
APPROXIMATION DES FONCTIONS CONTINUES,

PAR UNE FONCTION EN ESCALIERS, ET PAR UNE

FONCTION AFFINE PAR MORCEAUX CONTINUE.

I) Approximation d’une fonction continue par une fonction en
escalier

Soit ε > 0. Comme f est continue sur le segment [a, b], elle y est uni-
formément continue par le théorème de Heine, donc il existe δ > 0 tel
que pour tout x, y ∈ [a, b] on aie (?)|x − y| < δ ⇒ |f(x) − f(y)| ≤ ε.
Soit n un entier naturel non nul tel que b−a

n
< δ. Considérons alors la

subdivision (ak) de [a, b] définie par ak = a+ k
b−a
n
, pour tout k ∈ [[0, n]],

par suite a = a0 < a1 < ∙ ∙ ∙ < an−1 < an = b. Commençons la construc-
tion d’une fonction en escalier ϕε dont la définition est comme suit :
Pour tout x ∈ [a, b[, il existe un unique k ∈ {0, . . . , n − 1} tel que
x ∈ [ak, a+1[, on pose alors ϕε(x) = f(ak). Pour finie , on pose exclusi-
vement ϕε(b) = f(b).

Explications :
On observe que la condition
b−a
n
< δ, veut exactement

dire n > b−a
δ
, ce qui ins-

pire de prendre, par exemple
n =

⌊
b−a
δ
+ 1
⌋
. L’idée étant

de construire une subdivision
de [a, b] dont le pas ne dé-
passe pas δ de sorte que la
distance mutuelles entre deus
élément d’un intervalle de la
subdivision ne dépasse pas δ.

Vérifions que l’on a effectivement ‖f − ϕε‖ ≤ ε. Soit x ∈ [a, b]. Si x < b alors il existe un
unique entier naturel k ∈ {0, . . . , n} tel que x ∈ [ak, ak+1[, donc ϕε(x) = f(ak), par suite on a
|f(x)−ϕε(x)| = |f(ak+1)− f(ak)| et comme |ak+1−ak| = b−a

n
< δ, alors par (?), on a l’inégalité

(1) |f(x) − ϕε(x)| < ε. Si x = b, comme f(b) = ϕε(b), on a aussi (1). Il en découle que pour
tout x ∈ [a, b], on a |f(x)− ϕε(x)| < ε, donc que ‖f − ϕε‖∞,[a,b] ≤ ε.

II) Approximation d’une fonction continue par une fonction affine
par morceaux et continue

Soit ε > 0. Comme f est continue sur le segment [a, b],
elle y est uniformément continue par le théorème de Heine,
donc il existe δ > 0 tel que pour tout x, y ∈ [a, b] on aie

(??) |x− y| < δ ⇒ |f(x)− f(y)| ≤
ε

2
.

Soit n un entier naturel non nul tel que b−a
n

< δ. Consi-
dérons alors la subdivision (ak) de [a, b] définie par ak =
a + k b−a

n
, pour tout k ∈ [[0, n]], par suite, on a notam-

ment : a = a0 < a1 < ∙ ∙ ∙ < an−1 < an = b. Commen-
çons la construction d’une fonction ψε affine par morceaux
continue sur [a, b] dont la définition est comme suit : Pour
tout x ∈ [a, b[, il existe un unique k ∈ {0, . . . , n − 1} tel
que x ∈ [ak, a+1[, on impose donc à ψε d’être affine sur
[ak, ak+1] et que ψε et f coincident au extrémités ak et
ak+1 de l’intervalle Ik = [ak, ak+1], ce qui donne l’expres-
sion explicite qui définit ψε sur le segment Ik = [ak, ak+1],

à savoir, ∀x ∈ Ik, ψε(x) = f(ak) + (x − ak)
f(ak+1)−f(ak)
ak+1−ak

.

