Table des matières

2	${f A}_{f L}{f G}{f E}_{f B}{f F}$	RE LINÉAIRE : RAPPELS
	2.1 Rap	ppels et Compléments
	2.1.	1 Famille génératrice, famille libre, base, dimension
		2.1.1.1 Généralités
		2.1.1.2 Exemples
		2.1.1.3 Sous espace vectoriel engendré par une famille ou une partie
		2.1.1.4 Cas spécifique des polynômes
	2.1.	2 Somme de sous-espaces vectoriels
		2.1.2.1 Définition, caractérisation
		2.1.2.2 Projections associées à une somme directe
	2.1.	3 Application linéaire canoniquement associée à une matrice
	2.1.	4 Changement de base
		2.1.4.1 Matrice d'une famille de vecteurs relativement à une base
		2.1.4.2 Changement de bases
	2.1.	5 Matrices carrées semblables
		2.1.5.1 Matrices semblables
		2.1.5.2 Déterminant et trace d'un endomorphisme en dimension finie
	2.1.	6 Rang
		2.1.6.1 Définitions
		2.1.6.2 Théorème du rang
		2.1.6.3 Matrices équivalentes
	2.1.	7 Déterminant
		2.1.7.1 Définition, propriétés
		2.1.7.2 Résumé des propriétés du déterminant d'une famille de vecteurs
		2.1.7.3 Résumé concernant le déterminant des matrices carrées
		2.1.7.4 Opérations sur les lignes et le colonnes
		2.1.7.5 Déterminant de matrices triangulaires par blocs

Chapitre 2

Algèbre linéaire : Rappels

2.1 Rappels et Compléments

2.1.1 Famille génératrice, famille libre, base, dimension

2.1.1.1 Généralités

Soit \mathbb{K} un corps. Si $\mathscr{A} = (\alpha_i)_{i \in I}$ est une famille d'éléments de \mathbb{K} , on appelle support de \mathscr{A} l'ensemble :

$$\operatorname{Supp}(\mathscr{A}) = \{ i \in I / \alpha_i \neq 0 \}$$

Si $\operatorname{Supp}(\mathscr{A})$ est une partie finie de I, on dit que la famille \mathscr{A} est à support fini.

On note $\mathbb{K}^{[I]}$ l'ensemble des familles d'éléments de \mathbb{K} à support fini de \mathbb{K} . On observe que $\mathbb{K}^{[I]} \subset \mathbb{K}^{I}$.

Si E est un \mathbb{K} -espace vectoriel et $\mathscr{A}=(\alpha_i)_{i\in I}$ est une famille à support fini non vide $\overline{I}=\operatorname{Supp}(\mathscr{A})$ alors pour toute famille $(x_i)_{i\in I}$ de vecteurs de E, la somme $\sum_{i\in I}\alpha_ix_i$ est pourvu de sens , par définition :

$$\sum_{i \in I} \alpha_i x_i = \sum_{i \in \overline{I}} \alpha_i x_i.$$

Par convention, si Supp(\mathscr{A}) = \emptyset alors $\sum_{i \in I} \alpha_i x_i = 0$.

Definition 2.1.1

On appelle combinaison linéaire des vecteurs $x_i, i \in I$ toute somme de la forme $\sum_{i \in I} \alpha_i x_i$ où $(\alpha_i)_{i \in I}$ est une famille de scalaires à support fini.

Definition 2.1.2

Soit $\mathscr{X} = (x_i)_{i \in I}$ une famille de vecteurs de E.

- 1. On dit que \mathscr{X} est génératrice si tout vecteur de E est combinaison linéaire des $x_i, i \in I$.
- 2. On dit que la famille ${\mathscr X}$ est libre si l'unique combinaison linéaire des x_i nulle est celle à support vide, c'est-à-dire

$$\sum_{i \in I} \alpha_i x_i = 0 \Rightarrow \forall i \in I, \alpha_i = 0$$

- 3. On dit que la famille \mathscr{X} est liée si elle n'est pas libre, donc s'il existe $(\alpha_i)_{i\in I}$ à support fini non vide tel que $\sum \alpha_i x_i = 0$.
- 4. On appelle base de E une famille de vecteurs à la fois génératrice et libre.

Remarques. Toutes les remarques suivantes sont utiles en pratique.

1. Pour montrer qu'une famille $(e_i)_{i\in I}$ est génératrice il suffit de prouver que pour tout $x\in E$, il existe $i_1,\cdots,i_s\in I$ et des scalaires $\lambda_{i_1},\cdots,\lambda_{i_s}$ tel que

$$x = \sum_{k=1}^{s} \lambda_{i_k} e_{i_k}$$

- 2. Une famille \mathscr{F} de vecteurs de E est libre si et seulement si toute sous-famille finie de \mathscr{F} est libre.
- 3. Pour montrer qu'une famille $(e_i)_{i\in I}$ est libre il suffit de prouver que pour tout $s\in \mathbb{N}^*$ et tous $i_1,\cdots,i_s\in I$ et tous $\lambda_{i_1}, \dots, \lambda_{i_s} \in \mathbb{K}$, on a :

$$\sum_{k=1}^{s} \lambda_{i_k} e_{i_k} = 0 \Rightarrow \lambda_{i_k} = 0, \forall k \in [1, s].$$

4. Si on indexe par \mathbb{N} , on dispose, une famille $(v_i)_{i\in\mathbb{N}}$ est libre si et seulement si pour tout $m\in\mathbb{N}$, la famille $(v_i)_{0 \le i \le m}$ est libre.

