
Activité en classe de la séance de Vendredi
2 janvier 2026 de 8h30 à 10h30

Une question de DL7 :
Soit n ∈ N∗ et x ∈]0, 1[. Prouver que l’on a la relation :
n∑

k=0

(nx− k)2
(
n
k

)
xk(1− x)n−k = nx(1− x).

On commence par développer (nx−k)2 = k2−2nxk+n2x2, en-
suite pour traiter k2

(
n
k

)
et pouvoir simplifier, il faut transformer

k2 = k(k− 1)+ k, ce qui fournit des produits de facteurs consé-
cutifs et permet une simplification k(k− 1)

(
n
k

)
= n(n− 1)

(
n−2
k−2

)
,

valable si k ≥ 2 et k
(
n
k

)
= n

(
n−1
k−1

)
, valable si k ≥ 1, sans oublier

que l’on a supposé que n ≥ 2.

Dans le DL7 cette question
n’existe pas et à la place on de-
mande de faire trois calculs sé-
parés qui correspondent aux trois
blocs dans les calculs ci-dessous
quand on a développé les calculs à
l’étape (??) indiquée en bas. On a
décidé de faire le calcul d’un seul
coup et vous pouvez ensuit vous
en inspirer pour faire les questions
tel qu’elles sont posées au DL.
L’idéal est de mâıtriser les deux
méthodes et comprendre le lien
avec la suite du problème qui pro-
pose une démonstration du théo-
rème de Weierstrass par les poly-
nômes de Bernestein.

et on voit que ces calculs sont valables si n ≥ 2 et k ∈ [[0, n]] tel que k ≥ 2. Avant de
commencer les calculs, on ordonne les termes suivant le degré du polynôme en k, comme
suit : (nx− k)2 = k(k− 1) + (1− 2nx)k+ n2x2. Pour simplifier notons m la somme sous

sa forme au membre à droite m =
n∑

k=0

(nx− k)2
(
n
k

)
xk(1− x)n−k, alors on a

m = n2x2
+∞∑

k=0

(
n

k

)

xk(1− x)n−k

︸ ︷︷ ︸
S1

+(1− 2nx)
+∞∑

k=0

k

(
n

k

)

xk(1− x)n−k

︸ ︷︷ ︸
S2

+
+∞∑

k=0

k(k − 1)

(
n

k

)

xk(1− x)n−k

︸ ︷︷ ︸
S3

Comme c’est indiqué et expliqué dans la marge, on voit l’apparition de trois blocs S1, S2, S3 de nature différente selon la quantité qu’on
somme et qui dépend de l’indice k. On souligne la distinction entre ces blocs notamment pour le deuxième bloc, le compteur de l’indice
k pet démarrer avec 1 tandis que pour le troisième bloc il peut démarrer avec 2 sans changer le résultat.

Selon les remarques ci-dessus, on a donc :

m = n2x2
n∑

k=0

(
n

k

)

xk(1− x)n−k

︸ ︷︷ ︸
S1

+(1− 2nx)
n∑

k=1

k

(
n

k

)

xk(1− x)n−k

︸ ︷︷ ︸
S2

+
n∑

k=2

k(k − 1)

(
n

k

)

xk(1− x)n−k

︸ ︷︷ ︸
S3

Il vient alors pour les trois blocs :
� Compte tenu de la formule du binôme de Newton, on a pour le premier bloc la
relation : S1 = n

2x2(x+ (1− x))n = n2x2.
� La factorisation par x et compte tenu de la formule k

(
n
k

)
= n

(
n−1
k−1

)
, dont on a parlé

dans l’encadré de la marge et le changement d’indice k − 1 = `, on a pour le deuxième

bloc : S2 = (1− 2nx)nx
n−1∑

`=0

(
n−1
`

)
x`(1− x)n−1−` = nx(1− 2nx).

� Finalement la factorisation par x2, la formule k(k − 1)
(
n
k

)
= n(n − 1)

(
n−2
k−2

)
et le

changement d’indice ` = k − 2, et la formule du binôme de Newton donne pour le

troisième bloc : S3 = n(n− 1)x2
n−2∑

`=0

(
n−2
`

)
x`(1− x)n−2−` = n(n− 1)x2.

