Théoréme Soit n € N*. Pour tout matrice A € S,,(R), on a Spr(A) # 0. C’est-a-
dire, toute matrice réelle symétrique A d’ordre n admet au moins une valeur propre
réelle.

Nous allons donner une démonstration de ce théoreme en proposant trois méthodes. On
aura besoin dans la méthode 1, du lemme 2, lequel aura besoin du lemme 1 qu’on donne
ci-dessous et qu'on démontrera.

Lemme 1 : Si n est un entier naturel impair alors pour tout R—espace vectoriel E
de dimension n et tout endomorphisme u € L£(E), on a Spg(u) # 0.

Preuve : Dans un tel cas deg(x,) = n est impair et comme Y, est unitaire on a
lim xu(t) = —oo et lim x,(t) = +oc.

L’application ¢ — x,(t) est continue sur R, donc par le théoréme des valeurs inter-
médiaires il existe A € R tel que x,(\) = 0.

Lemme 2 : Soit E un espace vectoriel sur R, de dimension n avec n > 1. Pour tout
endomorphisme u € L(F), il existe au moins un sous-espace vectoriel F' de E tel
que F est stable par u et dim(F) = 1 ou dim(F') = 2.

Preuve : Si Spg(u) # (), soit A une valeur propre de u alors si x est un vecteur propre
associé la droite F' = Rz est stable par u. Si Spg(u) = 0, forcément n est pair et si on

S
pose n = 2s, alors le polynome caractéristique de u se décompose x, = [[ Px avec
k=

1
Py, trinéme unitaire de discriminent A, < 0. Par Cayley-Hamilton, y,(u) = 6, donc
Pi(u)o---0Ps(u) =0, donc 3j € [1, s] det(P;(u)) = 0, donc P;(u) non injectif, donc
Jz € E\{0}, P;(u)(z) = 0. Posons P; = X? —bX — a, donc Pj(u) = u* —bu—aldg
et u?(x) = ax + bu(z). Soit F = Vect(z,u(z)), c’est un plan vectoriel de E et F est
stable par u car u(z) € F et u(u(x)) = ax + bu(z) € F.

METHODE 1

Soit A € S,(R).

eSin =1 alors A = (a) avec a € R, donc a est une valeur propre de A.
eSin > 2, alors :

a
b
A= (a+c)* —4(ac —b*) = (a — ¢)* + 4b*, donc A > 0 et x4 admet au moins une
racine A, laquelle est une valeur propre de A.

e Sin > 2 alors, d’apres le lemme F admet un sous-espace vectoriel F' stable par
u tel 1 < dim(F) < 2, si on note v 'endomorphisme induit alors v est symétrique
donc d’apres la vérité pour n = 1 et pour n = 2, on peut dire que Spg(v) # 0, donc

Spr(u) # 0.

ePour n =2 alors A = donc x4 = X?—(a+c¢)X +ac—b? de discriminent

METHODE 2

Cette méthode est adoptée en classe lors de ’exposé du cours. Soit A € S,,(R) alors

A € M,,(C), soit A une valeurs propre complexe de A, il existe X € C"\{0} tel que

AX = AX,donc AX =X X,donc X"TAX = AX"X,or XA =(4AX)" = XX,

donc AX "X = AXTX, orsi X = (2)1<p<n, alors X "X = 3 |zx|? et comme X # 0,
k=1

ona X'X #0, donc A = X et on vient de preouver que YA € Spp(A), A € R, donc

Spc(A) = Spr(A) en particulier Spg(A) # 0.
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METHODE 3

L’application 4 : R® — R; X — (AX, X) est continue car elle est polynémiale en
les coordonnées de X, donc elle est bornée et atteint ses bornes sur la sphere unité
S ={X € R"/||X|| = 1}, soit alors V € & tel que (AV,V) = max (AX, X). On va

X||=1
démontrer que V est un vecteur propre de A, pour cela soit V[& g S tel que WLV,
on a va prouver que W_LAV pour cela remarquons que pour tout ¢ € R, le vecteur
@(t) = cos(t)V + sin(t)W réalise ¢(t) € & car comme VLW, par Pythagore on e
lo®)||? = cos?(t)||V]|? + sin?(t)||W|> = 1. Il en découle que si g est application
g:R— Ryt ®y(p(t)) compte tenu de g(0) = ®4(V), on a g(0) est un maximum
globale de g et comme g est dérivable on a ¢’(0) = 0, or pour tout ¢t € R, on a

g'(t) = {¢'(t), Ap(t)) + {p(t), A (1)),
en particulier compte tenu de ¢'(t) = —sin(¢)V + cos(t)W, on a ¢'(0) = W, donc
g9'(0) = (W, AV) + (V, AW)

et comme A est symétrique on a (V,AW) = (W, AV), donc 2(AV, W) = 0 et
AV 1LW. On a donc prouvé que

VIV € &, WLV = WLAV,

ce qui veut dire que (RV)L C (RAV)%, donc RAV C RV, donc AV € RV et il
existe A € R tel que AV = AV, ce qui prouve que Sp(A4) # 0.



