(A) est un fermé de E contenant A, on a $F_0 \subset Adh(A)$. Or $A \subset F_0$, donc par la proposition 4.1.8, on a $Adh(A) \subset Adh(F_0)$. Par la proposition 4.1.9, on a F_0 étant fermé donc F_0 0, en conclusion F_0 1 en F_0 2.

Proposition 4.1.11. Soit $(E, \|.\|)$ un espace vectoriel normé. Pour toutes parteis A et B de E, on a :

- 1. $A \subset \overline{A}$
- $2. \ A \subset B \Rightarrow \overline{A} \subset \overline{B}$
- 3. $\overline{(A \cup B)} = \overline{A} \cup \overline{B}$ et $\overline{(A \cap B)} \subset \overline{A} \cap \overline{B}$. Cette inclusion peut être stricte.

Preuve. Onva donner les preuves et un contre-exemple.

- 1. On a $A \subset \overline{A}$ car si $x \in A$ toute boule de centre a rencontre A en a par exemple.
- 2. Si $A \subset B$, soit $x \in \overline{A}$, pour tout r > 0, on a $B(a,r) \cap A \subset B(a,r) \cap B$ et comme $B(a,r) \cap A \neq \emptyset$, on a $B(a,r) \cap B \neq \emptyset$, donc $x \in \overline{B}$.
- 3. On a $\begin{cases} A \subset A \cup B \\ B \subset A \cup B \end{cases}$, donc par le 2) ci-dessus, on a $\begin{cases} \overline{A} \subset \overline{A \cup B} \\ \overline{B} \subset \overline{A \cup B} \end{cases}$ donc $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$ on a $A \subset \overline{AB} \subset \overline{B}$ donc $\overline{A} \cup B \subset \overline{A} \cup \overline{B}$ et comme $\overline{A} \cup \overline{B}$ est un fermé, on a $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$ Comme $\begin{cases} A \cap B \subset A \\ A \cap B \subset B \end{cases}$, on a : $\begin{cases} \overline{A \cap B} \subset \overline{A} \\ \overline{A \cap B} \subset \overline{B} \end{cases}$ donc $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$. Pour A =]0, 1[, B =]1, 2[, on a $A \cap B = \emptyset$ mais $\overline{A} = [0, 1], \overline{B} = [1, 2]$ donc $\emptyset = \overline{A \cap B} \subseteq \{1\} = \overline{A} \cap \overline{B}$.

Proposition 4.1.12. Une partie A de E est fermée si et seulement si $\overline{A} = A$

4.1.10.2 Densité

Definition 4.1.13

Soit $(E, \|.\|)$ un espace vectoriel normé, A et B deux parties de E tel que A est non vide et $A \subset B$. On dit que A est dense dans B si $B \subset \overline{A}$.

Exemples. Voici deux exemples de parties dense à retenir :

- 1. $E = \mathbb{R}$ muni de la valeur absolue. \mathbb{Q} est dense dans \mathbb{R} (voir la preuve dans le cours de MPSI). De même $\mathbb{R}\backslash\mathbb{Q}$ est dense dans \mathbb{R} .
- 2. Soit $n \in \mathbb{N}^*$ et on considère $\mathcal{M}_n(\mathbb{K})$ muni d'une norme quelconque notée $\|.\|$. Alors $GL_n(\mathbb{K})$ est

dense dans $\mathcal{M}_n(\mathbb{K})$.

Preuve. Soit $A \in \mathcal{M}_n(\mathbb{K})$ et r > 0 un réel strictement positif. Démontrons que la boule B(A, r) rencontre $GL_n(\mathbb{K})$, c'est-à-dire qu'il existe une matrice inversible M tel que ||M - A|| < r. Pour cela posons :

$$\forall p \in \mathbb{N}^*, \quad M_p = A - \frac{1}{p} I_n.$$

Remarquons que:

$$\forall p \in \mathbb{N}^*, \quad \det(M_p) = (-1)^n \chi_A\left(\frac{1}{p}\right),$$

où χ_A est le polynôme caractéristique de A. On sait que $\deg(\chi_A)=n$, et qu'alors χ_A possède au plus n racines, donc :

$$\exists p_0 \in \mathbb{N}^*, \forall p \ge p_0, \quad \chi_A\left(\frac{1}{p}\right) \ne 0.$$

Ainsi, pour tout $p \ge p_0$, la matrice M_p est inversible et vérifie :

$$||M_p - A|| = \frac{1}{p} ||I_n||$$

et par suite il suffit de choisir p tel que $p > \frac{\|I_n\|}{r}$ pour avoir $\|M - A\| < r$ pour $M = M_p$.

4.1.11 Points intérieurs, intérieur d'une partie d'un espace vectoriel normé

4.1.11.1 Définition, propriétés

Dans tout ce qui suit , on considère un espace vectoriel normé $(E, \|.\|)$

Definition 4.1.14

Soit A une partie de E. Un point a de E est dit intérieur à A s'il existe une boule ouverte de centre a contenue dans A.

Autrement dit:

$$(\exists r > 0)(\forall x \in E) \quad ||x - a|| < r \Rightarrow x \in A$$

Definition 4.1.15

Soit A une partie de E.On note A° l'ensemble des points intérieurs à A et on l'appelle l'intérieur de A.

Proposition 4.1.13. L'intérieur d'une partie A est la réunion de tous les ouverts contenus dans A. C'est donc le plus grand ouvert (au sens de l'inclusion) contenu dans A.

Exercice : Pour toute partie X de E , on note X^c le complémentaire de X dans E, c'est-à-dire : $X^c = E \setminus X$. Soient A et B deux parties de E ,

- 1. Montrer que $A^{\circ} \subset A$
- 2. Montrer que $A \subset B \Rightarrow A^{\circ} \subset B^{\circ}$
- 3. Comparer $(A \cup B)^{\circ}$ et $A^{\circ} \cup B^{\circ}$ puis $(A \cap B)^{\circ}$ et $A^{\circ} \cap B^{\circ}$
- 4. Prouver que $(A^{\circ})^c = \overline{A^c}$ et $\overline{A}^c = A^{c\circ}$. retrouver les résultats ci-dessus à partir de ceux de l'exercice sur l'adhérence.

Exercice:

- 1. Montrer que si A est une partie bornée d'un espace vectoriel normé E alors son adhérence \overline{A} est bornée et $\delta(A) = \delta(\overline{A})$
- 2. En est il de même de l'intérieur de A?

Exercice : Soit A une partie de E.

- 1. Prouver que $\overline{A} = \{x \in A/d(x,A) = 0\}$
- 2. Montrer que $\delta(A) = \delta(\overline{A}) = \delta(\partial A)$

Proposition 4.1.14. Une partie A de E est ouverte si et seulement si $A^{\circ} = A$

Preuve. Si A est ouverte on va montrer que $A \subset A^{\circ}$. Soit $x \in A$, il existe r > 0 tel que $B(x, r) \subset A$, donc $x \in A^{\circ}$

Réciproquement , si $A=A^\circ$, soit $x\in A$; comme $x\in A^\circ$ on a : $\exists r>0$ tel que $B(a,r)\subset A$, donc A est un ouvert.

4.1.12 Frontière

Definition 4.1.16

Soit A une partie de l'espace vectoriel normé E, on appelle frontière de A, le sous ensemble de E noté Fr(A) ou ∂A tel que : $\partial A = \overline{A} \setminus A^{\circ}$

Remarques. 1) ∂A est un fermé car c'est l'intersection de deux fermés : \overline{A} et $(A^{\circ})^c$ 2) On a : $\partial E = \emptyset$ et $\partial \emptyset = \emptyset$

4.1.13 Norme produit

Proposition 4.1.15. Soit $n \in \mathbb{N}^*$ et (E_k, N_k) pour $1 \le k \le n$ une famille d'espaces normés et soit $E = \prod_{k=1}^n E_k$. Pour tout $x \in E$ avec $x = (x_1, ..., x_n)$ on pose :

$$\|x\|_1 = \sum_{k=1}^n N_k(x_k), \quad \|x\|_2 = \left(\sum_{k=1}^n (N_k(x_k)^2)^{\frac{1}{2}}, \quad \|x\|_{\infty} = \sup_{k=1}^n N_k(x_k)\right)$$

Alors il s'agit de trois normes sur E. De plus elles sont équivalentes. Si $\|.\|$ désigne l'une d'elles alors $(E, \|.\|)$ est appelé espace vectoriel normé produit des E_k

Remarques. 1) Le plus souvent on prends la norme infinie pour l'espace vectoriel normé produit.

2) Dans le cas particulier $E_k = \mathbb{K}$ pour tout k on retrouve des résultats déjà vus.

4.2 Suites dans un espace vectoriel normé, convergence

Dans toute cette section $(E, \|.\|)$ est un espace vectoriel normé.

4.2.1 Le \mathbb{K} – espace vectoriel $E^{\mathbb{N}}$ des suites à valeurs dans E

4.2.1.1 Definitions

Une suite à valeurs dans E est une application u d'une partie I de \mathbb{N} vers E. On la note $(u_n)_{n\in I}$. Les suites les plus utilisés sont celles pour lesquelles I est de la forme \mathbb{N}_p avec $p\in\mathbb{N}$ où \mathbb{N}_p est l'ensemble des entiers naturels \geq à p.Ces suites se ramènent au cas $I=\mathbb{N}$ et souvent on a $I=\mathbb{N}^*$, on les note donc $(u_n)_{n\geq 0}$ et $(u_n)_{n\geq 1}$ respectivement. Si on note (u_n) c'est que $I=\mathbb{N}$.

L'ensemble de toutes les suites de I vers E est noté E^I

4.2.1.2 Opérations

Si $u=(u_n)$ et $v=(v_n)$ sont deux suites et $\lambda\in\mathbb{K}$ on définit les suite u+v et $\lambda.u$ comme suit :

$$\forall n \in \mathbb{N} \quad (u+v)_n = u_n + v_n \quad \text{et} \quad (\lambda \cdot u)_n = \lambda u_n$$

Proposition 4.2.1. $(E^{\mathbb{N}}, +, .)$ est une \mathbb{K} espace vectoriel

4.2.1.3 Suite bornée

Definition 4.2.1

Un suite (u_n) à valeurs dans E est bornée si l'ensemble de ses valeurs $\{U_n/n \in \mathbb{N}\}$ est une partie bornée de l'espace vectoriel normé E. C'est-à-dire si :

$$(\exists M \in \mathbb{R}_+)(\forall n \in \mathbb{N}) \quad ||u_n|| \le M$$

Exemple. Soit $E = \mathscr{C}([0,1],\mathbb{R})$ l'espace vectoriel des fonctions continue muni de la norme $\|.\|_{\infty}$ et la suite (u_n) tel que :

$$(\forall n \in \mathbb{N})(\forall x \in [0,1]) \quad u_n(x) = nx^n$$

On a : $\|u_n\|_{\infty} = n$ car la fonction $x \mapsto x^n$ est croissante sur [0,1] et sa valeur maximale est atteinte au point 1. On a donc en particulier : $\lim_{n \to +\infty} \|u_n\|_{\infty} = +\infty$, d'où la suite (u_n) n'est pas bornée dans l'espace vectoriel normé $(E, \|.\|_{\infty})$.

Regardons maintenant ce qui se passe pour cette suite dans l'espace vectoriel normé $(E, ||.||_1)$. Calculons pour $n \in \mathbb{N}$:

$$||u_n||_1 = \int_0^1 |u_n(x)| dx = \frac{n}{n+1}$$

Dès lors que :

$$(\forall n \in \mathbb{N}) \quad \|u_n\|_1 \le 1$$

et la suite (u_n) est bornée dans l'espace vectoriel normé $(E, \|.\|_1)$.