2.1.1.2 Exemples

Exemple 1:

Soit $E = \mathscr{C}(\mathbb{R}, \mathbb{R})$ l'espace des applications continues de \mathbb{R} vers \mathbb{R} et pour tout $n \in \mathbb{N}$, on pose $f_n(x) = \cos(nx)$ pour tout $x \in \mathbb{R}$. La famille $(f_n)_{n \in \mathbb{N}}$ est libre. En effet si $N \in \mathbb{N}$ et $\lambda_0, \dots, \lambda_N \in \mathbb{R}$ tel que :

$$\sum_{k=0}^{N} \lambda_k f_k = 0,$$

Il en découle que :

$$\forall t \in [0, \pi], \quad \sum_{k=0}^{N} \lambda_k \cos(kt) = 0,$$

alors si $j \in [0, N]$ fixé, on a :

$$\forall t \in [0, \pi], \quad \sum_{k=0}^{N} \lambda_k \cos(kt) \cos(jt) = 0,$$

En intégrant sur l'intervalle $[0, \pi]$, il vient :

$$\int_0^{\pi} \sum_{k=0}^{N} \lambda_k \cos(kt) \cos(jt) dt = 0$$

Donc

$$\sum_{k=0}^{N} \int_{0}^{\pi} \lambda_k \cos(kt) \cos(jt) dt = 0$$

Autrement dit:

$$\lambda_j \int_0^{\pi} \cos^2(jt)dt + \sum_{\substack{k=0\\k\neq j}}^N \lambda_k \int_0^{\pi} \cos(kt)\cos(jt)dt = 0$$

• Pour tout $k \in [0, N]$, tel que $k \neq j$, on a :

$$\int_0^{\pi} \cos(kt) \cos(jt) dt = \int_0^{\pi} \frac{1}{2} (\cos(k-j)t + \cos(k+j)t) dt$$

$$= \frac{1}{2} \left[\frac{1}{k-j} \sin(k-j)t \right]_0^{\pi} + \frac{1}{2} \left[\frac{1}{k+j} \sin(k+j)t \right]_0^{\pi}$$

$$= 0$$

- Par ailleurs, si j = 0, on a $\int_0^{\pi} \cos^2(jt) dt = \pi$.
- Si $j \neq 0$, alors $\int_0^\pi \cos^2(jt) dt = \int_0^\pi \frac{1 + \cos(2jt)}{2} dt = \frac{\pi}{2}$ Tenant compte de ces résultats, on a $\lambda_j = 0$.
- Ceci étant pour tout $j \in [0, N]$ donc la famille $(f_k)_{k \in [0, N]}$ est libre, comme c'est vrai pour tout $N \in \mathbb{N}$, la famille $(f_n)_{n\in\mathbb{N}}$ est libre.

Exemple 2:

Soit $E = \mathscr{C}(\mathbb{R}, \mathbb{R})$ l'espace des applications continues de \mathbb{R} vers \mathbb{R} et pour tout $n \in \mathbb{N}$, on pose $g_n(x) = \cos^n x$ pour tout $x \in \mathbb{R}$. La famille $(g_n)_{n \in \mathbb{N}}$ est libre. En effet si $N \in \mathbb{N}$ et $\lambda_0, \dots, \lambda_N \in \mathbb{R}$ tel que $\sum_{k=0}^{N} \lambda_k g_k = 0$ alors si $j \in [0, N]$ fixé, on a pour tout $t \in [-1, 1]$, $\sum_{k=0}^{N} \lambda_k t^k = 0$ (il suffit de considérer $x = \arccos(t)$), donc le polynôme $P = \sum_{k=0}^{N} \lambda_k X^k$ admet une infinité de zéros, à savoir, tout élément de [-1,1], donc P = 0 donc ses coefficients sont nuls, donc $\lambda_0 = \cdots = \lambda_N = 0$, ce qui termine comme dans l'exemple précédent la preuve de la liberté de la famille $(g_n)_{n \in \mathbb{N}}$.

2.1.1.3 Sous espace vectoriel engendré par une famille ou une partie

Proposition-Définition 2.1.1. Soit $\mathscr{E} = (e_i)_{i \in I}$ une famille quelconque de vecteurs. L'ensemble

$$\operatorname{Vect}(\mathscr{E}) = \left\{ \sum_{i \in I} \lambda_i e_i / (\lambda_i)_{i \in I} \in K^{[I]} \right\}$$

est un sous-espace vectoriel de E appelé sous-espace engendré par la famille $(e_i)_{i\in I}$

Proposition 2.1.1. Soit E un \mathbb{K} -espace vectoriel et A est une partie de E. L'ensemble des combinaisons linéaires des éléments de A est un sous-espace vectoriel de E appelé sous-espace vectoriel engendré par A. On le note $\mathrm{Vect}(A)$. Si on note \mathscr{E} la famille $\mathscr{E} = (a)_{a \in A}$, on a :

$$\operatorname{Vect}(A) = \operatorname{Vect}(\mathscr{E}) = \left\{ \sum_{a \in A} \lambda_a a / (\lambda_a) \in \mathbb{K}^{[A]} \right\}$$

Remarques. On peut faire les remarques suivantes :

- 1. Vect(A) est l'intersection de tous les sous-espaces vectoriels de E contenant A.
- 2. Vect(A) est le plus petit sous-espace vectoriel de E contenant A.
- 3. $(a)_{a \in A}$ est une famille génératrice de Vect(A).
- 4. Si F est un sous-espace vectoriel de E alors Vect(F) = F. En particulier pour toute partie A de E on a Vect(Vect(A)) = Vect(A).
- 5. $Vect(\emptyset) = \{0\} \text{ et } Vect(E) = E$

2.1.1.4 Cas spécifique des polynômes

On dispose des propriété suivantes :

Proposition 2.1.2. Si $\mathscr{E} = (P_n)_{n \in \mathbb{N}}$ est une famille de polynômes tel que $\deg(P_n) = n$ pour tout $n \in \mathbb{N}$ alors \mathscr{E} est une base de $\mathbb{K}[X]$

Preuve. Pour tout $n \in \mathbb{N}$, la famille $\mathscr{E}_n = (P_k)_{0 \le k \le n}$ est une famille libre car s'il existe $(\alpha_k)_{0 \le k \le n}$ famille de scalaires non tous nuls tel que $\sum_{k=0}^{n} \alpha_k P_k = 0$, alors en nommant ℓ le plus grand indice appartenant à [0, n] tel que $\alpha_\ell \ne 0$, on a nécessairement $\ell > 0$ et

$$\alpha_{\ell} P_{\ell} = -\sum_{k=0}^{\ell-1} \alpha_k P_k,$$

chose impossible car égalité entre un polynôme de degré ℓ et un autre de degré strictement inférieur à ℓ . Ceci démontre la liberté de \mathscr{E} . Si Q est un polynôme non nul de degré n alors $Q \in \mathbb{K}_n[X]$. Or la famille \mathscr{E}_n libre dans $\mathbb{K}_n[X]$ et comportant n+1 vecteur s avec $n+1=\dim(\mathbb{K}_n[X])$, la famille \mathscr{E}_n est une base donc une famille génératrice de $\mathbb{K}_n[X]$, donc P est une combinaison linéaire des vecteurs de \mathscr{E}_n , à fortiori de ceux de \mathscr{E} . Finalement \mathscr{E} à la fois libre et génératrice est donc une base de $\mathbb{K}[X]$.