� En combinant les trois relations donnant S1, S2, S3, on a :
m = n2x2 + nx(1− 2nx) + n(n− 1)x2 = nx(nx+ 1− 2nx+ (n− 1)x = nx(1− x)
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Les exercices traités pendant la
séance :

Exercice 1
Donner les rayons de convergence de

1. R1 de la série entière
∑
enzn

3

.

2. R2 de la série entière
∑
n!zn

2

.

Ce genre de série s’appelle série entière lacunaire car elle possède
une infinité de coefficients nuls, précisément ak = e

n si k = n3,
pour un certain n de N et ak = 0 sinon, d’où le tableau suivant des
premiers coefficients de la première série entière
k 0 1 2 3 . . . 6 7 8 9 10 . . . 25 26 27

ak 1 e 0 0 . . . 0 0 e2 0 0 . . . 0 0 e3

Il en découle que le rapport
an+1
an
est dépourvu de sens et la règle de

D’Alembert version série entière ne marche pas ici. On opte pour la

règle de D’Alembert séries numériques en posant un = e
nzn

3

dans

le premier exemple, et un = n!z
n2 dans le deuxième exemple.

On passe à la résolution : Pour la première question posons un = e
nzn pour tout n ∈ N

alors
∣
∣
∣un+1un

∣
∣
∣ = e|z|3n

2+3n+1 et on a tout de suite que si |z| < 1 alors lim
n→+∞

∣
∣
∣un+1un

∣
∣
∣ = 0, ce

qui permet de déduire que le rayon de convergence R1 vérifie R1 ≥ 1.

Exercice 2

1. Donner le rayon de convergence de la série entière
∑
Hnx

n

2. Calculer sa somme
+∞∑

n=1
Hnx

n, pour tout x ∈]−R,R[.

1. On sait que Hn ∼ ln(n) quand n tend vers +∞, donc
Hn+1
Hn
∼ ln(n+1)

ln(n) ∼ 1. Par la règle
de D’Alembert, le rayon de convergence de cette série entière est R = 1.

2. C’est la produit de Cauchy des séries 1
1−x =

+∞∑

n=0
anx

n, avec an = 1 pour tout n ∈ N,

et sa série entière dérivée − ln(1 − x) =
+∞∑

n=0
bnx

n avec b0 = 0, bn = − 1n pour tout

n ∈ N∗, donc 1
1−x .(− ln(1 − x)) =

+∞∑

n=0
cnx

n, avec pour tout n ∈ N, cn =
n∑

k=0

an−kbk,

donc c0 = 0 et pour tout n ∈ N∗, cn =
n∑

k=1

1
k
= Hn, donc

+∞∑

n=1
Hnx

n = − ln(1−x)1−x , pour

tout x ∈]− 1, 1[.

Exercice 3
Pour tout x on pose f(x) = ln(

√
1 + x+

√
1− x)

On a f(x) = ln(
√
1 + x+

√
1− x), donc f ′(x) =

1
2
√
x+1
− 1
2
√
1−x√

1−x+
√
1+x
= 1
2
√
1−x2

√
1− x−

√
1 + x

√
1− x+

√
1 + x︸ ︷︷ ︸

g(x)

.

On a g(x) =
√
1−x−

√
1+x√

1−x+
√
1+x
=
√
1−x(

√
1−x−

√
1+x)√

1−x(
√
1−x+

√
1+x)
= (1−x)−

√
1−x2

(1−x)+
√
1−x2
. Par le technique du conjugué,

on a g(x) = [(1−x)−
√
1−x2]2

(1−x)2−(1−x2) . Tout calcul fait on trouve g(x) =
2(x−1)(1−

√
1−x2)

2x(x−1) = −1+
√
1−x2
x

.

Ainsi, f ′(x) = 1
2x(1− (1− x

2)−
1
2 ).

Commençons par chercher le D.S.E. de (1− x2)−
1
2 :

On a (1− x2)−
1
2 = 1− 12x

2+
(− 12 )(−

3
2 )

2! x4+
(− 12 )(−

3
2 )(−

5
2 )

3! x4+ ∙ ∙ ∙+ (−
1
2 )(−

3
2 )...(−

1
2−n+1)

n! x2n+ . . .