Nous remarquons que la notion de 'suite bornée' dépends de la norme utilisée même si on a le même espace vectoriel

4.2.2 Suites convergentes

Definition 4.2.2

Soit (u_n) une suite (u_n) à valeurs dans E et $\ell \in E$. On dit que ℓ est une limite de la suite (u_n) si : la suite réelle $(\|u_n - \ell\|)_n$ est convergente vers 0

On voit que l'on se ramène à l'étude d'une suite réelle, donc on peut utiliser tout ce qu'on sait à propos de ce ca particulier important, notamment si $(u_n) \in E^{\mathbb{N}}$ est une suite tel qu'il existe une suite réelle (α_n) et un vecteur $\ell \in E$, tel que :

$$\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, \quad n \geq n_0 \Rightarrow ||u_n - \ell|| \leq \alpha_n$$

et $\lim_{n \to +\infty} \alpha_n = 0$ alors ℓ est une limite de (u_n) .

Proposition 4.2.2. Si une suite admet une limite ℓ alors elle est unique. On la note $\ell = \lim_{n \to +\infty} u_n$.

Preuve. Si ℓ et ℓ' sont des limites des (u_n) , alors pour tout $n \in \mathbb{N}$, on a :

$$\|\ell' - \ell\| = \|\ell' - u_n + u_n - \ell\|$$

 $\leq \|u_n - \ell'\| + \|u_n - \ell\|$

et comme $\lim_{n \to +\infty} \|u_n - \ell\| = \lim_{n \to +\infty} \|u_n - \ell'\| = 0$, on a $\lim_{n \to +\infty} (\|u_n - \ell'\| + \|u_n - \ell\|) = 0$ et par suite $\ell = \ell'$.

Remarques. O note les remarques suivantes :

- 1. on dit qu'une suite (u_n) est convergente si elle admet une limite $\ell \in E$.
- 2. On dit qu'une suite est divergente si elle n'est pas convergente.
- 3. On peut dire que $\lim_{n \to +\infty} u_n = \ell$ si et seulement si : pour tout voisinage V de ℓ , il existe un entier naturel N tel que : $u_n \in V$ dès que $n \ge N$, ce qu'on exprime comme suit :

$$(\forall V \in \mathscr{V}(\ell))(\exists N \in \mathbb{N})(\forall n \ge N) \quad u_n \in V$$

4. Deux normes équivalentes d'un espace vectoriel normé E ont les même suites convergentes. (On verra que la réciproque est vraie).

Proposition 4.2.3. Si est l'ensemble des suites convergentes à valeurs dans E alors $\mathscr S$ est un sous-espace vectoriel de E, de plus l'application L qui associe à chaque u de $\mathscr S$ sa limite est une application linéaire de $\mathscr S$ vers E

Remarques. 1) En particulier si (u_n) et (v_n) sont deux suites convergentes de limites respectives ℓ et ℓ' et si $\lambda \in \mathbb{K}$ alors la suite somme $(u_n + v_n)$ et la suite (λu_n) sont convergentes et :

$$\lim_{n \to +\infty} (u_n + v_n) = \ell + \ell'$$

et

$$\lim_{n \to +\infty} (\lambda u_n) = \lambda \ell$$

4.2.3 Valeur d'adhérence d'une suite

Definition 4.2.3

On appelle extractrice toute application $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante.

Les exemples les plus utilisés sont $\varphi(n)=2n, \ \psi(n)=2n+1 \ {\rm et} \ \chi(n)=n^2.$

Proposition 4.2.4. Si $\varphi: \mathbb{N} \to \mathbb{N}$ est une extractrice alors on a

$$\forall n \in \mathbb{N}, \quad \varphi(n) \ge n.$$

Preuve. Par récurrence :

- Pour n = 0, on a $\varphi(0) = 0 \in \mathbb{N}$, donc $\varphi(0) \ge 0$.
- Soit $n \in \mathbb{N}$ tel que $\varphi(n) \ge n$, alors comme n+1 > n et φ est strictement croissante, on a $\varphi(n+1) > \varphi(n)$, donc $\varphi(n+1) > n$, donc $\varphi(n+1) \ge n+1$.

Definition 4.2.4

Soit (u_n) une suite à valeurs dans E. On appelle sous-suite ou suite extraite de (u_n) toute suite de la forme $(u_{\varphi(n)})$ où φ est une application strictement croissante de \mathbb{N} vers \mathbb{N} .

Definition 4.2.5

Soit (u_n) une suite à valeurs dans E et $a \in E$. On dit que a est une valeur d'adhérence de la suite (u_n) s'il existe une sous-suite de la suite (u_n) qui converge vers a.

Proposition 4.2.5. a est une valeur d'adhérence de (u_n) si et seulement si :

$$(\forall \varepsilon > 0)(\forall N \in \mathbb{N})(\exists n > N) \quad ||u_n - a|| < \varepsilon$$

Proposition 4.2.6. Soit (u_n) une suite d'un espace vectoriel normé (E, ||.||). Si (u_n) est convergente de limite ℓ , alors toute sous-suite $(u_{\varphi(n)})$ de (u_n) est convergente de limite ℓ .

Preuve. Soit $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, on aie : $n \ge N \Rightarrow \|u_n - \ell\| < \varepsilon$, donc si $n \ge N$, on a $\varphi(n) \ge n$ par la proposition 4.2.4, donc $\|u_{\varphi(n)} - \ell\| < \varepsilon$, et par suite on a prouvé que :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, \quad n \ge N \Rightarrow ||u_{\varphi(n)} - \ell|| < \varepsilon,$$

donc
$$\lim_{n \to +\infty} u_{\varphi(n)} = \ell$$
.

4.2.4 Suite dans un espace normé produit

Proposition 4.2.7. Soient F et G deux espaces vectoriels normés et soit $E = F \times G$ muni de la norme produit. Soit (u_n) une suite à valeurs dans E et posons $u_n = (v_n, w_n)$ pour tout $n \in \mathbb{N}$. Alors la suite (u_n) converge vers $\ell = (\ell_1, \ell_2) \in E$ si et seulement si (v_n) convergent respectivement vers ℓ_1 et ℓ_2

Preuve. $u_n = (v_n, w_n)$. Supposons que (u_n) converge vers $\ell = (\ell, \ell') \in F \times G$. On adopte la norme $\|.\|_{\infty}$. On a :

$$\begin{cases} ||v_n - \ell|| \le ||w_n - \ell||_{\infty} \\ ||u_n - \ell'|| \le ||u_n - \ell||_{\infty} \end{cases}$$

et comme $||u_n - \ell||_{\infty}$ tends vers 0, on a v_n tends vers ℓ et w_n tends vers ℓ' . Réciproquement supposons que (v_n) tends vers ℓ et (w_n) tends vers ℓ' . On adopte la norme $||.||_1$. On a :

$$||u_n - \ell||_1 = ||v_n - \ell|| + ||w_n - \ell'||$$

Le membre de droite est le terme général d'une suite qui converge vers 0 dans \mathbb{R} , donc (u_n) converge vers ℓ .

Remarques. 1. La proposition est valable si $E = E_1 \times ... \times E_n$ avec $n \in \mathbb{N}$ et $n \geq 2$. On a évité le cas général ca on aurait des notations lourdes.

2. On a une application pratique de cette propositions dans le cas de $E = \mathbb{K}^n$

4.2.5 Caractérisation séquentielle de la fermeture et de l'adhérence d'une partie

Proposition 4.2.8. Soit A une partie non vide de E. Alors l'adhérence de A est l'ensemble de toutes les limites possibles de suites convergentes dans E à valeurs dans A

Corollaire 4.2.1. Une partie A de E est fermée si et seulement si pour toute suite (a_n) à valeurs dans A si (a_n) converge vers $\ell \in E$ alors : $\ell \in A$

Corollaire 4.2.2. Soit E un espace vectoriel normé et A et B deux parties de E tel que $A \neq \emptyset$ et $A \subset B$. Alors A est dense dans B si et seulement si pour tout $b \in B$, il existe une suite $(a_n) \in A^{\mathbb{N}}$ tel que $\lim a_n = b$.

4.3 Limites et continuité des fonctions

Dans tout ce qui suit E et F sont deux espaces vectoriels normés dont les normes prennent la même notation $\|.\|$.

4.3.1 Limites

4.3.1.1 Limite d'une application en un point adhérent à une partie

Definition 4.3.1

Soit A une partie non vide de E et $a \in \overline{A}$, c'et-à-dire un point adhérent à A. Soit $\ell \in F$. On dit que ℓ est une limite de l'application f en a si :

$$(\forall \varepsilon > 0)(\exists \eta > 0)(\forall x \in A) \quad ||x - a|| < \eta \Rightarrow ||f(x) - \ell|| < \varepsilon$$

Exemple. • Si $E = F = \mathbb{R}$ muni de la valeur absolue et $A =]x_0 - \alpha, x_0 + \alpha[$ on retrouve la définition de la limite quand x tends vers x_0 avec $x \neq x_0$.

• Si $E = F = \mathbb{R}$ et $A =]x_0, x_0 + \alpha[$ alors on retrouve la définition de la limite de f quand x tends vers x_0 à droite.

Remarque. Si $a \in A$ la seule limite possible d'une application f de A vers F est f(a)

4.3.1.2 Extension de la notion de limite

Definition 4.3.2

Soit A une partie de $\mathbb R$ contenant un intervalle de la forme $[a,+\infty[$ et $\ell\in E.$ on dit que $\lim_{x\to+\infty}f(x)=\ell$ si :

$$(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x > \alpha) \quad ||f(x) - \ell|| < \varepsilon$$

Remarque. On définit de même : $\lim_{x \to -\infty} f(x) = \ell$

4.3.1.3 Caractérisation séquentielle

Proposition 4.3.1. Soit $f: A \to F$ une application, $a \in \overline{A}, \ell \in F$, alors $\lim_a f = \ell$ si et seulement si pour toute suite $(a_n) \in A^{\mathbb{N}}$ tel que $a_n \to a$, on $af(a_n) \to \ell$.

Preuve. Supposons que (\star) $\lim_{\substack{x \to a \\ x \in A}} f(x) = \ell$. Soit $(a_n) \in A^{\mathbb{N}}$ une suite tel que $(\star\star)$ $\lim_{n \to +\infty} a_n = a$. Soit $\varepsilon > 0$, alors par (\star) il existe $\eta > 0$ tel que :

$$\forall x \in A, ||x - a|| < \eta \Rightarrow ||f(x) - \ell|| < \varepsilon$$

Par $(\star\star)$, il existe $N \in \mathbb{N}$ tel que :

$$\forall n \in \mathbb{N}, n \ge N \Rightarrow ||a_n - a|| < \varepsilon$$

On a alors:

$$\forall n \in \mathbb{N}, n \ge N \Rightarrow ||f(a_n) - \ell|| < \varepsilon.$$

donc $\lim_{n \to +\infty} f(a_n) = \ell$.

Réciproquement, supposons qu'on a la négation de $\lim_{\substack{x \to a \\ x \in A}} = \ell$, alors

$$\exists \varepsilon_0 > 0, \forall n \in \mathbb{N}^*, \exists a_n \in A, \quad ||a_n - a|| < \frac{1}{n} \quad \text{et} \quad ||f(a_n) - \ell|| > \varepsilon.$$

On a ainsi construit une suite $(a_n) \in A^{\mathbb{N}}$ tel que $\lim_{n \to +\infty} a_n = a$ mais on n'a pas $\lim_{n \to +\infty} f(a_n) = \ell$.