A vrai dire on n’a pas besoin dans notre démonstration
de cette formule explicite qui donne ψε(x) pour x ∈ Ik,
mais on a juste besoin du fait que ψε est affine sur Iε
d’une part et qu’elle coincide avec f aux extrémités de
Ik, à savoir ak et ak+1. Vérifions que l’on a effectivement
‖f − ψε‖ ≤ ε. Soit x ∈ [a, b]. Si x < b alors il existe un
entier naturel k ∈ {0, . . . , n} tel que x ∈ [ak, ak+1], donc
|f(x)− ψε(x)| ≤ |f(x)− f(ak)|+ |f(ak)− ψε(x)|.

Explications :
Si I = [a, b] est un segment de d R et
f : [a, b] → C une application continue alors
pour tout c ∈]a, b[, il existe une et une seule ap-
plication g qui vérifie les conditions suivantes :
� La restriction de g à l’intervalles [a, c](resp.
[c, b]) est affine sur [a, c]((resp.[c, b]).

� Les applications f et g coincident sur
{a, c, b}

x
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• Si f : [c, d] → C continue sur [c, d], alors
il existe une et une seule application affine
h : [c, d] → C tel que f et h coincident sur
{c, d} ; elle est définie par l’expression explicite :
∀t ∈ [c, d], h(t) = f(c) + (t− c) f(d)−f(c)

d−c .
• Si f : [c, d] → C est affine sur le segment
[c, d] alors on a ∀x ∈ [c, d], |f(x) − f(c)| ≤
|f(d)− f(c)|, en effet c’est vrai si x = c, et si
c < x, on écrit : f(x)−f(c)

x−c = f(d)−f(c)
d−c , il en dé-

coule que |f(x)−f(x)| =
(
x−c
d−c

)
|f(d)−f(c)|.

On conclut en observant que l’on a ce qui suit :
∀x ∈ [c, d], 0 ≤ x−c

d−c ≤ 1

Comme x ∈ Ik = [ak, ak+1], on a |x−ak| ≤ |ak+1−ak| = b−a
n
< δ, donc par (??) tout en haut, on a

|f(x)−f(ak)| < ε
2
. On va traiter |f(ak)−ψε(x)| et tout d’abord, observons que f(ak) = ψε(ak) et
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comme ψε est affine sur Ik, on a (voir l’encadré à droite) |ψε(x)−ψε(ak)| ≤ |ψε(ak+1)−ψε(ak)|,
donc compte tenu de ψε et f coincident au points ak et ak+1 et de |ak+1 − ak| < δ, on a
|f(ak)− ψε(x)| < ε

2
et on a finalement ∀x ∈ [a, b], |f(x)− ψε(x)| < ε, donc ‖f − ψε‖∞,[a,b] ≤ ε.

III) Lien avec l’approximation de x 7→ |x| de la première question

Notons que la question II)1) du DL7 propose de démontrer que la suite (x 7→ Pn(x)) des
polynômes proposés est une suite qui converge uniformément vers la fonction x 7→ |x| sur le
segment [−1, 1]. Quel est le lien entre cet exemple et le cas général ? Dans la partie suivante on a
proposé de démontrer que la famille (ϕω)ω∈[a,b] avec ∀ω, x ∈ [a, b], ϕω(x) = |x−ω| est une famille
génératrice de l’espace AMC([a, b],C) des applications affines par morceaux et continues sur
[a, b], en fait Ω est même une base de AMC([a, b],C). Avec plus de précision si f : [a, b] → C
est une application affine par morceaux et continue sur [a, b] on note

D′f = {x ∈]a, b[/f n’est pas dérivable au point x}.

Alors, D′f est une partie finie de [a, b]. Si D
′
f 6= ∅, on note D

′
f = {a1, . . . , an−1} tel que a1 <

. . . an−1, et on note a0 = a et an = b, de sorte que a = a0 < a1 < ∙ ∙ ∙ < an−1 < an et
f est non dérivable au points ak pour tout k ∈ {1, . . . , n − 1} et f est continue sur [a, b] et
affine sur Ik = [ak, ak+1], pour tout k ∈ [[0, n − 1]]. Dans ce cas précis il existe un unique

(λ0, λ1, . . . , λn−1, λn) ∈ Cn+1 tel que f =
n∑

k=0

λkϕak .
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