Corollaire 2.1.1. Si I est une partie non vide de \mathbb{N} et $(P_i)_{i\in I}$ est une famille de polynômes de $\mathbb{K}[X]$ tel que pour tout $i, j \in I$ on a $i \neq j \Rightarrow \deg(P_i) \neq \deg(P_j)$ alors la famille $(P_i)_{i\in I}$ est libre.

Corollaire 2.1.2. Si P_0, \dots, P_n sont des polynômes de $\mathbb{K}_n[X]$ de degrés deux à deux distincts alors (P_0, \dots, P_n) est une base de $\mathbb{K}_n[X]$

Somme de sous-espaces vectoriels 2.1.2

2.1.2.1 Définition, caractérisation

Definition 2.1.3

Soit $m \in \mathbb{N}$ tel que $m \ge 2$, E_1, \dots, E_m des sous espaces vectoriels de E. On définit la somme $\sum_{k=1}^m E_k = E_1 + \dots + E_m$ des sous espaces vectoriels E_k par :

$$\sum_{k=1}^{m} E_k = \left\{ \sum_{k=1}^{m} x_k / \forall k \in [1, m], x_k \in E_k \right\}$$

Remarques. On peut faire les remarques suivantes :

1. On a $\sum E_k = \text{Vect} \left(\bigcup_{k=1}^m E_k \right)$

2. Si
$$\Phi : \prod_{k=1}^{n} E_k \to E; x = (x_1, \dots, x_m) \mapsto \Phi(x) = \sum_{k=1}^{m} x_k \text{ alors } \sum_{k=1}^{m} E_k = \text{Im } \Phi.$$

Soit E_1, \dots, E_m, F des sous-espaces vectoriels de E et $F = \sum_{k=1}^{m} E_k$. Si :

$$\forall x \in F, \exists ! (x_1, \dots, x_m) \in E_1 \times \dots \times E_m, \quad x = \sum_{k=1}^m x_k$$

ce qui revient à dire que l'application Φ ci-dessus induit un isomorphisme de $\prod_{k=1}^{m} E_k$ vers F, on dit que la somme $F = \sum\limits_{k=1}^{m} E_k$ est directe. On note

$$F = \bigoplus_{k=1}^{m} E_k.$$

Pour tout $j \in [1, m]$, on pose : $\widehat{E_j} = \sum_{\substack{k=1 \ j=1}}^m E_k$.

Proposition 2.1.3. Soit E_1, \dots, E_m, F des sous-espaces vectoriels de E. Les assertions suivantes sont équi-

$$(1) \bigoplus_{k=1}^{m} E_k = F$$

(2)
$$\begin{cases} \sum_{k=1}^{m} E_k = F \\ \forall j \in [1, m], E_j \cap \widehat{E_j} = \{0\} \end{cases}$$

(1)
$$\bigoplus_{k=1}^{\infty} E_k = F$$
(2)
$$\begin{cases} \sum_{k=1}^{m} E_k = F \\ \forall j \in [\![1,m]\!], E_j \cap \widehat{E}_j = \{0\} \end{cases}$$
(3)
$$\begin{cases} \sum_{k=1}^{m} E_k = F \\ \forall (x_1, \cdots, x_m) \in \prod_{k=1}^{m} E_k, \sum_{k=1}^{m} x_k = 0 \Rightarrow x_1 = \cdots = x_m = 0 \end{cases}$$
Si E_1, \cdots, E_m, F son de dimensions finies, alors les assertions ci-dessus sont équivalentes à :
$$\begin{cases} \sum_{k=1}^{m} E_k = F \\ \sum_{k=1}^{m} \dim(E_k) = \dim(F) \end{cases}$$

(4)
$$\begin{cases} \sum_{k=1}^{m} E_k = F \\ \sum_{k=1}^{m} \dim(E_k) = \dim(F) \end{cases}$$

2.1.2.2 Projections associées à une somme directe

Soit E un \mathbb{K} -espace vectoriel, m un entier naturel non nul et E_1, \dots, E_m des sous-espaces vectoriels de E tel que $\bigoplus_{k=1}^m E_k = E$. Pour tout $k \in [\![1,m]\!]$, on note comme en haut $\widehat{E_k} = \bigoplus_{\substack{j=1\\j \neq k}}^m E_j$ et π_k la projection de E sur E_k

parallèlement à \widehat{E}_k . Alors on la proposition suivante :

Proposition 2.1.4. On a :

$$\sum_{k=1}^{m} \pi_k = \mathrm{Id}_E.$$

En particulier, pour toute endomorphisme f de E, on a :

$$f = \sum_{k=1}^{m} f \circ \pi_k = \sum_{k=1}^{m} \pi_k \circ f$$

2.1.3 Application linéaire canoniquement associée à une matrice.

n et p sont deux entiers naturels non nuls et $\mathcal{M}_{n,p}(\mathbb{K})$ désigne le \mathbb{K} -espace vectoriel des matrices à n lignes et p colonnes et à coefficients dans \mathbb{K} . On rappelle que cet espace vectoriel est isomorphe à $\mathcal{L}(\mathbb{K}^p,\mathbb{K}^n)$, l'espace vectoriel des applications linéaires de \mathbb{K}^p vers \mathbb{K}^n . On dispose notamment de l'isomorphisme canonique :

$$\Phi: \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n) \to \mathcal{M}_{n,p}(\mathbb{K}); f \mapsto \Phi(f) = \text{mat}_{\mathscr{C},\mathscr{B}},$$