4.3.1.4 Cas d'un espace produit

Proposition 4.3.2. Soit $(E_i, N_i)_{1 \le i \le n}$ une famille d'espaces vectoriels normés et $E = \prod E_i$ l'espace vectoriels normé produit. Soit $\ell = (\ell_i)_{1 \le i \le n} \in E$ et

$$f:A\to E$$

de composantes $(f_i)_{1 \leq i \leq n}$ une application et $a \in \overline{A}$. Alors

$$\lim_{\substack{x \to a \\ x \in A}} f(x) = \ell \Leftrightarrow \forall i \in [1, n], \lim_{\substack{x \to a \\ x \in A}} f_i(x) = \ell_i$$

4.3.1.5 Opérations sur les limites

Proposition 4.3.3. E et F sont deux espaces vectoriels normés sur le corps \mathbb{K} , A une partie de E et $a \in \overline{A}$. Soient $f: A \to F$ et $g: A \to F$ deux applications de A vers F et $\ell, \ell' \in F$ et $\lambda \in K$. Si $\lim_{x \to a} f = \ell$ et $\lim_{x \to a} g = \ell'$ alors $\lim_{x \to a} (f + \lambda g) = \ell + \lambda \ell'$.

Preuve. Pour tout $x \in A$, on a :

$$(\star) \quad \|(f + \lambda g)(x) - (\ell + \lambda \ell')\| \le \|f(x) - \ell\| + (1 + |\lambda|)\|g(x) - \ell'\|.$$

Soit $\varepsilon > 0$. Comme $\lim_{x \to a} f(x) = \ell$ et $\lim_{x \to a} g(x) = \ell'$, il existe $\eta_1, \eta_2 > 0$ tel que :

$$\forall x \in A, \begin{cases} \|x - a\| < \eta_1 \Rightarrow \|f(x) - \ell\| < \frac{\varepsilon}{2} \\ \|x - a\| < \eta_2 \Rightarrow \|g(x) - \ell'\| < \frac{\varepsilon}{2(1 + |\lambda|)} \end{cases}.$$

Donc si on note $\eta = \min(\eta_1, \eta_2)$, on a en vertu de l'inégalité (\star) ci-dessus, pour tout $x \in A$:

$$||x - a|| < \eta \Rightarrow ||(f + \lambda g)(x) - (\ell + \lambda \ell')|| < \frac{\varepsilon}{2} + (1 + |\lambda|) \frac{\varepsilon}{2(1 + |\lambda|)} = \varepsilon$$

ce qui prouve que $\lim_{x\to a} (f+\lambda g) = \ell + \lambda \ell'$.

4.3.1.6 Limite d'un composé d'applications

Proposition 4.3.4. E, F, G sont des espaces vectoriels normés, $f: A \subset E \to F, g: B \subset F \to G$ des applications tel que $f(A) \subset B$. Soit $a \in \overline{A}$. Si $\lim_{\substack{x \to a \\ x \in A}} f = b$ alors $b \in \overline{B}$. Si alors $\lim_{\substack{x \to b \\ x \in B}} g(x) = c$ alors $\lim_{\substack{x \to b \\ x \in B}} g \circ f = c$.

Preuve. La démonstration comporte deux parties :

• Démontrons tout d'abord que $b \in \overline{B}$, pour cela soit r > 0, prouvons que $B(b,r) \cap B \neq \emptyset$. Comme $\lim_{x \to a} f(x) = b$ et r > 0, il existe $\eta > 0$ tel que pour tout $x \in A$, on ait : (\star) $||x - a|| < \eta \Rightarrow ||f(x) - b|| < r$, et comme $a \in \overline{A}$ et $\eta > 0$, on a $A \cap B(a, \eta) \neq \emptyset$, soit alors $x_0 \in A \cap B(a, \eta)$ alors $x_0 \in A$, donc $f(x_0) \in f(A)$ et comme $f(A) \subset B$, on a $f(x_0) \in B$. Par ailleurs comme $x_0 \in B(a, \eta)$, on a $||x_0 - a|| < \eta$, donc d'après (\star) , on a $||f(x_0) - b|| < r$, donc $f(x_0) = y_0$ réalise $y_0 \in B$ et $y_0 \in B(b, r)$, ce qui démontre que $B \cap B(b, r) \neq \emptyset$.
• Soit $\varepsilon > 0$, comme $\lim_{x \to b} g(x) = \ell$, il existe $\alpha > 0$ tel que $\forall x \in B$, $||x - b|| < \alpha \Rightarrow ||g(x) - \ell| < \varepsilon$, et comme $\alpha > 0$ et $\lim_{x \to a} b$, il existe $\eta > 0$ tel que : $\forall x \in A$, $||x - a|| < \eta \Rightarrow ||f(x) - b| < \alpha$. Donc pour tout $x \in A$, si $||x - a|| < \eta$ alors $f(x) \in B$ et $||f(x) - b|| < \alpha$, par suite $||g(f(x)) - \ell|| < \varepsilon$, donc on a démontré que :

$$\forall \varepsilon > 0, \exists \eta > , \forall x \in A, ||x - a|| < \eta \Rightarrow ||(g \circ f)(x) - \ell| < \varepsilon$$

ce qui démontre que $\lim_{x \to a} (g \circ f)(x) = \ell$

4.3.2 Continuité

Definition 4.3.3

Soit f une application d'une partie A non vide de E vers F et soit $a \in A$.

- 1. On dit que f est continue au point a si $\lim_{x\to a} f(x) = f(a)$.
- 2. On dit que f est continue sur A si f est continue en tout point de A.

Proposition 4.3.5. f est continue au point a si et seulement si pour toute suite $(a_n) \in A^{\mathbb{N}}$ tel que $a_n \to a$, on a $f(a_n) \to f(a)$.

Proposition 4.3.6. Si $f, g: A \to F$ sont continues au point $a \in A$ alors $f + \lambda g$ est continue au point a.

Preuve. Conséquence immédiate de la proposition 4.3.3.

Proposition 4.3.7. $f:A\subset E\to F, g:B\subset F\to G$ tel que $f(A)\subset B$. Soit $a\in A$. Si f est continue au point a et g continue au point f(a) alors $g\circ f$ est continue au point a.

Preuve. Conséquence immédiate de la proposition 4.3.4.

Proposition 4.3.8. Si $f, g: A \to F$ continues et C une partie de A dense dans A, alors si f et g coïncident sur C elles coïncident sur A.

Preuve. Soit $x \in A$. Par densité de C il existe une suite $(c_n) \in C^{\mathbb{N}}$ tel que $\lim_{n \to +\infty} c_n = x$. Par continuité de f et g on a $f(x) = \lim_{n \to +\infty} f(c_n)$ et $g(x) = \lim_{n \to +\infty} g(c_n)$ et comme $c_n \in C$, pour tout n, on a $\forall n \in \mathbb{N}, f(c_n) = g(c_n)$, d'où, $\lim_{n \to +\infty} f(c_n) = \lim_{n \to +\infty} g(c_n)$ et finalement f(x) = g(x). Donc $\forall x \in A, f(x) = g(x)$.

4.3.3 Topologie et continuité

4.3.3.1 Topologie induite

Proposition 4.3.9. Soit A une partie de E.

- 1. On appelle ouvert de la partie A toute partie de la forme $O' = O \cap A$ où O est un ouvert de E.
- 2. On appelle ouvert de A, toute partie F' de A tel qu'il existe une partie fermée F de E tel que $F' = F \cap A$.
- 3. On appelle voisinage, dans A d'un point x de A, toute partie V de A tel qu'il existe un ouvert O de A tel que $x \in O$ et $O \subset V$.

Remarques. On fait les remarques suivantes. Il est recommandé au lecteur de les démontrer :

- 1. Une partie F de A est un fermé de A si et seulement si $A \setminus F$ est un ouvert de A.
- 2. Si \mathscr{O} est l'ensemble des ouverts de E alors $\mathscr{O}' = \{O \cap A/O \in \mathscr{O}\}$ est l'ensemble des ouverts de A. Le couple (A, \mathscr{O}') est un espace topologique (vérifie les trois axiomes de la proposition). sa topologie est appelé topologie induite sur A par celle de E. Notons que A n'est pas forcément un espace vectoriel.
- 3. Soit $x \in A$. Un voisinage de x dans A est une partie V' de E de la forme $V' = V \cap A$, où V est un voisinage de x dans E.

Proposition 4.3.10. Soit f une application d'une partie A de E vers F. Alors f est continue sur A si et seulement si l'image réciproque par f de tout ouvert de F est un ouvert de A.

Preuve. • Supposons que f est continue sur A. Soit O un ouvert de F. Si $O \cap f(A) = \emptyset$ alors $f^{-1}(O) = \emptyset$ est un ouvert de A. Sinon alors $W = f^{-1}(O) \neq \emptyset$. Montrons que W est un ouvert de A. pour cela soit $x \in W$ alors $x \in A$, c'est-à-dire : $f(x) \in O$. Comme O est un ouvert de F, il existe $\varepsilon > 0$ tel que $B(f(x), \varepsilon) \subset O$, et comme f est continue au point x,il existe $\alpha_x > 0$ tel que : $f(B(x, \alpha_x) \cap A) \subset B(f(x), \varepsilon)$. $V = B(x, \alpha_x) \cap A$ est un ouvert de A auquel appartient x et on a $V \subset W$. On a montré que W est voisinage de chacun de ses points, donc un ouvert de A.

• réciproquement , supposons que l'image réciproque de tout ouvert de F est un ouvert de A. Soit $a \in A$, montrons que f est continue au point a. Soit $W = B(f(a), \varepsilon)$ une boule ouverte de centre a ($\varepsilon > 0$). par hypothèse, $f^{-1}(W)$ est un ouvert de A, donc il existe un ouvert O de E tel que $f^{-1}(W) = O \cap A$. En particulier $a \in O$ car $f(a) \in W$, donc il existe $\alpha > 0$ tel que $B(a, \alpha) \subset O$. On a par suite :

$$\forall x \in A \quad ||x - a|| < \alpha \Rightarrow ||f(x) - f(a)|| < \varepsilon$$

Ceci donne la continuité de f au point a.

Proposition 4.3.11. Soit f une application d'une partie A de E vers F. Alors f est continue sur A si et seulement si l'image réciproque par f de tout fermé de F est un fermé de A.

Preuve. On applique la proposition 15 en remarquant que pour toute partie A de F on a : $f^{-1}(F \setminus A) = E \setminus f^{-1}(A)$

Remarques. Voici des conséquences très utiles en pratique des propositions précédentes :

1) Soit A une partie de l'espace vectoriel normé $(E, \|.\|)$ et $f: A \to \mathbb{R}$ une application. Alors:

- 1. $F = \{x \in A/f(x) = 0\}, F_1 = \{x \in A/f(x) \ge 0\}$ et $F_2 = \{x \in A/f(x) \ge 0\}$ sont des fermés de A.
- 2. $O = \{x \in A/f(x) \neq 0\}, O_1 = \{x \in A/f(x) > 0\}$ et $O_2 = \{x \in A/f(x) < 0\}$ sont des ouverts de A.
- 2) Soit A une partie de E est f et g deux applications de A vers E. Alors :
 - 1. $F = \{x \in A/f(x) = g(x)\}$ est un fermé de A
 - 2. $O = \{x \in A/f(x) < g(x)\}$ est un ouvert de A.
 - 3. $\Omega = \{x \in A/f(x) \neq g(x)\}\$ est un ouvert de A.