= 1− 12x
2 +

(− 12 )(−
3
2 )

2! x4 +
(− 12 )(−

3
2 )(−

5
2 )

3! x4 + ∙ ∙ ∙+ (−
1
2 )(−

3
2 )...(−

2n−1
2 )

n! x2n + . . . .
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Notons que
(− 12 )(−

3
2 )...(−

2n−1
2 )

n! = 1
n!

n∏

k=1

−(2k−1)
2 = (−1)n

2nn!

n∏

k=1

(2k−1) = (−1)n (2n)!(2nn!)2 . Il en découle

que (1− x2)−
1
2 =

+∞∑

n=0
(−1)n (2n)!(2nn!)2x

2n.

Il en résulte que f ′(x) = 1
2x

+∞∑

n=1
(−1)n (2n)!(2nn!)2x

2n =
+∞∑

n=1

(−1)n

2
(2n)!
(2nn!)2x

2n−1.

Alors f(x) = c+
+∞∑

n=1

(−1)n

4n
(2n)!
(2nn!)2x

2n avec c = f(0) = ln(2).

Finalement f(x) = ln(2) +
+∞∑

n=1

(−1)n

4n
(2n)!
(2nn!)2x

2n

Exercice 4
DSE de f(x) = 1

x2+x+1 et g(x) =
(
1+x
1−x

)3

On propose pour f d’observer que f(x) = 1−x
1−x3 et pro-

fiter du D.S.E. de 1
1−x3 =

+∞∑

n=0
x3n pour déduire que

f(x) = (1 − x)
+∞∑

n=0
x3n =

+∞∑

n=0
x3n − x3n+1 =

+∞∑

n=0
anx

n,

avec pour tout n ∈ N, an = 1 si n = 3k, an = −1 si
n = 3k + 1 et an = 0 si n = 3k + 2 avec k ∈ N.

Pour f des élèves ont proposé de factoriser x2 +
x + 1 = (x − j)(x − j), ensuite décomposer en
éléments simples la fraction rationnelle F (X) =

1
X2+X+1

= 1
(X−j)(X−j)

. C’est une bonne idée

mais on a proposée une autre qui peut être est
plus courte, cependant il est recommandé d’abor-
der avec la première méthode pour voir ce qui se
passe avec. De la même manière pour le deuxième
exemple des élèves ont proposé d’effectuer des
produits de Cauchy, essayez de voir ce que ça
donne. On a proposé une autre méthode basée
sur la dérivation de la série géométrique.

Pour l’exemple2, on a proposé de considérer la série géométrique 1
1−x =

+∞∑

n=0
xn, la dériver

une une première fois 1
(1−x)2 =

+∞∑

n=1
nxn−1, une seconde fois, 1

(1−x)3 =
1
2

+∞∑

n=2
n(n−1)xn−2, puis

observer que g(x) = (1+x)3 1
(1−x)3 , donc g(x) =

1
2(1+3x+3x

2+x3)
+∞∑

n=2
n(n− 1)xn−2. On

peut ensuite ordonner les termes grâce à des changements d’indices simples. Précisément :

g(x) =
+∞∑

n=2

1

2
n(n− 1)xn−2 +

+∞∑

n=2

3

2
n(n− 1)xn−1 +

+∞∑

n=2

3

2
n(n− 1)xn +

+∞∑

n=2

1

2
n(n− 1)xn+1

=
+∞∑

n=2

1

2
n(n− 1)xn−2 +

+∞∑

n=1

3

2
n(n− 1)xn−1 +

+∞∑

n=0

3

2
n(n− 1)xn +

+∞∑

n=0

1

2
n(n− 1)xn+1

=
+∞∑

n=0

1

2
(n+ 2)(n+ 1)xn +

+∞∑

n=0

3

2
n(n+ 1)xn +

+∞∑

n=0

3

2
n(n− 1)xn +

+∞∑

n=1

(n− 1)(n− 2)xn

= 1 +
+∞∑

n=1

(n+ 1)(n+ 2) + 3n(n+ 1) + 3n(n− 1) + (n− 1)(n− 2)
2

xn

= 1 +
+∞∑

n=1

(4n2 + 2)xn

Conclusion g(x) =
(
1+x
1−x

)3
= 1 +

+∞∑

n=0
(4n2 + 2)xn, avec R = 1.
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Exercice 5
f(x) = e−