qui associe à toute application linéaire $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ la matrice $\Phi(f) = M$ qui représente f dans les bases canoniques respectives $\mathscr{C} = (\omega_1, \dots, \omega_p)$ et $\mathscr{B} = (e_1, \dots, e_n)$ de \mathbb{K}^p et \mathbb{K}^n . En particulier, on a : $\dim (\mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)) = \dim (\mathcal{M}_{n,p}(\mathbb{K})) = np$. On dispose donc de l'isomorphisme $\Psi = \Phi^{-1}$ qui associe à chaque matrice M l'unique application linéaire f_M de \mathbb{K}^p vers \mathbb{K}^n tel que $\max_{\mathscr{C},\mathscr{B}} f_M = M$. On peut donc dire que si

$$X = \sum_{j=1}^{p} x_j \omega_j = (x_1, \cdots, x_p),$$

qu'on identifie à la matrice colonne de coefficients x_1, \dots, x_p , donc

$$X = \left(\begin{array}{c} x_1 \\ \vdots \\ x_p \end{array}\right),$$

alors $f_M(X) = MX$.

Definition 2.1.4

Soit $M \in \mathcal{M}_{n,p}(\mathbb{K})$. On appelle l'application linéaire canoniquement associée à M, l'application $f_M : \mathbb{K}^p \to \mathbb{K}^n$ tel que

$$\forall X \in \mathbb{K}^p, \quad f_M(X) = MX$$

C'est l'application linéaire dont M est la matrice relativement aux bases canoniques respectives de \mathbb{K}^p et \mathbb{K}^n .

Remarques. 1. Si on désire éviter l'identification des colonnes et des lignes de même taille une définition rigoureuse de f_M est pour $x \in \mathbb{K}^p$,

$$f_M(x) = {}^{\mathbf{t}}(M^{\mathbf{t}}x) = x^{\mathbf{t}}M$$

2. Une autre façon de faire est de prendre :

$$f_M: \mathcal{M}_{p,1}(\mathbb{K}) \to \mathcal{M}_{n,1}(\mathbb{K}), X \mapsto f_M(X) = MX.$$

3. Dans le cas particulier n = p, la matrice M et une matrice carrée , $M \in \mathcal{M}_n(\mathbb{K})$ et f_M est un endomorphisme appelé l'endomorphisme canoniquement associé à M.

2.1.4 Changement de base

2.1.4.1 Matrice d'une famille de vecteurs relativement à une base.

Definition 2.1.5

Soit E un \mathbb{K} – espace vectoriel de dimension finie non nulle n et $\mathscr{E} = (e_1, \dots, e_n)$ une base de E. Si $\mathcal{V}=(v_1,\cdots,v_p)$ est une famille de vecteurs de E, on appelle matrice de \mathcal{V} dans \mathcal{B} la matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ telle que :

$$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$

avec:

$$\forall j \in [1, p] \quad v_j = \sum_{i=1}^n a_{i,j} e_i$$

2.1.4.2 Changement de bases

Soit E un \mathbb{K} -espace vectoriel de dimension n avec $n \in \mathbb{N}^*$. Si \mathscr{B} et \mathscr{B}' sont deux bases de E, on appelle la matrice de passage de \mathscr{B} à \mathscr{B}' la matrice carré P de la famille \mathscr{B}' relativement à la base \mathscr{B} , donc

$$P = \operatorname{mat}_{\mathscr{B}}(\mathscr{B}')$$

Autrement dit, si $\mathscr{B} = (e_1, \dots, e_n)$ et $\mathscr{B}' = (e'_1, \dots, e'_n)$ et si pour tout $j \in [1, n]$, on a :

$$e_j' = \sum_{i=1}^n p_{ij} e_i$$

alors

$$P = (p_{ij})_{1 \le i, j \le n}$$

Comme $e'_j = \mathrm{Id}_e(e'_j)$, pour tout $j \in [1, n]$, il en découle que P n'est autre que la matrice relativement à \mathscr{B}' et \mathcal{B} dans cet ordre de l'application identité de E, donc :

$$P = \operatorname{mat}_{\mathscr{B}',\mathscr{B}} \operatorname{Id}_E$$

Notation : On note $\mathscr{P}_{\mathscr{B}}^{\mathscr{B}'}$ la matrice de passage de \mathscr{B} à $\mathscr{B}'.$

Proposition 2.1.5. Si $\mathcal{B}, \mathcal{B}', \mathcal{B}''$ sont des bases de E, alors on a :

- 1. $\mathscr{P}_{\mathscr{B}}^{\mathscr{B}} = I_n$ 2. $\mathscr{P}_{\mathscr{B}}^{\mathscr{B}'} = \mathscr{P}_{\mathscr{B}}^{\mathscr{B}''} \times \mathscr{P}_{\mathscr{B}''}^{\mathscr{B}'}$ 3. $\mathscr{P}_{\mathscr{B}'}^{\mathscr{B}} = \left(\mathscr{P}_{\mathscr{B}}^{\mathscr{B}'}\right)^{-1}$.

Proposition 2.1.6. Si \mathscr{B} et \mathscr{B}' sont deux bases de E et x un vecteurs de colonnes de coordonnées respectives dans \mathscr{B} et \mathscr{B}' sont X et X' alors X = PX' où $P = \mathscr{P}_{\mathscr{B}}^{\mathscr{B}'}$ est la matrice de passage de \mathscr{B} à \mathscr{B}' .