Preuve. Immédiat car des images réciproques par des fonctions continues de l'une des parties suivante de \mathbb{R} : Soit $\{0\}$ ou $[0, +\infty[$ ou $]-\infty, 0]$ qui sont des fermés de \mathbb{R} . Soit $]-\infty, 0[$ ou $]0, +\infty[$ qui sont des ouverts de \mathbb{R}

4.3.4 Continuité uniforme

Definition 4.3.4

Soit A une partie non vide de E et f une application de A vers F. On dit que f est uniformément continue sur A si :

$$(\forall \varepsilon > 0)(\exists \eta > 0)(\forall (x, y) \in A^2) \quad ||x - y|| < \eta \Rightarrow ||f(x) - f(y)|| < \varepsilon$$

Remarque. Tout application f de A vers F qui est lipschitzienne sur A est uniformément continue sur A

Proposition 4.3.12. Si une application f de A vers F est uniformément continue sur A alors f est continue sur A

4.3.4.1 Exemple

Proposition 4.3.13. Soit $(E, \|.\|)$ un espace vectoriel normé, alors l'application : $\|.\|$ considérée comme application de l'espace vectoriel normé E vers l'espace vectoriel normé \mathbb{R} est une application uniformément continue sur E

Preuve. En effet elle lipschitzienne sur E en vertu de l'inégalité :

$$\forall x, y \in E, \quad |||x|| - ||y||| \le ||x - y||.$$

Proposition 4.3.14. Soit A une partie non vide de E. l'application $x\mapsto d(x,A)$ est uniformément continue sur E.

Preuve. Soit $x, y \in E$. Pour tout $a \in A$, on a $d(x, A) \leq d(x, a)$, et comme

$$d(x, a) \le d(x, y) + d(y, a),$$

il vient : $d(x, A) \leq d(x, y) + d(y, a)$ pour tout $a \in A$. Donc

$$\inf_{a \in A} d(x, A) \le d(x, y) + \inf_{a \in A} d(y, a),$$

ce qui donne

$$d(x, A) \le d(x, y) + d(y, A),$$

donc

$$d(x, A) - d(y, A) \le d(x, y)$$

et par symétrie des rôles on a aussi

$$d(y, A) - d(x, A) \le d(y, x),$$

4.4. COMPACITÉ 23

d'où

$$\forall x, y \in E, \quad |d(x, A) - d(y, A)| \le ||x - y||.$$

Il en découle que l'application $x \mapsto d(x, A)$ est lipschitzienne, donc uniformément continue sur E.

Proposition 4.3.15. E et F sont deux espaces vectoriels normés. Alors :

- 1. Si A est une partie de E et $c \in F$, l'application constante $f_c: A \to F, x \mapsto c$ est uniformément continue, donc continue sur A.
- 2. Si A est une partie de E, pour tout $\alpha \in \mathbb{K}$ et tout $b \in E$, l'application $g_{\alpha,b} : A \to E, x \mapsto \alpha x + b$ est uniformément continue, donc continue sur A.

Preuve. 1. L'application f_c est lipschitzienne, donc elle est continue.

2. Pour tout $x, y \in A$, on a $||g_{\alpha,b}(x) - g_{\alpha,b}(y)|| = ||\alpha(x-y)|| = |\alpha|||x-y||$, donc $g_{\alpha,b}$ est lipschitzienne, donc continue.

Remarque. En particulier, si $(E, \|.\|)$ est un espace vectoriel normé, l'application identique de E, à savoir $\mathrm{Id}_E: E \to E; x \mapsto \mathrm{Id}(x) = x$, est uniformément continue de $(E, \|.\|)$ vers $(E, \|.\|)$. Elle corresponds à $g_{\alpha,b}$ pour $\alpha = 1$ et b = 0.

4.4 Compacité

Dans tout ce qui suit $(E, \|.\|)$ est un espace vectoriel normé.

4.4.1 Définitions et propriétés

Definition 4.4.1

Soit K une partie de E. On dit que K est compacte (ou un compact) si : de toute suite (x_n) à valeurs dans K on peut extraire une suite convergente dont la limite appartient à K

Remarques. Soit K une partie de E, on a les remarques suivantes :

- 1. K est compacte si toute suite à valeurs dans K admet une valeur d'adhérence qui, elle même, appartient à K.
- 2. K est compact si toute suite à valeurs dans K admet aux moins une sous-suite convergente dont la limite appartient à K.
- 3. Ø est un compact par définition.
- 4. Si K est finie alors K est compacte.

Preuve. En effet, si $K = \{a_1, \dots, a_m\}$ avec $m \in \mathbb{N}^*$, soit $(x_n) \in \mathbb{K}^{\mathbb{N}}$ une suite à valeurs dans \mathbb{K} . Si, pour tout $k \in [\![1,m]\!]$, on note $I_k = \{n \in \mathbb{N}/x_n = a_k\}$, alors $\bigcup_{k=1}^m I_k = \mathbb{N}$, donc, il existe au moins $k \in [\![1,m]\!]$ tel que I_k est une partie infinie de \mathbb{N} , il existe une application strictement croissante $\varphi : \mathbb{N} \to \mathbb{N}$ tel que $I_k = \varphi(\mathbb{N})$. La suite $(x_{\varphi(n)})$ est constante de valeur a_k , donc converge vers a_k .

Exemples. Voici quelques exemples de compacts. Les propositions à venir permettent d'en avoir d'autres plus importants.

- 1. Si A est une partie finie d'un espace vectoriel normé E alors A est compacte.
- 2. Dans $(\mathbb{R}, |.|)$, tout segment [a, b] est un compact. En effet toute suite à valeurs dans [a, b] est bornée donc elle admet une sous-suite $(x_{\varphi(n)})$ convergente vers $\ell \in \mathbb{R}$. Comme [a, b] est fermé et que $x_{\varphi(n)} \in [a, b]$ pour tout $n \in \mathbb{N}$, il en découle que $\ell \in [a, b]$.
- 3. Toute union finie de segments de \mathbb{R} est un compact de \mathbb{R} .
- 4. Soit $(x_n) \in E^{\mathbb{N}}$ une suite convergente de limite ℓ dans un espace vectoriel normé E. Si on note $S = \{x_n/n \in \mathbb{N}\}$, l'ensemble des valeurs de la suite (x_n) , alors l'ensemble $K = \{\ell\} \cup S$ est un

compact de E.

Théorème 4.4.1. Tout compact de E est un fermé borné de E

Preuve. Soit K un compact de E.

- Montrons que K est fermé, pour cela, soit (x_n) une suite à valeurs dans K convergente vers $\ell \in E$. Comme K est compact , la suite (x_n) admet une valeur d'adhérence λ avec $\lambda \in K$. Or la suite (x_n) étant convergente vers ℓ , elle admet une unique valeur d'adhérence à savoir ℓ , donc $\ell = \lambda$ et par suite $\ell \in K$. Donc K est fermé.
- $\bullet K$ est bornée, sinon ,on aurait :

$$(\forall n \in \mathbb{N})(\exists x_n \in K) \quad ||x_n|| \ge n$$

On a donc une site (x_n) à valeurs dans K vérifiant $||x_n|| \ge n$ pour tout $n \in \mathbb{N}$. En particulier :

$$\lim_{n \to +\infty} ||x_n|| = +\infty$$

Comme K est compact, il existe une sous-suite $(x_{\varphi(n)})$ de la suite (x_n) convergente vers $\ell \in K$. On a :

$$(\exists N \in \mathbb{N})(\forall n \ge N) \quad ||x_{\varphi(n)} - \ell|| < 1$$

En particulier:

$$(\forall n \ge N) \quad ||x_{\varphi(n)}|| \le ||\ell|| + 1$$

Donc la suite $(x_{\varphi(n)})$ est bornée, ce qui est en contradiction avec le fait que $\lim_{n\to+\infty} ||x_n|| = +\infty$

Proposition 4.4.1. Si K est une partie compacte de E et si A est une partie fermée de K alors A est une partie compacte de E

Preuve. Soit (a_n) une suite à valeurs dans A. Alors $(a_n) \in K^{\mathbb{N}}$, et comme K est compact, elle admet une valeur d'adhérence $a \in K$. Il reste à montrer que $a \in A$. Comme K est un fermé de E, le fermé A de K est aussi un fermé de E. Il existe une sous suite $(a_{\varphi(n)})$ de la suite (a_n) qui converge vers a, donc par fermeture de A, on a : $a \in A$.

Corollaire 4.4.1. Toute intersection de compacts de E est un compact de E

Preuve. Si $(K_i)_{i \in I}$ est une famille de compacts alors les K_i sont fermés , donc leur intersection est un fermé contenu dans un compact K_j pour un certain $j \in I$, donc cette intersection est un compact.

Proposition 4.4.2. E et F sont deux espaces vectoriels normés. Soit K un compact de E et $f: K \to F$ une application continue. Alors f(K) est un compact de F.

Preuve. Soit (y_n) une suite à valeurs dans f(K). Montrons qu'elle admet au moins une valeur d'adhérence appartenant à $f(\mathbb{K})$. Pour tout $n \in \mathbb{N}$, il existe $x_n \in K$ tel que $f(x_n) = y_n$. La suite (x_n) étant à valeurs dans le compact K, elle admet une valeur d'adhérence $\lambda \in K$. Soit donc $(x_{\varphi(n)})$ une sous-suite de (x_n) de limite λ . Par continuité de f, la suite $(f(x_{\varphi(n)}) = (y_{\varphi(n)})$ est convergente vers $f(\lambda)$. Il en résulte que $f(\lambda)$ est une valeur d'adhérence de la suite (y_n) . Comme $\lambda \in K$, on a $f(\lambda) \in f(K)$, ce qui finit la preuve.

Proposition 4.4.3. Soit $(E, \|.\|)$ un espace vectoriel normé et K une partie non vide compacte de E et soit $f: K \to \mathbb{R}$ une application continue , alors f est bornée sur K et atteint ses bornes.

Preuve. D'après la proposition qui précède , f(K) est une parte compacte de \mathbb{R} , elle est donc fermée bornée. Soient m et M ses bornes inférieur et supérieur respectivement. Il existe une suite (x_n) de f(K)

qui converge vers m et par fermeture on a $m \in f(K)$ donc il existe $a \in K$ tel que f(a) = m, par le même raisonnement il existe $b \in K$ tel que f(b) = M.

Proposition 4.4.4. Si E_1 et E_2 sont deux espaces vectoriels normés et si K_1 et K_2 sont deux compacts respectifs de E_1 et E_2 alors $K_1 \times K_2$ est un compact de $E_1 \times E_2$.

Preuve. Soit $(z_n) = ((x_n, y_n))_n$ une suite à valeurs dans $K_1 \times K_2$. Comme K_1 est compact, il existe une sous-suite $(x_{\varphi(n)})$ de la suite (x_n) convergeant vers $\lambda_1 \in K_1$. La suite $(y_{\varphi(n)})_n$ étant à valeurs dans le compact K_2 de F, elle admet une sous-suite $(y_{\varphi(\psi(n))})$ convergeant vers $\lambda_2 \in K_2$. La suite $(x_{\varphi(\psi(n))})_n$ est une sous-suite de $(x_{\varphi(n)})$, donc elle converge vers λ_1 . Il en résulte que si on pose : $\chi = \varphi \circ \psi$ alors la suite $(z_{\chi(n)})_n = ((x_{\varphi(\psi(n))}, x_{\varphi(\psi(n))})_n$ est une sous-suite de (z_n) qui converge vers $\lambda = (\lambda_1, \lambda_2) \in K_1 \times K_2$. Ceci termine la preuve de la proposition.