x2

2

∫ x
0 e
− t
2

2 dt. DSE de f avec rayon de convergence
On a f ′(x) = −xf(x)+1, donc xf(x)+f ′(x)−1 = 0. On peut prouver que f est D.S.E. en
remarquant que c’est le produit de Cauchy de deux séries entières de rayon de convergence

+∞ chacune. Précisément la fonction x 7→ e−
x2

2 est developable en série entière avec un

rayon de convergence R1 = +∞, car puisque pour tout t ∈ R, on a et =
+∞∑

n=0

tn

n! , alors en

particulier pour t = −x
2

2 , on a : h1(x) = e
−x
2

2 =
+∞∑

n=0

(−x
2

2 )
n

n! =
+∞∑

n=0

(−1)n

2nn! x
2n, valable pour

tout x ∈ R, donc la rayon de convergence est le même R1 = +∞.
On peut intégrer terme sur tout segment la série entière ci-dessus, donc pour tout réel x,

on a h2(x) =
∫ x
0 e
− t
2

2 dt =
+∞∑

n=0

(−1)n

2nn!

∫ x
0 t
2ndt =

+∞∑

n=0

(−1)n

2nn!(2n+1)x
2n+1, avec le même rayon de

convergence R2 = +∞. Comme f = h1h2, la fonction f est developable en série entière
au voisinage de 0 avec un rayon de convergence R ≥ min(R1, R2) = +∞, donc R = +∞.

Notons donc
+∞∑

n=0
anx

n la série entière associée à f et alors pour tout x réel f(x) =
+∞∑

n=0
anx

n,

donc f ′(x) =
+∞∑

n=0
nanx

n−1, il en découle que la relation xf(x)+f ′(x)−1 = 0, valable pour

tout réel x s’écrit x
+∞∑

n=0
anx

n+
+∞∑

n=1
nanx

n−1−1 = 0, donc
+∞∑

n=0
anx

n+1++
+∞∑

n=1
nanx

n−1−1 = 0,

donc par changements d’indices, il vient :

(
+∞∑

n=1
an−1x

n +
+∞∑

n=0
(n+ 1)an+1x

n

)

−1 = 0 donc

(a1−1)+
+∞∑

n=1
(an−1+(n+1)an+1)x

n = 0. Par unicité des développement en série entière(ici

celui de la fonction nulle), on a a1 = 1 et ∀n ∈ N∗, an+1 = − 1
n+1an−1. Par ailleurs il est

aisé de voir que a0 = f(0) = 0, par suite, on a

{
a0 = 0, a1 = 1
∀n ∈ N∗, an+1 = − 1

n+1an−1
, donc

si on note bk = a2k et ck = a2k+1 pour tout k ∈ N, on a les relations suivantes :{
b0 = 0
∀k ∈ N, bk+1 = − 1

2k+2bk
et

{
c0 = 0
∀k ∈ N, ck+1 = − 1

2k+3ck
, donc pour tout k ∈ N, on a

a2k = 0 et a2k+1 =
(−1)×∙∙∙×(−1)
(2k−1)×∙∙∙×1 =

(−1)k

1.3.×.(2k−1) =
(−1)k2kk!
(2k)! et on finit par donner le DSE de

f , à savoir f(x) =
+∞∑

n=0

(−1)n2nn!
(2n)! x

2n+1 avec le rayon de convergence R = +∞.

Exercice 6

Pour tout x ∈ [−1, 1], on pose f(x) =
+∞∑

n=2

(−1)n

x+n . Montrer que f est de classe C
∞ et DSE

au voisinage de 0.
Cet exercice n’est pas encore résolu car la séance avait expirée, je vous laisse réfléchir
avant que je poste sa solution.
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