Proposition 2.1.7. Soient E et F sont deux \mathbb{K} -espaces vectoriels de dimensions finies non nulle p et nrespectivement. Soient \mathscr{B} et \mathscr{B}' deux bases de E et \mathscr{C} et \mathscr{C}' deux bases de F. On note $P = \mathscr{P}_{\mathscr{B}}^{\mathscr{B}'}$ et $Q = \mathscr{P}_{\mathscr{C}}^{\mathscr{C}'}$ les matrices de passages respectives. Pour toute application linéaire f de E vers F, si $M = \max_{\mathscr{B},\mathscr{B}'}(f)$ et $M' = \operatorname{mat}_{\mathscr{C},\mathscr{C}'}(f) \text{ alors } M' = Q^{-1}MP.$

2.1.5 Matrices carrées semblables

2.1.5.1Matrices semblables

Definition 2.1.6

Deux matrices carrées M et M' de taille n à coefficients dans $\mathbb K$ sont semblables s'il existe une matrice inversible P de taille n à coefficients dans K tel que $M' = P^{-1}MP$

Proposition 2.1.8. Deux matrices A et B de $\mathcal{M}_n(\mathbb{K})$ sont semblables si et seulement si il existe deux bases \mathscr{B} et \mathscr{C} d'un espace vectoriel E de dimension n et un endomorphisme u de E tel que :

$$mat_{\mathscr{B}}(u) = A$$
 et $mat_{\mathscr{C}}(u) = B$

On dit que A et B représentent le même endomorphisme u dans les bases respectives \mathcal{B} et \mathscr{C} .

Proposition 2.1.9. Si deux matrices sont semblables elles ont même rang, même déterminant et même trace.

Attention! Deux matrices peuvent avoir même rang, même déterminant, même trace sans qu'elles soient semblables

Contre-exemple: Prenons:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & -1 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

On a rg (A) = rg (B) = 2 et det(A) = det(B) = 0 et tr(A) = tr(B) = 0, cependant, les matrices A et B ne sont pas semblables car, par exemple, B^3 = 0, mais $A^3 \neq 0$ car la diagonale de A^3 est composée de 1,0 et -1. Si A et B étaient semblables on aurait $A = PBP^{-1}$ pour un $P \in GL_n(\mathbb{K})$, par suite, on aurait A^3 = 0, chose fausse.

2.1.5.2 Déterminant et trace d'un endomorphisme en dimension finie

La proposition 2.1.9 ci-dessus permet de donner la définition suivante du déterminant et la trace d'un endomorphisme en dimension finie.

Definition 2.1.7

Soit E un \mathbb{K} -espace vectoriel de dimension finie non nulle, et soit f un endomorphisme de E. On appelle déterminant de f (rep. trace de f) le déterminant (resp. la trace) d'une matrice représentant f dans une base quelconque de E

2.1.6 Rang

2.1.6.1 Définitions

Definition 2.1.8

Soit E un \mathbb{K} -espace vectoriel et $\mathscr{U} = (u_i)_{i \in I}$ une famille de vecteurs de E. Si $\mathrm{Vect}(\mathscr{U})$ est de dimension finie alors l'entier naturel $n = \dim(\mathrm{Vect}(\mathscr{U}))$ s'appelle le rang de la famille \mathscr{U} , noté rg (\mathscr{U}) .

Proposition 2.1.10. Soient E et F deux \mathbb{K} -espaces vectoriels et $f \in \mathcal{L}(E,F)$ une application linéaire de E vers F. Pour toute famille $\mathscr{U} = (x_i)_{i \in I}$ de vecteurs de E, on note $f(\mathscr{U}) = (f(x_i))_{i \in I}$. Si le rang de \mathscr{U} existe alors celui de $f(\mathscr{U})$ existe et on a :

$$\operatorname{rg}\left(f(\mathscr{U})\right) \leq \operatorname{rg}\left(\mathscr{U}\right)$$

Preuve. Si rg $(\mathscr{U}) = 0$ alors $x_i = 0$, pour tout $i \in I$, par suite $f(x_k) = 0$ pour tout $i \in I$, donc $f(\mathscr{U})$ est la famille nulle indexée par I donc elle est de rang 0. Si rg $(\mathscr{U}) = r > 0$. Comme $r = \dim(\operatorname{Vect}(\mathscr{U}))$, il existe une base de $\operatorname{Vect}(\mathscr{U})$) à r vecteurs. Soit $\mathscr{V} = (v_1, \dots, v_r)$ une telle base. Il en découle que $\operatorname{Vect}(f(\mathscr{U})) = \operatorname{Vect}(f(\mathscr{V})) = \operatorname{Vect}(f(v_1), \dots, f(v_r))$, donc $f(\mathscr{V})$ est une famille génératrice de $\operatorname{Vect}(f(\mathscr{U}))$ qui possède r vecteurs donc la dimension de $\dim(\operatorname{Vect}(f(\mathscr{U}))) \le r = \operatorname{rg}(\mathscr{U})$.

Definition 2.1.9

Soient E et F deux \mathbb{K} -espaces vectoriels et $f \in \mathcal{L}(E,F)$ une application linéaire de E vers F. Si $\mathrm{Im}(f)$ est un sous-espace vectoriel de dimension finie de F, alors l'entier naturel $n=\dim(\mathrm{Im}(f))$ est appelé rang de f, noté rg (f).

Remarque. Soit $f \in \mathcal{L}(E, F)$, alors le rang de f existe dans chacun des cas suivants :

- 1. Si E est de dimension finie et F quelconque.
- 2. Si E est quelconque et F de dimension finie.

Preuve.

- Si F de dimension finie alors Im(f) est un sous-espace vectoriel de F, donc Im(f) est de dimension finie, par suite le rang de f existe.
- Si E est de dimension finie alors si $\mathscr U$ est une famille génératrice finie de E alors $\mathrm{Vect}(f(\mathscr U))$ est une famille génératrice de $\mathrm{Im}(f)$. Or d'après la proposition 2.1.10, on a $\mathrm{rg}(f(\mathscr U))$ existe et $\mathrm{rg}(f(\mathscr U)) \leq \mathrm{rg}(\mathscr U)$, ce qui finit la preuve de la remarque.

Definition 2.1.10

Soit $n, p \in \mathbb{N}^*$ et $A \in \mathcal{M}_{n,p}(\mathbb{K})$. On appelle rang de A le rang de l'application linéaire φ_A canoniquement associée à A. On note rg (A).

Proposition 2.1.11. Si $A \in \mathcal{M}_{n,p}(\mathbb{K})$ de colonnes C_1, \dots, C_p et de lignes L_1, \dots, L_n alors :

$$\operatorname{rg}(A) = \operatorname{rg}(C_1, \dots, C_p) = \operatorname{rg}(L_1, \dots, L_n)$$

Proposition 2.1.12. Si $A \in \mathcal{M}_{n,p}(\mathbb{K})$; alors rg $(A) = \operatorname{rg}({}^tA)$.