Remarque. Généralement, pour $n \in \mathbb{N}, n \geq 2$, si $E_1, ..., E_n$ sont des espaces vectoriels normés et si $K_1, ..., K_n$ sont des compacts respectifs de $E_1, ..., E_n$ alors $K = \prod_{k=1}^n K_i$ est un compact de $E = \prod_{k=1}^n E_i$: on peut le prouver par récurrence sur n ou directement en s'inspirant de la preuve pour le cas n=2

Théorème 4.4.2. (de Heine) E et F sont des espaces vectoriels normés. Soit $f: A \to F$ une application. Si A est compacte et f continue sur A alors f est uniformément continue sur A.

Exercice

Soit $(E, \|.\|)$ un espace vectoriel normé et $(u_n) \in E^{\mathbb{N}}$ une suite convergente de limite ℓ . Montrer que $K = \{\ell\} \cup \{u_n/n \in \mathbb{N}\}$ est un compact de E.

4.5 Applications linéaires et multilinéaires continues

4.5.1 Application linéaires continues

Proposition 4.5.1. Soient E et F deux espaces vectoriels normés dont les normes sont notées $\|.\|_E$ et $\|.\|_F$. Soit $f \in \mathcal{L}(E, F)$ une application linéaire de E vers F. Les assertions suivantes sont équivalentes :

- (i) f est continue sur E
- (ii) f est continue en 0_E
- (iii) f est bornée sur la boule fermée unité
- (iv) f bornée sur la sphère unité
- $(\mathbf{v}) \ (\exists k \in \mathbb{R}_+) (\forall x \in E) \quad \|f(x)\|_F \le k \|x\|_E$
- (vi) f est lipschitzienne sur E.

Preuve. (i) \Rightarrow (ii) : clair

(ii) \Rightarrow (i) : Soit $x_0 \in E$ et g définie par $g(x) = f(x) - f(x_0)$ pour tout $x \in E$, alors : $g = f \circ u$ avec $u(x) = x - x_0$ de E vers E. Il est clair que u est continue au point x_0 (translation) et comme f est continue au point $0 = u(x_0)$, alors par composition g est continue au point x_0 , donc : $\lim_{x \to x_0} g(x) = g(x_0) = 0$ donc $\lim_{x \to x_0} f(x) = f(x_0)$.

Conclusion : on a prouvé que : $(i) \Leftrightarrow (ii)$.

(ii) \Rightarrow (iii) : Comme f est continue au point 0_E , on a :

$$(\exists \alpha > 0)(\forall x \in E) \quad ||x||_E < \alpha \Rightarrow ||f(x)||_F < 1$$

Soit $x \in B_f(0,1)$ alors $\left\|\frac{\alpha}{2}x\right\| = \frac{\alpha}{2} < \alpha$ donc $\|f(x)\|_F < \frac{2}{\alpha}$

- $(iii) \Rightarrow (iv) : clair$.
- $(\mathbf{v}) \Rightarrow (\mathbf{v}\mathbf{i}) : \mathrm{Si}\ x, y \in E\ \mathrm{alors} : \|f(x) f(y)\|_F = \|f(x y)\|_F \le k \, \|x y\|_E\ \mathrm{donc}\ f\ \mathrm{est}\ k \mathrm{lipschitzienne}.$

$$(vi) \Rightarrow (i) : clair.$$

Proposition 4.5.2. Soient E et F deux espaces vectoriels normés (avec E non nul) et soit $\mathcal{L}_c(E, F)$ le sousensemble de $\mathcal{L}(E, F)$ des applications linéaires continues de E vers F. Alors $\mathcal{L}_c(E, F)$ est un sous-espace vectoriel de $\mathcal{L}(E, F)$.

4.5.2 Normes subordonnées

Proposition 4.5.3. Soient $(E, ||.||_E)$ et $(F, ||.||_F)$ deux espaces vectoriels normés non nuls. Soit $u \in \mathcal{L}(E, F)$ et on définit les partie de \mathbb{R}_+ suivantes :

- $I_1 = \{ \frac{\|u(x)\|_F}{\|x\|_E} / x \in E \setminus \{0_E\} \}.$
- $I_2 = \{ \|\ddot{u}(x)\|/x \in E \text{ et } \|x\|_E = 1 \}.$
- $I_3 = \{ \|u(x)\|/x \in E \text{ et } \|x\|_E \le 1 \}.$
- $I_4 = \{c \in \mathbb{R}_+^* / \forall x \in E, ||u(x)||_F \le c||x||_E\}.$

Alors $I_1 = I_2 \subset I_3$ et les assertions suivantes sont équivalentes :

- 1. u est continue.
- 2. I_1 est majorée.
- 3. I_2 est majorée.
- 4. I_3 est majorée.
- 5. $I_4 \neq \emptyset$.

Si l'une des assertions est vraie alors :

- 1. $\sup(I_1) = \sup(I_2) = \sup(I_3) = \inf(I_4)$. On note alors ||u|| la valeur commune de ces réels.
- 2. L'application $\mathcal{L}_c(E,F) \to \mathbb{R}_+, u \mapsto ||u||$ est une norme sur $\mathcal{L}_c(E,F)$.

Preuve. • On a $I_2 \subset I_1$ car si $t \in I_2$, il existe $x \in E$ tel que ||x|| = 1 et t = ||u(x)||, et puisque ||x|| = 1, on a $t = \frac{||x||}{||x||}$, donc $t \in I_1$.

- On a $I_1 \subset I_2$ car si $t \in I_1$, alors t s'écrit $t = \frac{\|u(x)\|_F}{\|x\|_E}$, en posant $x' = \frac{x}{\|x\|_E}$, on a $t = \|u(x')\|$ et $\|x'\| = 1$, donc $t \in I_2$.
- On a $I_2 \subset I_3$, car si $t \in I_2$, il existe $x \in E$ tel que ||x|| = 1 et t = ||u(x)||, et puisque ||x|| = 1, on a $||x|| \le 1$, donc $t \in I_3$.
- On a donc prouvé que $I_1 = I_2 \subset I_3$.
- \bullet Si I_3 est majorée alors $I_2,$ donc I_1 aussi sont majorées.
- Inversement si I_1 est majorée, soit c un majorant de I_1 , soit $t \in I_3$, supposons que t > 0, alors il existe $x \in E$ tel que $0 < \|x\| \le 1$ et $t = \|u(x)\|$, alors $t = \frac{\|u(x)\|}{\|x\|} \cdot \|x\| \le c\|x\| \le c$.
- \bullet On a donc prouvé que $I_1=I_2$ et I_1 majorée si et seulement si I_3 majorée.
- Si I_1 est majorée, et c est un majorant de I_1 alors $c \in I_4$ donc $I_4 \neq \emptyset$.
- Si $I_4 \neq \emptyset$ et $c \in I_4$ alors c est un majorant de I_1 .
- Si u est continue, il existe c>0 tel que $\forall x\in E, \|u(x)\|_F\leq c\|x\|_E$, comme E est non nul, il existe $x\in E$ tel que $x\in E$, posons $x_1=\frac{x}{\|x\|_E}$ alors $\|u(x_1)\|\in I_k$ pour tout $k\in\{1,2,3\}$, donc $I_k\neq\emptyset$ pour tout $k\in\{1,2,3\}$. De plus, il est aisé de voir c est un majorant de I_k , donc $\sup(I_k)$ existe pour tout $k\in\{1,2,3\}$. Par ailleurs, on a $c\in I_4$, donc $I_4\neq\emptyset$.
- Réciproquement si I_1 est majorée, soit c un majorant de I_1 alors pour tout $x \in E \setminus \{0_E\}$ on a $||u(x)||_F \le c||x||_E$, vraie aussi pour $x = 0_E$, donc $\forall x \in E, ||u(x)||_F \le c||x||_E$, et u est continue.
- Supposons maintenant que I_1 est majorée, comme $I_1 = I_2 \subset I_3$, on a $\sup(I_1) = \sup(I_2) \leq \sup(I_3)$, or si $t \in I_3$ alors t = ||u(x)|| avec $||x|| \leq 1$, si $t \neq 0$ alors $t = ||u(x)|| = \leq \frac{||u(x)||}{||x||} \leq \sup(I_1)$, inégalité vrai même si t = 0, donc pour tout $t \in I_3$, donc $\sup(I_3) \leq \sup(I_1)$ et finalement $\sup(I_1) = \sup(I_2) = \sup(I_3)$ et par définition de la borne supérieur on a aussi $\sup(I_1) = \inf(I_4)$.
- Pour tout $u \in \mathcal{L}_c(u)$ posons $|||u||| = \sup_{\|x\|=1} ||u(x)||$. Démontrons qu'il s'agit d'une norme sur $\mathcal{L}(E)$.
- Inégalité triangulaire : Soit $u, v \in \mathcal{L}_c(E, F)$ alors pour tout $x \in S(0, 1)$ on a $||(u + v)(x)|| \le ||u(x)|| + ||v(x)|| \le ||u|| + ||v||$, par passage à la borne supérieure on a $||u + v|| \le ||u|| + ||v||$.
- **Homogénéité**: Soit $u \in \mathcal{L}_c(E, F)$ et $\lambda \in \mathbb{K}$, alors pour tout $x \in S(0, 1)$, on a $\|(\lambda u)(x)\| = \|\lambda\| \|u(x)\| = \|\lambda\| \|u\|$, donc $\|\lambda u\| = \sup_{x \in S(0, 1)} (|\lambda| \|u\|) = |\lambda| \sup_{x \in S(0, 1)} = |\lambda| \|u\|$.

- Séparation : Soit $u \in \mathcal{L}_n(E)$ tel que ||u|| = 0, donc $\forall x \in E \setminus \{0\}, ||u(x)|| \le ||u|| ||x|| = 0$, donc u(x) = 0, vraie aussi si x = 0, donc u = 0.

Proposition 4.5.4. Soient E F et G trois espaces vectoriels non nuls. Alors :

- $\forall u \in \mathcal{L}_c(E, F), \forall x \in E, ||u(x)|| \le ||u|| . ||x||.$
- $\forall u \in \mathcal{L}_c(E, F), \forall v \in \mathcal{L}_c(F, G), ||v \circ u|| \leq ||v|| . ||u||$
- Si Id_E est l'application identique de E alors $||\mathrm{Id}_E||=1$.

Preuve. - Comme $|||u||| = \sup_{x \in E \setminus \{0\}} \frac{||u(x)||}{||x||}$, alors pour tout $x \in E \setminus \{0\}$, on a :

$$\frac{\|u(x)\|}{\|x\|} \leq |\!|\!| u |\!|\!|\!| \,,$$

donc $||u(x)|| \le |||u|| ||x||$, vraie aussi pour x = 0, donc pour tout $x \in E$.

- Soit $x \in E$, alors $||(u \circ v)(x)|| = ||u(v(x))|| \le ||u|| ||v(x)|| \le ||u|| ||v|| ||x||$, donc par définition de $||u \circ v||$, on a $||u \circ v|| \le ||u|| ||v||$.
- Pour tout $x \in E \setminus \{0\}$, on a $\frac{\|\operatorname{Id}_E(x)\|}{\|x\|} = 1$, donc $\sup(I_1) = 1$, donc $\|\operatorname{Id}_E\| = 1$.

