APPROXIMATION DES FONCTIONS CONTINUES,
PAR UNE FONCTION EN ESCALIERS, ET PAR UNE
FONCTION AFFINE PAR MORCEAUX CONTINUE.

I) Approximation d’une fonction continue par une fonction en

escalier

Soit £ > 0. Comme f est continue sur le segment [a, b], elle y est uni-
formément continue par le théoreme de Heine, donc il existe § > 0 tel
que pour tout z,y € [a,b] on aie (x)|z —y| < § = |f(z) —
Soit n un entier naturel non nul tel que I’_Ta < 9. Considérons alors la
subdivision (ay) de [a, b] définie par a, = a + kb_T“, pour tout k € [0,n],
par suite a = ag < a; < -++ < ap_1 < a, = b. Commencons la construc-
tion d’une fonction en escalier ¢. dont la définition est comme suit :
Pour tout = € [a,b|, il existe un unique k£ € {0,...,n — 1} tel que
x € [ag,a41[, on pose alors ¢.(x) = f(ax). Pour finie , on pose exclusi-

vement . (b) = f(b).

Explications .

On observe que la condition
b—a -~ § veut exactement
dire n > bfT“, ce qui ins-
pire de prendre, par exemple
n = V’*T“ + 1J. L'idée étant
de construire une subdivision
de [a,b] dont le pas ne dé-
passe pas J de sorte que la
distance mutuelles entre deus
élément d'un intervalle de la
subdivision ne dépasse pas 9.

fly)l <e.

Vérifions que l'on a effectivement ||f — ¢.|| < €. Soit z € [a,b]. Si z < b alors il existe un
unique entier naturel k € {0,...,n} tel que x € [ag, ag1[, donc p.(x) = f(ax), par suite on a

(1) \f(??

|f(z) —¢:(z)| = | f(ars1) — far)| et comme |ai1 — ax| = =% < 6, alors par (), on a 'inégalité

— ¢e(x)| < e.Siz=b, comme f(b) = p.(b), on a aussi (1). Il en découle que pour

tout = € [a,b], on a |f(z) — ¢-(x)| < ¢, donc que || f — @elloofap < €.

IT) Approximation d’une fonction continue par une fonction affine

par morceaux et continue

Soit € > 0. Comme f est continue sur le segment [a, b],
elle y est uniformément continue par le théoreme de Heine,
donc il existe & > 0 tel que pour tout x,y € [a, b] on aie

(o) o=yl <3=|f(@) - Fly)l < 5.

Soit n un entier naturel non nul tel que bTa < 9. Consi-
dérons alors la subdivision (ax) de [a, b] définie par a; =
a + k™%, pour tout k € [0,n], par suite, on a notam-
ment : a = a9 < a1 < -+ < Ap_q1 < a, = b. Commen-
¢ons la construction d’une fonction 1. affine par morceaux
continue sur [a, b] dont la définition est comme suit : Pour
tout = € [a,b[, il existe un unique k € {0,...,n — 1} tel
que = € |ak,ay1], on impose donc a 1. d’étre affine sur
[ag, ars1] et que Y. et f coincident au extrémités ay et
ag+1 de lintervalle Iy = [ag, ax11], ce qui donne l'expres-
sion explicite qui définit ¢, sur le segment I, = [ag, ax.1],
a savoir, Vo € Iy, .(z) = f(ax) + (z — ak)W.
A vrai dire on n’a pas besoin dans notre démonstration
de cette formule explicite qui donne .(x) pour = € Iy,
mais on a juste besoin du fait que 1. est affine sur I,
d’une part et qu’elle coincide avec f aux extrémités de
Iy, a savoir a; et agy 1. Vérifions que 'on a effectivement
|f — || < e. Soit € [a,b]. Si z < b alors il existe un
entier naturel k € {0,...,n} tel que = € [a, apy1], donc
|f(@) = ve(@)] < |f (@) — flan)| + | f(ar) — ¢e(@)].

Comme x € Iy = [ag, ars1), on a |z —ax| < lagp—ap| = 5

n

Explications .

Si I = [a,b] est un segment de d R et
f : [a,b] — C une application continue alors
pour tout ¢ €]a, b], il existe une et une seule ap-
plication g qui vérifie les conditions suivantes :
#5 | a restriction de g a I'intervalles [a, c](resp.
[c, b]) est affine sur [a, c|((resp.[c, b]).

#£5 Les applications f et g coincident sur
{a,c,b}
Y
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eSi f : [¢,d] — C continue sur [c,d], alors

il existe une et une seule application affine
h : [c,d] — C tel que f et h coincident sur
{c,d}; elle est définie par I'expression explicite :
vt € [e,d], h(t) = f(c) + (t — c) D=L,

oSi f : [c,d] — C est affine sur le segment
[e,d] alors on a Vz € [c,d],|f(z) — f(c)] <
|f(d) — f(c)|, en effet c'est vrai si z = ¢, et si

f(wz:i’(C) f(di:f(C)
coule que | £(z) — £(2)| = (325 ) 1£(d)— f(c)].

On conclut en observant que I'on a ce qui suit :

¢ < x, on écrit : = il en dé-

Vz € [¢,d],0 < 2=¢ < 1

< ¢, donc par (x*) tout en haut, on a

|f(z)— f(ax)| < 5. On va traiter | f(ax) —v.()| et tout d’abord, observons que f(ay) = ¥.(az) et



comme . est affine sur Iy, on a (voir 'encadré a droite) . (z) — ¥e(ar)| < [e(arr1) — Ye(ar)],
donc compte tenu de 1. et f coincident au points ay et ap i et de |ar 1 — ax| < 9§, on a
|f(ar) — Ye(x)| < 5 et on a finalement Vx € [a,b],|f(z) — ¥.(x)| <€, donc ||f — Yc|loc,fap) < €.

ITT) Lien avec ’approximation de = + |z| de la premiére question

Notons que la question II)1) du DL7 propose de démontrer que la suite (z — P,(x)) des
polynomes proposés est une suite qui converge uniformément vers la fonction z +— |z| sur le
segment [—1, 1]. Quel est le lien entre cet exemple et le cas général ? Dans la partie suivante on a
proposé de démontrer que la famille (¢.,)wefq,) avec Yw, z € [a, b, ¢, (x) = |z —w| est une famille
génératrice de l'espace AMC([a,b],C) des applications affines par morceaux et continues sur
[a,b], en fait © est méme une base de AMC(][a,b],C). Avec plus de précision si f : [a,b] — C
est une application affine par morceaux et continue sur [a, b] on note

' = {x €a,b[/ f n’est pas dérivable au point z}.

Alors, D} est une partie finie de [a,b]. Si D} # (), on note D} = {a1,...,a,1} tel que a; <

...Qp_1, €t on note ag = a et a, = b, de sorte que a = a9 < a1 < -+ < Ap_1 < a, et
f est non dérivable au points ay pour tout k € {1,...,n — 1} et f est continue sur [a,b] et
affine sur Iy = [ak,ar+1], pour tout k € [0,n — 1]. Dans ce cas précis il existe un unique
n
()\0, )\1, ey )\nfl, )\n) € (Cn+1 tel que f = Z )\k@ak'
k=0