Proposition 2.1.13. Si $A \in \mathcal{M}_{n,p}(\mathbb{K})$; alors pour tout $(P,Q) \in GL_n(\mathbb{K}) \times GL_p(\mathbb{K})$, on a :

$$\operatorname{rg}(A) = \operatorname{rg}(PAQ) = \operatorname{rg}(PA) = \operatorname{rg}(AQ).$$

Corollaire 2.1.3. Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$. Le rang de A ne change pas par l'une des opérations suivantes :

- 1. $L_i \leftarrow L_i + \alpha L_j, i \neq j \text{ où } i, j \in [1, n] \text{ avec } i \neq j \text{ et } \alpha \in \mathbb{K}.$
- 2. $L_i \leftarrow \alpha L_i$ où $i \in [1, n]$ et $\alpha \in \mathbb{K}$ et $\alpha \neq 0$.
- 3. $L_i \leftrightarrow L_j$ où $i, j \in [1, n]$ avec $i \neq j$

La même conclusion est valables avec le opérations sur les colonnes.

2.1.6.2 Théorème du rang

Lemme 2.1.1. E et F sont deux \mathbb{K} -espaces vectoriels , E étant de dimension finie. Soit $f \in \mathcal{L}(E, F)$ une application linéaire de E vers F et E' un supplémentaire de ker f dans E, c'est-à-dire $E = \ker f \oplus E'$, alors l'application linéaire $f': E' \to F' = \operatorname{Im} f; x \mapsto f'(x) = f(x)$ est un isomorphisme d'espaces vectoriels.

Preuve. Si $x \in E'$ tel que f'(x) = 0 alors $\begin{cases} x \in E' \\ f(x) = 0 \end{cases}$ par suite $x \in E' \cap \ker(f)$ d'où x = 0. Ainsi f' est

injective.

Soit $y \in \text{Im}(f)$ donc il existe $x \in E$ tel que f(x) = y. Écrivons x = x' + x'' avec $x' \in E'$ et $x'' \in \ker(f)$ alors f(x) = f(x'), et comme $x' \in E'$, on y = f(x') = f'(x'), donc f est surjective.

Remarque. I

en découle, en particulier, que l'application linéaire $\widetilde{f}: E' \to F; x \mapsto \widetilde{f}(x) = f(x)$ est injective.

Théorème 2.1.1. (Théorème du rang) : E et F sont deux \mathbb{K} —espaces vectoriels , E étant de dimension finie. Soit $f \in \mathcal{L}(E, F)$ une application linéaire de E vers F, alors

$$\dim(E) = \operatorname{rg}(f) + \dim(\ker f).$$

Preuve. En adoptant les notations du lemme, on a rg (f) = rg (f') . comme f' est un isomorphisme, on a $\dim(E')$ = $\dim(\operatorname{Im}(f))$ = rg (f), donc rg (f) = $\dim(E')$. Comme $\ker(f) \oplus E'$ = E, on a $\dim(E')$ = $\dim(E)$ – $\dim(\ker(f))$, d'où la formule du rang ci-dessus.

Remarques. Les remarques suivantes sont utiles en pratique :

- 1. Soit $f \in \mathcal{L}(E, F)$ avec E et F de dimensions finies. Alors :
 - (a) f est injective si et seulement si rg(f) = dim(E)
 - (b) f est surjective si et seulement si $\operatorname{rg}(f) = \dim(F)$
- 2. Soit $n, p \in \mathbb{N}^*$, $M \in \mathcal{M}_{n,p}(\mathbb{K})$ une matrice et φ_M l'application linéaire canoniquement associée à M, alors :
 - (a) $\operatorname{rg}(M) = p$ si et seulement si $p \leq n$ et φ_M est injective.
 - (b) $\operatorname{rg}(M) = n$ si et seulement si $n \leq p$ et φ_M est surjective.
- 3. Si E est un K-espace vectoriel de dimension n et $f \in \mathcal{L}(E)$ alors f est bijectif si et seulement si $\operatorname{rg}(f) = n$.
- 4. Si $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{K})$, alors A est inversible si et seulement si rg (A) = n.
- 5. Si E, F, G sont des \mathbb{K} -espaces vectoriels et $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$ alors : $\operatorname{rg}(g \circ f) \leq \min(\operatorname{rg}(f), \operatorname{rg}(g))$.
- 6. Si $n, r, p \in \mathbb{N}^*$ alors pour tout $A \in \mathcal{M}_{n,r}(\mathbb{K})$ et tout $B \in \mathcal{M}_{r,p}(\mathbb{K})$, on a : rg $(AB) \leq \min(\operatorname{rg}(A), \operatorname{rg}(B))$.

2.1.6.3 Matrices équivalentes

Deux matrices $A, B \in \mathcal{M}_{n,p}(\mathbb{K})$ sont équivalentes si :

$$\exists P \in Gl_n(\mathbb{K}), \exists Q \in GL_p(\mathbb{K}), \quad B = PAQ$$

La relations $A\mathcal{R}B \Leftrightarrow A$ et B sont équivalentes est une relation d'équivalence. Si $A \in \mathcal{M}_{n,p}(\mathbb{K})$ tel que $\operatorname{rg}(A) = r$, alors la classe d'équivalence de A pour la relation \mathcal{R} est :

$$\operatorname{cl}(A) = \{ M \in \mathcal{M}_{n,p}(\mathbb{K}) / \operatorname{rg}(M) = r \}$$

En particulier:

- 1. Deux matrices A et B de $\mathcal{M}_n(\mathbb{K})$ sont équivalentes si et seulement si elles ont même rang.
- 2. Pour toute matrice A de $\mathcal{M}_{n,p}(\mathbb{K})$ de rang r avec r > 0, la matrice A est équivalente à la matrice $J_{n,p,r}$ avec :

$$J_{n,p,r} = \begin{pmatrix} I_r & 0_{r,p-r} \\ 0_{n-r,r} & 0_{n-r,p-r} \end{pmatrix}$$

3. Pour la relation $\mathcal{R},$ il y'a exactement m classes d'équivalence où $m=\min(n,p)$ qui sont :

$$cl(0_{n,p})$$
 et $cl(J_{n,p,r}), r \in [1, m]$.