4.5.3 Application multilinéaires continues

Proposition 4.5.5. Soient $(E_1, ||.||_1), \dots, (E_m, ||.||_m)$ et (F, ||.||) des espaces vectoriels normés et $E = \prod_{k=1}^m E_k$ l'espace vectoriel normé produit des E_k . Soit $f: E \to F$ une application m-linéaire. Les assertions suivantes sont équivalentes :

- (i) f est continue sur E
- (v) $(\exists k \in \mathbb{R}_+)(\forall (x_1, \dots, x_m) \in E) \quad ||f(x_1, \dots, x_m)|| \le k ||x_1||_1 \dots ||x_m||_m$

Exemples. Les exemples suivants sont à retenir :

1. Soit $(E, \langle . \rangle)$ un espace préhilbertien réel. On verra que l'application $\|.\|: E \to \mathbb{R}_+, x \mapsto \|x\| = \sqrt{\langle x, x \rangle}$ est une norme sur E, appelée la norme associée au produit scalaire de E. L'application $E^2 \to \mathbb{R}, (x, y) \mapsto \langle x, y \rangle$ est continue, car on verra que l'inégalité de Cauchy-Schwarz donne :

$$\forall (x,y) \in E^2, \quad |\langle x,y \rangle| \le ||x|| ||y||$$

2. Soit E un \mathbb{K} -espace vectoriel de dimension n avec $n \in \mathbb{N}^*$. Soit $b = (b_k)_{1 \le k \le n}$ une base de E, et pour tout $x = \sum_{k=1}^{n} x_k b_k$, on note $||x||_b = \sup_{1 \le k \le n} |x_k|$. On sait que $||.||_b$ est une norme sur E. L'application:

$$f: E^n \to \mathbb{K}, (V_1, \dots, V_n) \mapsto \det_b(V_1, \dots, V_n)$$

est continue car multilinéaire et comme pour tout $V=(V_j)_{1\leq j\leq n}$, si on pose $V_j=\sum_{i=1}^n a_{i,j}b_i$, on sait

que
$$f(V) = \sum_{\sigma \in \mathscr{S}_n} \varepsilon(\sigma) \prod_{j=1}^n a_{\sigma(j),j}$$
, de sorte que :

$$|f(V)| \leq \left| \sum_{\sigma \in \mathscr{S}_n} \varepsilon(\sigma) \prod_{j=1}^n a_{\sigma(j),j} \right|$$

$$\leq \sum_{\sigma \in \mathscr{S}_n} \left| \varepsilon(\sigma) \prod_{j=1}^n a_{\sigma(j),j} \right|$$

$$\leq \sum_{\sigma \in \mathscr{S}_n} \prod_{j=1}^n \left| a_{\sigma(j),j} \right|$$

$$\leq \sum_{\sigma \in \mathscr{S}_n} \prod_{j=1}^n \sup_{1 \leq k,\ell \leq n} |a_{k,\ell}|$$

$$= n! \prod_{k=1}^n ||V_k||.$$

donc, en vertu de la proposition 4.5.5, f est continue.

3. Si E est un espace euclidien orienté de dimension n avec $n \geq 3$, le produit vectoriel permet de définir l'application

$$g: E^{n-1} \to E, V = (V_1, \dots, V_{n-1}) \mapsto g(V) = V_1 \land \dots \land V_{n-1}$$

qui est (n-1)-linéaire et vérifie $|g(V)| \leq \prod_{j=1}^{n} ||V_j||$, donc elle est continue en vertu de la proposition 4.5.5.

On considéré des espaces vectoriels normés E, F_1, \ldots, F_n et G et soit Φ une application n linéaire de $F = \prod_{k=1}^n F_k$ vers G. Soit A une partie de E et pour tout $k \in [1, n]$, on considère une application $f_k : A \to F_k$. On note $f = \Phi(f_1, \ldots, f_n)$, l'application de A vers G tel que :

$$\forall x \in A, \quad f(x) = \Phi(f_1, \dots, f_n)(x) = \Phi(f_1(x), \dots, f_n(x))$$

Proposition 4.5.6. Avec les notations ci-dessus, si Φ est continue sur F alors :

- 1. Si les applications f_k sont continues en un point a de A alors $\Phi(f_1,\ldots,f_n)$ est continue au point a.
- 2. Si les applications f_k sont continues sur A alors $\Phi(f_1,\ldots,f_n)$ est continue sur A.

Preuve. On donne la preuve pour n = 2. Pour tout $x \in A$, on a :

$$f(x) - f(a) = \Phi(f_1(x), f_2(x)) - \Phi(f_1(a), f_2(a))$$

= $\Phi(f_1(x) - f_1(a), f_2(x)) + \Phi(f_1(a), f_2(a) - f_2(x))$

donc:

$$||f(x) - f(a)||_G \le ||\Phi(f_1(x) - f_1(a), f_2(x))||_G + ||\Phi(f_1(a), f_2(a) - f_2(x))||_G$$

Par continuité de Φ , il existe une constante k > 0 tel que

$$\forall (y_1, y_2) \in F_1 \times F_2, \|\Phi(y_1, y_2)\|_G \le k \|y_1\|_{F_1} \|y_2\|_{F_2}$$

Il en découle que :

$$||f(x) - f(a)||_G \le k||f_1(x) - f_1(a)||_{F_1}||f_2(x)||_{F_2} + k||f_1(a)||_{F_1}||f_2(x) - f_2(a)||_{F_2}.$$

Comme f_1 et f_2 sont continues au point a, on a :

$$\lim_{x \to a} (k \|f_1(x) - f_1(a)\|_{F_1} \|f_2(x)\|_{F_2} + k \|f_1(a)\|_{F_1} \|f_2(x) - f_2(a)\|_{F_2}) = 0.$$

donc

$$\lim_{x \to a} f(x) = f(a),$$

et f est continue au point a.

4.6 Espaces vectoriels normés de dimension finies

4.6.1 Les compacts de $(\mathbb{K}^n, \|.\|_{\infty})$

Notons que les trois normes usuelles de \mathbb{K}^n sont équivalentes par suite les compacts de \mathbb{K}^n sont les mêmes pour ces normes. On verra par la suite qu'en fait toutes les normes de \mathbb{K}^n sont équivalentes et que les compacts sont le fermés bornés.

Proposition 4.6.1. On a ce qui suit :

- 1. Tout segment [a, b] de \mathbb{R} est un compact de \mathbb{R} .
- 2. Si [a,b] et [c,d] sont des segments de \mathbb{R} alors le pavé K=[a,b]+i[c,d] est un compact de \mathbb{C} .
- 3. Si $r \in \mathbb{R}_+^*$, alors le disque fermé $\Delta_r = \{z \in \mathbb{C}/|z| \le r\}$ est un compact de \mathbb{C} .

Preuve. 1. Si (u_n) est une suite à valeurs dans [a,b], elle est bornée, donc par le théorème de Bolzano-Weierstrass, il existe une sous-suite $(u_{\varphi(n)})$ de (u_n) tel que $\lim_{n\to+\infty}u_{\varphi(n)}=\ell$ avec $\ell\in\mathbb{R}$, et comme [a,b] est fermé et $u_{\varphi(n)}$ est à valeurs dans [a,b], on a $\ell\in[a,b]$.

- 2. L'application $g:(x,y)\mapsto x+yi$ est continue de \mathbb{R}^2 vers \mathbb{C} , et comme [a,b] et [c,d] sont des compacts de \mathbb{R} , le produit $[a,b]\times[c,d]$ est un compact de \mathbb{R}^2 , donc $g([a,b]\times[c,d])=[a,b]+i[c,d]$ est un compact de \mathbb{C} .
- 3. Si $\mathbb{K} = \mathbb{R}$ alors $B_f(0,r) = \prod_{k=1}^n \Delta_r$ où $\Delta_r = [-r,r]$, et comme [-r,r] est un compact de \mathbb{R} , on a la résultat désiré.

Si $\mathbb{K} = \mathbb{C}$ $\Delta_r = \{z \in \mathbb{C}/|z| \leq r\}$ et on remarque que $\Delta_r \subset K_r$ où $K_r = [-r, r] + i[-r, r]$, or K_r est un compact de \mathbb{C} d'après le point ci-dessus, et comme Δ_r est un fermé contenu dans le compact K_r , on déduit que Δ_r est compact.

Proposition 4.6.2. On considère l'espace vectoriel normé $(\mathbb{K}^n, \|.\|_{\infty})$, alors :

1. Pour tout r > 0, la boule fermée

$$B_f(0,r) = \{x \in \mathbb{K}^n / ||x||_{\infty} \le r\}$$

est un compact de $(\mathbb{K}^n, \|.\|_{\infty})$.

2. Les compacts de $(\mathbb{K}^n, \|.\|_{\infty})$ sont les fermés bornés.

Preuve. On va démontrer deux choses :

• Première : $B_f(0,r)$ est un compact de \mathbb{K}^n : On remarque que si $x=(x_k)\in\mathbb{K}^n$ alors :

$$x \in B_f(0,r) \quad \Leftrightarrow \quad ||x||_{\infty} \le r$$

$$\Leftrightarrow \quad \forall k \in [1,n], |x_k| \le r$$

$$\Leftrightarrow \quad x \in \prod_{k=1}^n \Delta_r$$

et comme Δ_r est compact, le produit des Δ_r est compact, donc $B_f(0,r)$ est comapcte.

• Deuxième : lex compacts sont les fermés bornés : On a déjà vu que tout compact est fermé borné. Réciproquent si A est une partie fermée bornée, il existe R > 0 tel que $A \subset B_f(0,R)$ et comme on vient de voir que $B_f(0,R)$ est compact et A fermé contenu dans un compact, on a A est compat.

Corollaire 4.6.1. Soit E un espace vectoriel de dimension n avec $n \ge 1$ et $e = (e_1, \dots, e_n)$ une base de E et

 $\|.\|_e$ la norme de E définie par $\|x\|_e = \sup_{1 \le i \le n} |x_i|$, pour tout $x \in E$ tel que $x = \sum_{i=1}^n x_i e_i$. Alors dans l'espace vectoriel normé $(E, \|.\|_e)$, une partie A est compacte si et seulement si A est fermé et A est bornée.

Preuve. Soit $\Phi: \mathbb{K}^n \to E; X = (x_i) \mapsto x = \sum_{i=1}^n x_i e_i$ alors Φ est un isomorphisme dont la réciproque est $\Psi: E \to \mathbb{K}^n; x = \sum_{i=1}^n x_i e_i \mapsto X = (x_i)$. L'application Φ est continue de $(\mathbb{K}^n, \|.\|_{\infty})$ et Ψ est continue de $(E, \|.\|_e)$ vers $(\mathbb{K}^n, \|.\|_{\infty})$ car pour tout $x \in E$, on a de façon claire $\|\Phi(X)\|_e = \|X\|_{\infty}$ pour tout $x \in E$, on a $\|\Psi(x)\|_{\infty} = \|x\|_e$, et par suite, une partie A de E est fermée si et seulement si $\Psi(A)$ est un fermé de \mathbb{K}^n et A est bornée de E si et seulement si $\Psi(A)$ est un compact de $(\mathbb{K}^n, \|.\|_{\infty})$ si et seulement si $\Psi(A)$ est un fermé borné de \mathbb{K}^n si et seulement si A est un fermé borné de E.

4.6.2 Equivalence des normes en dimension finie

Théorème 4.6.1. Soit E un espace vectoriel de dimension finie, alors toutes les normes de E sont équivalentes.

