
Théorème Soit n ∈ N∗. Pour tout matrice A ∈ Sn(R), on a SpR(A) 6= ∅. C’est-à-
dire, toute matrice réelle symétrique A d’ordre n admet au moins une valeur propre
réelle.

Nous allons donner une démonstration de ce théorème en proposant trois méthodes. On
aura besoin dans la méthode 1, du lemme 2, lequel aura besoin du lemme 1 qu’on donne
ci-dessous et qu’on démontrera.

Lemme 1 : Si n est un entier naturel impair alors pour tout R−espace vectoriel E
de dimension n et tout endomorphisme u ∈ L(E), on a SpR(u) 6= ∅.

Preuve : Dans un tel cas deg(χu) = n est impair et comme χu est unitaire on a

lim
t−∞
χu(t) = −∞ et lim

t→+∞
χu(t) = +∞.

L’application t 7→ χu(t) est continue sur R, donc par le théorème des valeurs inter-
médiaires il existe λ ∈ R tel que χu(λ) = 0.

Lemme 2 : Soit E un espace vectoriel sur R, de dimension n avec n ≥ 1. Pour tout
endomorphisme u ∈ L(E), il existe au moins un sous-espace vectoriel F de E tel
que F est stable par u et dim(F ) = 1 ou dim(F ) = 2.

Preuve : Si SpR(u) 6= ∅, soit λ une valeur propre de u alors si x est un vecteur propre
associé la droite F = Rx est stable par u. Si SpR(u) = ∅, forcément n est pair et si on

pose n = 2s, alors le polynôme caractéristique de u se décompose χu =
s∏

k=1

Pk avec

Pk trinôme unitaire de discriminent Δk < 0. Par Cayley-Hamilton, χu(u) = θ, donc
P1(u)◦∙ ∙ ∙◦Ps(u) = 0, donc ∃j ∈ [[1, s]] det(Pj(u)) = 0, donc Pj(u) non injectif, donc
∃x ∈ E\{0}, Pj(u)(x) = 0. Posons Pj = X2− bX − a, donc Pj(u) = u2− bu− a IdE
et u2(x) = ax+ bu(x). Soit F = Vect(x, u(x)), c’est un plan vectoriel de E et F est
stable par u car u(x) ∈ F et u(u(x)) = ax+ bu(x) ∈ F .

MÉTHODE 1

Soit A ∈ Sn(R).
• Si n = 1 alors A = (a) avec a ∈ R, donc a est une valeur propre de A.
• Si n ≥ 2, alors :

•Pour n = 2 alors A =

(
a b
b c

)

donc χA = X
2−(a+c)X+ac−b2, de discriminent

Δ = (a + c)2 − 4(ac− b2) = (a− c)2 + 4b2, donc Δ ≥ 0 et χA admet au moins une
racine λ, laquelle est une valeur propre de A.
• Si n ≥ 2 alors, d’après le lemme E admet un sous-espace vectoriel F stable par
u tel 1 ≤ dim(F ) ≤ 2, si on note v l’endomorphisme induit alors v est symétrique
donc d’après la vérité pour n = 1 et pour n = 2, on peut dire que SpR(v) 6= ∅, donc
SpR(u) 6= ∅.

MÉTHODE 2

Cette méthode est adoptée en classe lors de l’exposé du cours. Soit A ∈ Sn(R) alors
A ∈Mn(C), soit λ une valeurs propre complexe de A, il existe X ∈ Cn\{0} tel que
AX = λX, donc AX = λ X, donc X>AX = λX>X, or X>A = (AX)> = λX>,

donc λX>X = λX>X, or siX = (xk)1≤k≤n, alorsX
>X =

n∑

k=1

|xk|2 et commeX 6= 0,

on a X>X 6= 0, donc λ = λ et on vient de preouver que ∀λ ∈ SpC(A), λ ∈ R, donc
SpC(A) = SpR(A) en particulier SpR(A) 6= ∅.
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MÉTHODE 3

L’application ΦA : Rn → R;X 7→ 〈AX,X〉 est continue car elle est polynômiale en
les coordonnées de X, donc elle est bornée et atteint ses bornes sur la sphère unité
S = {X ∈ Rn/‖X‖ = 1}, soit alors V ∈ S tel que 〈AV, V 〉 = max

‖X‖=1
〈AX,X〉. On va

démontrer que V est un vecteur propre de A, pour cela soit W ∈ S tel que W⊥V ,
on a va prouver que W⊥AV , pour cela remarquons que pour tout t ∈ R, le vecteur
ϕ(t) = cos(t)V + sin(t)W réalise ϕ(t) ∈ S car comme V⊥W , par Pythagore on e
‖ϕ(t)‖2 = cos2(t)‖V ‖2 + sin2(t)‖W‖2 = 1. Il en découle que si g est l’application
g : R→ R; t 7→ ΦA(ϕ(t)) compte tenu de g(0) = ΦA(V ), on a g(0) est un maximum
globale de g et comme g est dérivable on a g′(0) = 0, or pour tout t ∈ R, on a

g′(t) = 〈ϕ′(t), Aϕ(t)〉+ 〈ϕ(t), Aϕ′(t)〉,

en particulier compte tenu de ϕ′(t) = − sin(t)V + cos(t)W , on a ϕ′(0) = W , donc

g′(0) = 〈W,AV 〉+ 〈V,AW 〉

et comme A est symétrique on a 〈V,AW 〉 = 〈W,AV 〉, donc 2〈AV,W 〉 = 0 et
AV⊥W . On a donc prouvé que

∀W ∈ S,W⊥V ⇒ W⊥AV,

ce qui veut dire que (RV )⊥ ⊂ (RAV )⊥, donc RAV ⊂ RV , donc AV ∈ RV et il
existe λ ∈ R tel que AV = λV , ce qui prouve que Sp(A) 6= ∅.
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