Si deux matrices carrée sont semblables alors elles sont équivalentes et la réciproque est fausse.

2.1.7 Déterminant

2.1.7.1 Définition, propriétés

Definition 2.1.11

Soit $n \in \mathbb{N}$ tel que $n \geq 2$ et E un \mathbb{K} -espace vectoriel de dimension n. On appelle forme n-linéaire sur E, toute application $\phi: E^n \to \mathbb{K}$ linéaire par rapport à chaque x_i de $x = (x_1, \dots, x_n) \in E^n$.

Proposition 2.1.14. Soit $n \in \mathbb{N}$ tel que $n \geq 2$ et E un \mathbb{K} -espace vectoriel de dimension n et $\phi : E^n \to \mathbb{K}$ une forme n-linéaire.

Les assertions suivantes sont équivalentes :

- (1) Pour tout $X = (x_1, \dots, x_n) \in E^n$ et toute permutation $\sigma \in \mathscr{S}_n$, on a $\phi(X_{\sigma}) = \varepsilon(\sigma)\phi(X)$ où $X_{\sigma} = (x_{\sigma(1)}, \dots, x_{\sigma(n)})$ et $\varepsilon(\sigma)$ la signature de la permutation σ .
- (2) Pour tout $X = (x_1, \dots, x_n) \in E^n$ et toute transposition $\tau \in \mathscr{S}_n$, on a $\phi(X_\tau) = -\phi(X)$.
- (3) Pour tout $X=(x_1,\cdots,x_n)\in E^n$ s'il existe $(i,j)\in [\![1,n]\!]^2$ tel que $i\neq j$ et $x_i=x_j$ alors $\phi(X)=0$.

(4) Pour toute famille $X=(x_1,\cdots,x_n)\in E^n$, si X est liée alors $\phi(X)=0$.

Definition 2.1.12

Soit $n \in \mathbb{N}$ tel que $n \geq 2$ et E un \mathbb{K} -espace vectoriel de dimension n. On appelle forme n-linéaire alternée sur E toute application n-linéaire de E^n vers \mathbb{K} vérifiant l'une des assertions (1),(2),(3),(4) de la proposition 2.1.14

Proposition 2.1.15. Soit $n \in \mathbb{N}$ tel que $n \geq 2$ et E un \mathbb{K} -espace vectoriel de dimension n. On note $\mathscr{A}_n(E)$ l'ensemble des formes n-linéaire alternée sur E. Alors $\mathscr{A}_n(E)$ est une droite vectoriel.

Proposition-Définition 2.1.2. Soit $n \in \mathbb{N}$ tel que $n \geq 2$ et E un \mathbb{K} -espace vectoriel de dimension n et \mathscr{B} une base de E; alors il existe une et une seule forme n-linéaire alternée ϕ sur E tel que $\phi(\mathscr{B}) = 1$. Cette unique forme n-linéaire alternée est appelée déterminant par rapport à \mathscr{B} et notée $\det_{\mathscr{B}}$.

Proposition 2.1.16. Soit $n \in \mathbb{N}$ tel que $n \geq 2$ et E un \mathbb{K} -espace vectoriel de dimension n et $\mathscr{E} = (e_1, \cdots, e_n)$ une base de E. Si $\mathscr{U} = (u_1, \cdots, u_n)$ est une famille de n vecteurs de E et si :

$$\forall j \in [1, n], \quad u_j = \sum_{i=1}^n u_{ij} e_i$$

alors

$$\det_{\mathscr{E}}(\mathscr{U}) = \sum_{\sigma \in \mathscr{S}_n} \varepsilon(\sigma) \prod_{i=1}^n u_{i,\sigma(i)} = \sum_{\sigma \in \mathscr{S}_n} \varepsilon(\sigma) \prod_{j=1}^n u_{\sigma(j),j}$$

2.1.7.2 Résumé des propriétés du déterminant d'une famille de vecteurs

E est un \mathbb{K} -espace vectoriel de dimension n $(n \in \mathbb{N}^*)$. On a les propriétés suivantes :

- 1. Si \mathscr{B} est une base de E alors pour toute famille \mathscr{F} de vecteurs de E, on a : $\det_{\mathscr{B}}(\mathscr{F}) = 0$ si et seulement si \mathscr{F} est liée.
- 2. Si ${\mathscr B}$ et ${\mathscr B}'$ sont deux bases de E et ${\mathscr F}$ une famille de vecteurs de E alors :

$$\det_{\mathscr{B}'}(\mathscr{F}) = \det_{\mathscr{B}'}(\mathscr{B}) \det_{\mathscr{B}}(\mathscr{F})$$

Preuve. Puisque les formes n-linéaires alternées forment une droite vectorielle, et que $\det_{\mathscr{B}}$ est non nulle, il existe $\lambda \in \mathbb{K}$ tel que : $\det_{\mathscr{B}'} = \lambda \det_{\mathscr{B}}$. En appliquant \mathscr{B} et compte tenu de $\det_{\mathscr{B}}(\mathscr{B}) = 1$, il vient $\lambda = \det_{\mathscr{B}'}(\mathscr{B})$, donc, pour toute famille \mathscr{F} de vecteurs de E, on a : $\det_{\mathscr{B}'}(\mathscr{F}) = \det_{\mathscr{B}'}(\mathscr{B}) \det_{\mathscr{B}}(\mathscr{F})$, ce qui termine la preuve.

3. Soit $\mathscr{F} = (x_1, \dots, x_n) \in E^n$, $k \in [1, n]$, $x'_k = x_k + \sum_{\substack{j=1 \ j \neq k}}^n \lambda_j x_j$ (où les λ_j $j \in [1, n] \setminus \{k\}$ sont des scalaires)

et
$$\mathscr{F}' = (y_1, \cdots, y_n)$$
 avec

$$\forall j \in [1, n], \quad y_j = \begin{cases} x_j & \text{si} \quad j \neq k \\ x'_k & \text{si} \quad j = k \end{cases}$$

alors $\det_{\mathscr{B}}(\mathscr{F}) = \det_{\mathscr{B}}(\mathscr{F}')$.