Preuve. Si $E = \{0\}$, il n'y a qu'une seule norme. Sinon, notons n la dimension de E et soit $\mathscr{B} = (e_1, ..., e_n)$ une base de E. Pour tout $x \in E$ posons : $||x|| = \sup_{1 \le i \le n} |x_i|$ et soit N une norme quelconque sur E. Alors

pour tout $x = \sum_{k=1}^{n} x_i e_i \in E$, on a:

$$N(x) \le \sum_{k=1}^{n} |x_k| N(e_k) \le k ||x||$$

οù

$$k = \sup_{1 \le k \le n} N(e_k)$$

Soit S la sphère unité de $(E, \|.\|)$. Alors S est compacte de E d'après le corollaire 4.6.1 ci-dessus. N comme application de $(E, \|.\|)$ vers \mathbb{R} est continue car lipshitzienne car si $(x, y) \in E^2$, alors :

$$|N(x) - N(y)| \le N(x - y) \le k ||x - y||$$

Alors elle est bornée sur S et atteint sa borne inférieur m. Comme N(x)>0 pour tout $x\in S$, on a : m>0. Soit $x\in E\backslash\{0\}$ alors : $\frac{x}{\|x\|}\in S$ et par suite $\mathbb{N}\left(\frac{x}{\|x\|}\right)\geq m$, ce qui donne : $N(x)\geq m\,\|x\|$, inégalité valable aussi si x=0. Ainsi :

$$\forall x \in E \quad m \|x\| \le N(x) \le k \|x\|$$

Il en résulte que toute norme N sur E est équivalente à la norme $\|.\|$, donc toutes les normes sur E sont équivalentes.

4.6.3 Compacité en dimension finie

4.6.3.1 Une note sur les normes équivalentes

Soit E un espace vectoriel et $\|.\|$ et $\|.\|'$ deux normes de E. On dit que $\|.\|$ est plus fine que $\|.\|'$ s'il existe une constante k > 0 tel que :

$$\|.\|' \le k \|.\|$$

On peut donc dire que $\|.\|$ est plus fine que $\|.\|'$ si l'application

$$\mathrm{Id}_E: (E, \|.\|) \to (E, \|.\|'); x \mapsto x$$

est continue.

• On rappelle que $\|.\|$ et $\|.\|'$ sont équivalents s'il existe deux constantes k_1 et k_2 strictement positives tel que :

$$k_1 \|.\| \le \|.\|' \le k_2 \|.\|$$

Ainsi deux normes sont équivalentes si chacune d'elles est plus fine que l'autre. On peut donc dire que $\|.\|$ et $\|.\|'$ sont équivalentes si l'application :

$$\mathrm{Id}_E: (E, \|.\|) \to (E, \|.\|'); x \mapsto x$$

est bicontinue.

- Si deux normes sont équivalentes alors elles ont :
 - 1. Les mêmes suites convergentes.
 - 2. Les mêmes parties fermées.
 - 3. Les mêmes parties ouvertes.
 - 4. Les mêmes parties bornées.
 - 5. Les mêmes parties compactes.
 - 6. La même adhérence pour chaque partie A de E.

4.6.3.2 Compacité en dimension finie

Proposition 4.6.3. soit $(E, \|.\|)$ un $\mathbb{K}-$ espace vectoriel normé de dimension finie. Alors une partie K de E est compacte si et seulement si K est fermée bornée.

Preuve. Supposons que E est de dimension non nulle n soit $\mathscr{B}=(e_1,\cdots,e_n)$ une base de E et munissons E de la norme $\nu(x)=\sup_{1\leq i\leq n}|x_i|$ pour $x=\sum_{i=1}^nx_ie_i$. Pour tout R>0, on note $B_{\nu,R}$ la boule fermée de centre 0 et de rayon R. Soit K une partie de E. Si K est compacte on a déjà vu que K est fermée bornée. Si K est fermée bornée, il existe K>0 tel que $K\subset B_{\nu,R}$. Soit $\varphi:\mathbb{K}^n\to E; X\mapsto \varphi(X)=\sum_{i=1}^nx_ie_i$, pour tout $K=(x_i)_{1\leq i\leq n}\in\mathbb{K}^n$. Alors φ est linéaire et réalise $\nu(\varphi(x))=\|x\|_{\infty}$ pour tout $(x_i)\in K^n$, par suite φ est continue. La boule fermée B(0,R) de \mathbb{K}^n est compacte par la proposition ci-dessus, donc $\varphi(B(0,R))=B_{\nu,R}$ est un compact de E, or K est un fermé contenu dans $B_{\nu,R}$ donc K est compact.

Proposition 4.6.4. Soit E un espace vectoriel normé de dimension finie, alors toute suite bornée d'éléments de E admet au moins une valeur d'adhérence.

Preuve. Si (u_n) est une suite bornée il existe $R \geq 0$ tel que $\forall n \in \mathbb{N}, \|u_n\| \leq R$. Alors $(u_n) \in B^{\mathbb{N}}$, où B est la boule fermée de centre 0 et de rayon R, laquelle est fermée bornée donc compacte puisque E est de dimension finie. Il en découle que (u_n) admet au moins une valeur d'adhérence α appartenant à B.

4.6.4 Applications linéaires et multiplinéaires continues en dimension finie

4.6.4.1 Applications linéaires

Proposition 4.6.5. Si E et F sont deux $(E, \|.\|)$ et si en plus E est de dimension finie alors $\mathcal{L}(E, F) = \mathcal{L}_c(E, F)$: Toute application linéaire de E vers F est continue.

Preuve. Si $E = \{0\}$ c'est trivial Sinon, soit $\mathcal{B} = (e_1, ..., e_n)$ une base de E. Si $x = \sum_{k=1}^n x_k e_k$ alors :

$$||f(x)|| \le \left(\sup_{1 \le k \le n} |x_k|\right) \sum_{k=1}^n ||f(e_k)||$$

Comme en dimension finie toutes les normes sont équivalentes et que $\|.\|_{\infty}: x \mapsto \sup_{1 \le k \le n} |x_k|$ est une norme sur E, il existe k > 0 tel que $\|.\|_{\infty} \le k \|.\|$ de sorte que :

$$\forall x \in E \quad ||f(x)|| \le k' ||x||$$

avec
$$k' = k \sum_{k=1}^{n} ||f(e_k)||$$

4.6.4.2 Normes subordonnée

Il découle de ce qui précède que si E et F sont deux espaces vectoriels normés tel que E est de dimension finie alors la norme subordonnées de toute application linéaire $u \in \mathcal{L}(E,F)$ existe. C'est le cas notamment si E et F sont tous de dimensions finies. Précisément si $\dim(E) = p$ et $\dim(F) = n$, on peut dire que pour toute application linéaire $u \in \mathcal{L}(E,F)$, on a $\|u\| = \sup_{x \in E \setminus \{0\}} \frac{\|u(x)\|}{\|x\|}$ existe et que si $\mathscr{E} = (e_j)_{1 \le j \le p}$ et $\mathscr{F} = (f_i)_{1 \le i \le n}$ sont des bases respectives de E et F et $M = \max_{\mathscr{E},\mathscr{F}}(u)$ alors $\|u\| = \sup_{X \in \mathbb{K}^p \setminus \{0\}} \frac{\|MX\|}{\|X\|}$ avec pour tout $X = (x_j)_{1 \le j \le p}$ on a noté $\|X\| = \|x\|$ avec $x = \sum_{j=1}^p x_j e_j$ et pour tout pour tout $Y = (y_i)_{1 \le i \le n}$ on a noté $\|Y\| = \|y\|$ avec $y = \sum_{j=1}^p y_j f_j$.

Ceci nous pousse à examiner la version matricielle du résultat sous forme de la proposition suivante :

Proposition 4.6.6. Soit $n, p \in \mathbb{N}^*$ alors pour toute matrice $M \in \mathcal{M}_{n,p}(\mathbb{K})$, la quantité

$$||M|| = \sup_{X \in \mathbb{K}^n \setminus \{0\}} \frac{||MX||}{||X||}$$

existe et elle définit une norme sur $\mathcal{M}_{n,p}(\mathbb{K})$. De plus on a

$$|\!|\!| M |\!|\!| = \sup_{\|X\|=1} \|MX\| = \sup_{\|X\| \le 1} \|MX\|$$

Preuve. C'est une conséquence immédiate de la proposition 4.5.3, compte tenu du fait que ||M|| = ||u|| où u est l'application linéairement associée à M.

Exercice 4.6.1. Calculer la norme subordonnée de
$$A=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 pour $\|.\|_{\infty}$.

Solution:

Soit $X = (x_1, x_2)^{\top} \in \mathbb{R}^2$, alors AX = Y avec $Y = (x_1 + 2x_2, 3x_1 + 4x_2)^{\top}$. Il en découle que $||AX||_{\infty} \le \sup(3||X||_{\infty}, 7||X||_{\infty}) \le 7||X||_{\infty}$, donc pour tout $X \ne 0$ on a $\frac{||AX||_{\infty}}{||AX||_{\infty}} \le 7$, or c'est atteint pour $X = (1, 1)^{\top}$, donc $|||A||_{\infty} = 7$.

4.6.4.3 Applications multilinéaires

Proposition 4.6.7. Si E_1, \ldots, E_m sont des espaces vectoriels normés de dimensions finies avec $m \geq 2$ et si $E = \prod_{k=1}^m E_k$ et $(F, \|.\|)$ un espace vectoriel normé de dimension quelconque (finie ou infinie) alors toutes application m-linéaire de E vers F est continue.

Remarques. On fait les remarques suivantes sur la proposition :

- 1. E est l'espace vectoriel normé produit des E_k , mais la conclusion reste vraie même si on munit E d'une autre norme.
- 2. Il n'est pas nécessaire d'avoir F de dimension finie, mais dans le cas de dimension infinie il faut préciser sa norme. La continuité a lieu pour toute norme de F.

4.6.4.4 Conséquence : Continuité des applications polynomiales

Definition 4.6.1

Soit $m \in \mathbb{N}^*$. On appelle fonction polynomiale de \mathbb{K}^n vers \mathbb{K} toute application $f : \mathbb{K}^n \to \mathbb{K}$ tel qu'il existe une partie finie non vide J de \mathbb{N}^m et une famille $(a_{\alpha})_{\alpha \in J} \in \mathbb{K}^J$ tel que si pour tout $\alpha \in J$, on pose $\alpha = (\alpha_k)_{1 \le k \le m}$ on aie :

$$\forall x = (x_k)_{1 \le k \le m} \in \mathbb{K}^m, f(x) = \sum_{\alpha \in J} a_\alpha \prod_{k=1}^m x_k^{\lambda_k}$$

Les notations de la définition 4.6.4.4 ci-dessus sont conservées, on a la proposition suivante :

Proposition 4.6.8. Si on note π_k l'application :

$$\pi_k : \mathbb{K}^m \to \mathbb{K}; x = (x_k)_{1 \le k \le m} \mapsto \pi_k(x) = x_k$$

alors:

$$f = \sum_{\alpha \in I} a_{\alpha} \prod_{k=1}^{m} \pi_{k}^{\alpha_{k}}$$

Preuve. C'est immédiat puisque pour tout $x \in \mathbb{K}$ et tout $k \in [1, m]$, on a :

$$\pi_k(x) = x_k$$

Proposition 4.6.9. Soit $m \in \mathbb{N}^*$ et A une partie de \mathbb{K}^m . Si $f : A \to \mathbb{K}$ est la restriction à A d'une application polynomiale de \mathbb{K}^m vers \mathbb{K} alors f est continue sur A.