On exprime ça en disant que : Le déterminant d'une famille de vecteur ne change pas si on remplace un vecteur par lui même ajouté à une combinaison linéaire des autres.

4. Si on permute deux vecteurs d'une famille, le déterminant est multiplié par -1. Généralement si $\sigma \in \mathscr{S}_n$ et $\mathscr{F} = (x_1, \dots, x_n) \in E^n$ alors :

$$\det_{\mathscr{B}}(x_{\sigma(1)},\cdots,x_{\sigma(n)}) = \varepsilon(\sigma) \det_{\mathscr{B}}(x_1,\cdots,x_n)$$

où $\varepsilon(\sigma)$ est la signature de σ .

5. Si on multiplie un vecteur par un scalaire, le déterminant de la famille obtenue est multiplié par ce scalaire.

2.1.7.3 Résumé concernant le déterminant des matrices carrées

1. Si $A \in \mathcal{M}_n(\mathbb{K})$ de colonnes C_1, \dots, C_n et de lignes L_1, \dots, L_n et si on note respectivement \mathscr{C} et \mathscr{L} les bases canoniques de $\mathcal{M}_{n,1}(\mathbb{K})$ et $\mathcal{M}_{1,n}(\mathbb{K})$ alors

$$\det(A) = \det_{\mathscr{L}}(C_1, \cdots, C_n) = \det_{\mathscr{L}}(L_1, \cdots, L_n)$$

2. Si $A = (a_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{K})$ alors

$$\det(A) = \sum_{\sigma \in \mathscr{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} = \sum_{\sigma \in \mathscr{S}_n} \varepsilon(\sigma) \prod_{j=1}^n a_{\sigma(j),j}$$

- 3. Pour toute $A \in \mathcal{M}_n(\mathbb{K})$, on a : $\det(A) = \det({}^tA)$
- 4. Si $A = (a_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{K})$ alors pour tout $(i,j) \in [1,n]^2$, on a :

$$\det(A) = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} \det(A_{ik}) = \sum_{k=1}^{n} (-1)^{k+j} a_{kj} \det(A_{kj})$$

où $A_{k\ell}$ est la matrice carrée de taille n-1 obtenue après suppression de la ligne k et la colonne ℓ . Si on note

$$D_{ij} = \det(A_{ij})$$

et

$$\Delta_{ij} = (-1)^{i+j} \det(A_{ij})$$

on donne les appellations suivantes :

 D_{ij} : mineur.

 Δ_{ij} : cofacteur.

On définit la comatrice de A: c'est la matrice dont le terme général est le cofacteur Δ_{ij} , notée $\operatorname{Com}(A)$; donc:

$$Com(A) = (\Delta_{ij})_{1 \le i,j \le n}$$

La matrice complémentaire de A est :

$$\widetilde{A} = {}^{t}\operatorname{Com}(A)$$

- 5. Si $A, B \in \mathcal{M}_n(\mathbb{K})$. Si $A \simeq B$ (A et B sont semblables) alors $\det(A) = \det(B)$.
- 6. Pour toute $A, B \in \mathcal{M}_n(\mathbb{K})$, on a : $\det(AB) = \det(A) \det(B)$. En particulier : $\forall m \in \mathbb{N}, \det(A^m) = (\det(A))^m$.
- 7. Soit $A \in \mathcal{M}_n(\mathbb{K})$; alors A est inversibles si et seulement si $\det(A) \neq 0$, auquel cas on a :

$$\det(A^{-1}) = (\det(A))^{-1}$$

Notons que si A est inversible alors $\forall k \in \mathbb{Z}, \det(A^k) = (\det(A))^k$.

8. Pour tout $A \in \mathcal{M}_n(\mathbb{K})$ on a :

$$A \times^t (\text{Com}(A)) = {}^t (\text{Com}(A)) \times A = \det(A) I_n.$$

Autrement dit:

$$A \times \widetilde{A} = \widetilde{A} \times A = \det(A)I_n.$$

- 9. Pour tout $\lambda \in \mathbb{K}$ et toute $A \in \mathcal{M}_n(\mathbb{K})$, on a : $\det(\lambda A) = \lambda^n \det(A)$
- 10. Si $u \in \mathcal{L}(E)$ alors $\det(u) = \det(A)$ où A matrice représentant u dans une base quelconque.

2.1.7.4 Opérations sur les lignes et le colonnes

$$C_i \leftarrow C_i + \sum_{j \neq i} \lambda_j C_j$$
 ne change pas $\det(A)$

 $C_i \leftrightarrow C_j$ change le signe de $\det(A)$

 $C_i \leftarrow \alpha C_j$ multiplie $\det(A)$ par α

2.1.7.5 Déterminant de matrices triangulaires par blocs

Proposition 2.1.17. Si
$$A = \begin{pmatrix} M & N \\ 0 & R \end{pmatrix}$$
 est une matrice triangulaire par blocs où $M \in \mathcal{M}_d(\mathbb{K})$ et $R \in \mathcal{M}_q(\mathbb{K})$ avec $d, q \in \mathbb{N}^*$. alors :
$$\det(A) = \det(M) \det(R).$$

Preuve. On écrit :

$$A = \left(\begin{array}{cc} M & N \\ 0 & R \end{array}\right) = \left(\begin{array}{cc} I_d & 0 \\ 0 & R \end{array}\right) \times \left(\begin{array}{cc} M & N \\ 0 & I_q \end{array}\right)$$

et on se ramène à un cas simple qui se traite par récurrence.

Proposition 2.1.18. Soit
$$A=\begin{pmatrix}A_1&&&\\&\ddots&&\\&&A_s\end{pmatrix}$$
 une matrice triangulaire supérieure de s blocs alors
$$\det(A)=\prod_{k=1}^s\det(A_k).$$

Preuve. Par récurrence et d'après la proposition 2.1.17.