Preuve. Les applications π_k sont linéaires et \mathbb{K}^m de dimension finie donc elles sont continues sur \mathbb{K}^m . Pour tout $p \in \mathbb{N}^*$ l'application : $V_p : \mathbb{K} \to \mathbb{K}; t \mapsto t^p$ est continue et finalement l'application : $W : \mathbb{K}^m \to \mathbb{K}; x \mapsto \prod_{k=1}^m x_k$ est continue car m-linéaire et \mathbb{K} de dimension finie. On a :

$$\forall x = (x_k)_{1 \le k \le m} \in \mathbb{K}^m, f(x) = \sum_{\alpha \in I} a_\alpha W((V_{\alpha_k}(\pi_k(x)))_{1 \le k \le m})$$

d'où la continuité de f.

4.6.4.5 Exemples à connaître

- 1. L'application $\det : \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}; X \mapsto \det(X)$ est continues car polynomiale en les coefficients x_{ij} de la matrice X.
- 2. L'application $\chi: \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}_n[X]; M \mapsto \chi_M$ est continues car ses composantes dans la base canonique $(X^k)_{0 \le k \le n}$ de $\mathbb{K}_n[X]$ sont des fonctions polynomiales en les coefficients m_{ij} de la matrice M.
- 3. L'application $\gamma: \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K}); M \mapsto \operatorname{Com}(A)$ où $\operatorname{Com}(A)$ est la comatrice de A est continue car si on note $\gamma_{ij}, 1 \leq i, j \leq n$ ses composantes dans la base canonique $(E_{ij})_{1 \leq i, j \leq n}$ sont définies par :

$$\gamma_{ij}(M) = (-1)^{i+j} \det(M_{ij})$$

où M_{ij} est la matrice obtenue en barrant la ligne i et la colonne j de M, alors les les γ_{ij} sont polynomiales en les coefficients de M.

4.6.5 Autres résultats liés à la dimension finie

Proposition 4.6.10. Soit E un espace vectoriel normé quelconque et A une partie compacte de E. Si une suite à valeurs dans A admet une unique valeur d'adhérence λ alors $\lim_{n\to+\infty}u_n=\lambda$

Preuve. Supposons qu'on n'a pas $\lim_{n\to +\infty} u_n = \ell$. Alors il existe $\varepsilon > 0$ tel que :

$$(\star) \quad \forall n \in \mathbb{N}, \exists p > n, \quad ||u_p - \ell|| \ge \varepsilon.$$

Pour n=0, il exist $p_0\in\mathbb{N}$ tel que $p_0>0$ et $\|u_{p_0}-\ell\|\geq \varepsilon$. Si on suppose qu'il existe p_0,\cdots,p_n tel que $p_0<\dots< p_n$ et $\forall k\in \llbracket 0,n\rrbracket$, $\|u_{p_k}-\ell\|\geq \varepsilon$, alors en appliquant (\star) ci-dessus il existe $p_{n+1}>p_n$ tel que $\|u_{p_{n+1}}-\ell\|\geq \varepsilon$. Il en découle que $\forall k\in \llbracket 0,n+1\rrbracket$, $\|u_{p_k}-\ell\|\geq \varepsilon$. Si, pour tout $n\in\mathbb{N}$, on pose : $\varphi(n)=p_n$, on a $\varphi:\mathbb{N}\to\mathbb{N}$ est une application strictement croissante et la sous-suite $(u_{\varphi}(n))$ vérifie :

$$(\star\star) \quad \forall n \in \mathbb{N}, \quad ||u_{\varphi(n)} - \ell|| \ge \varepsilon.$$

La suite $(u_{\varphi}(n))$ est une suite à valuers dans A compacte, donc il existe une application $\psi: \mathbb{N} \to \mathbb{N}$ strictement croissante tel que $\lim_{n \to +\infty} u_{\varphi(\psi(n))} = \ell'$ avec $\ell' \in A$. Il est clair que ℓ' est une valeur d'adhérence de (u_n) , par suite $\ell' = \ell$. (Par hypothèse, ℓ est l'unique valeur d'adhérence de (u_n) .) D'après $(\star\star)$ ci-dessus, on a

$$(\star \star \star) \quad \forall n \in \mathbb{N}, \quad ||u_{\psi(\varphi(n))} - \ell|| \ge \varepsilon$$

et par passage à la limite on obtient $0 \ge \varepsilon$, ce qui est faux.

Remarque. La réciproque est vrai : si (u_n) converge alors elle admet une unique valeur d'adhérence même si la suite n'est pas supposée avoir ses valeurs dans un compact.

Proposition 4.6.11. Si E est un espace vectoriel normé de dimension finie alors toute suite $(u_n) \in E^{\mathbb{N}}$ d'éléments de E bornée ayant une unique valeur d'adhérence λ est convergente de limite λ .

Preuve. En effet, comme la suite (u_n) est bornée, il existe R > 0 tel que $\forall n \in \mathbb{N}, u_n \in B_f(0, R)$. La boule fermée $B_f(0, R)$ est un fermé borné de E. Comme E est de dimension finie, $B_f(0, R)$ est compacte, d'où le résultat d'après la proposition 4.6.10.

Théorème 4.6.2. Soit E un espace vectoriel normé. Tout sous-espace vectoriel de dimension finie de E est un fermé de E.

Preuve. Soit $(u_n) \in F^{\mathbb{N}}$ tel que $\lim_{n \to +\infty} u_n = \ell$ avec $\ell \in E$. On va démontrer que $\ell \in F$. Comme la suite (u_n) est convergente dans E elle est bornées dans E donc dans F. Par la proposition 4.6.4, la suite (u_n) admet une valeur d'adhérence λ dans E, qui est aussi une valeur d'adhérence de (u_n) dans E. Donc $\lambda = \ell$ et par suite $\ell \in F$.

4.7 Connexes par arcs

Dans tout ce qui suit $(E, \|.\|)$ est un \mathbb{K} - espace vectoriel normé.

4.7.1 Définitions

Definition 4.7.1

On appelle chemin de E, toute application $\gamma:[a,b]\to E$ continue sur [a,b] où [a,b] est un segment de $\mathbb R$ tel que a< b.

Le plus souvent on adopte le segment [a, 1] et on peut voir un chemin comme un mouvement continue dont la trajectoire est contenue dans E et qui démarre à l'instant t = 0 et finit à l'instant t = 1.

Definition 4.7.2

Soit A une partie non vide de A. On dit que A est connexe par arc si pour tout $(a,b) \in A^2$, il existe un chemin $\varphi : [0,1] \to E$ tel que $\varphi(0) = a$ et $\varphi(1) = b$

Remarque. Intuitivement cela veut dire que tout couple de points de A peuvent être joints par un chemin .

Definition 4.7.3

Une partie A de E est dite convexe si :

$$(\forall (a,b) \in A^2)(\forall t \in [0,1]) \quad (1-t)a + tb \in A$$

Proposition 4.7.1. Soit E un espace vectoriel normé.

- 1. Toute intersection non vide de convexes est un convexe.
- 2. Toute boule ouverte non vide est convexe
- 3. Toute boule fermée est convexe
- 4. E est convexe.

Preuve. 1. Soit $(C_i)_{i \in I}$ une famille de convexes et $C = \bigcap_{i \in I} C_i$. Soit $(a, b) \in C$ et $t \in [0, 1]$ Alors pour tout $i \in I$ et comme C_i est convexe, on a : $(1 - t)a + tb \in C_i$ donc $(1 - t)a + tb \in C$.

2. Soit A = B(a, r) une boule ouverte avec r > 0. Soit $(x, y) \in A^2$ et soit $t \in [0, 1]$ alors:

$$||(1-t)x + ty|| \le (1-t)||x|| + t||y|| < r(1-t+t) = r$$

- 3. même principe
- 4. trivial

Proposition 4.7.2. Soit E un espace vectoriel normé et A une partie de E, alors :

- 1. A est convexe si et seulement A est étoilée par rapport à tout point $a \in A$.
- 2. S'il existe $a \in A$ tel que A est étoilée par rapport à a alors A est connexe par arcs.
- 3. En particulier si A est convexe alors A est connexe par arcs.

Preuve. Si $(a,b) \in A^2$ on pose pour tout $t \in [0,1]$:

$$\varphi(t) = (1 - t)a + tb$$

Il est clair que φ est continue et vérifie : $\varphi(0) = a$ et $\varphi(1) = b$

Remarque. Réciproquement , il existe des parties connexes par arc qui ne sont pas convexes. Par exemple dans \mathbb{R}^2 soit $A = \{x \in \mathbb{R}^2 / \|x\|_2 \ge 1 \text{ alors} :$

• A n'est pas convexe car par exemple : $a=(0,1)\in A$ et $b=(1,0)\in A$ mais pour $t=\frac{1}{2}$, on a : $(1-t)a+tb=(\frac{1}{2},\frac{1}{2})\notin A$

Proposition 4.7.3. Soit A une partie de \mathbb{R} . Les assertions suivantes sont équivalentes :

- 1. A est un intervalle.
- 2. A est convexe.
- 3. A est connexe par arcs.

4.7.2 Connexité par arcs et continuité

Proposition 4.7.4. Soient E et F deux espaces vectoriels normés, A une partie non vide de E et $f: A \to F$ une application. Si f est continue sur A et A connexe par arcs alors f(A) est connexe par arcs.

Corollaire 4.7.1. (Théorème des valeurs intermédiaires) Soit $f: A \subset E \to \mathbb{R}$. Si f est continue sur A et A connexe par arcs alors f(A) est un intervalle de \mathbb{R} .

4.7.3 Composantes connexes par arcs d'une partie

Soit $(E, \|.\|)$ un espace vectoriel normé et A une partie non vide de E. On considère la relation \mathscr{R} sur A tel que : Si $(x,y) \in A^2$ alors $x\mathscr{R}y$ s'il existe un chemin $\gamma:[0,1] \to E$ tel que $\gamma(0)=x$ et $\gamma(1)=y$ et $\gamma([0,1])\subset A$. On abrégera en disant il existe un chemin liant x et y dans A.

Proposition 4.7.5. La relation \mathcal{R} est une relation d'équivalence sur A

Definition 4.7.4

Une classe d'équivalence de \mathcal{R} s'appelle composante connexe par arcs de A.

Remarques. 1. Deux composantes connexes sont soit égales soit disjointes

- 2. Toute composante connexe par arcs est connexe par arcs.
- 3. Toute partie connexe par arcs de A est contenue dans une composante connexe par arcs de A.

4.7.4 Méthodes pour montrer qu'une partie est connexe par arcs.

4.7.4.1 Partie étoilée par rapport à un point

Definition 4.7.5

Soit E en \mathbb{K} – espace vectoriel, A une partie de E et $a \in A$. On dit que A est étoilée par rapport à A si :

$$\forall x \in A, \forall t \in [0,1], \quad (1-t)a + tx \in A$$

Proposition 4.7.6. Une partie A de E est convexe si et seulement si A est étoilé par rapport à a pour tout $a \in A$.

Proposition 4.7.7. S'il existe $a \in A$ tel que A est étoilée par rapport à a alors A est connexe par arcs.

4.7.4.2 Méthode pour démontrer qu'une partie est connexe par arcs

Pour démontrer que A est connexe par arcs, on suit les étapes suivantes :

- 1. On regarde si A est un sous-espace vectoriel de E. Si c'est le cas , on sait qu' un sous-espace vectoriel de E est convexe donc connexe par arcs.
- 2. Sinon, on regarde si A est une partie convexe de E.
- 3. Sinon, on regarde si on peut trouver une élément de A tel que A est étoilée par rapport à a.
- 4. Sinon, on essaye de voir si A est l'image par une application continue d'un connexe par arcs.
- 5. Sinon, on recours à la définition générale de partie connexe par arcs.