
EXERCICE
1. (a) On a M =

 1 1 1
1 1 1
1 1 1

, donc

M 2 =M ×M =

 1 1 1
1 1 1
1 1 1

×
 1 1 1

1 1 1
1 1 1

 =

 3 3 3
3 3 3
3 3 3

 = 3M.

Résumé : M 2 = 3M .
Déduction : Il en découle queM3−3M = 0, donc le polynôme P (X) = X2−3M
est un polynôme annulateur de degré 2 de M .

(b) Le polynôme P = X(X − 3) est scindé à racines simples( deux racines simples
0 et 3), par suite comme il annule M , la matrice M est diagonalisable et ses
valeurs propres sont parmi les racines 0 et 3 de P .

(c) Le polynôme minimal πM de M est un polynôme unitaire de degré au moins 1
et πM divise P car P (M) = 0, donc πM ∈ {X,X − 3, P}. On ne peut pas avoir
P = X car cela veut dire M = 0, ce qui n’est pas le cas, ni πM = X − 3 car
cela veut dire P = 3I3, ce qui n’est pas le cas, donc πM = P = X2 − 3X.

(d) Il découle de la question 1)c) que Sp(M) = {0, 3} et comme M est diagonali-
sables les multiplicités respectives des valeurs propres 0 et 3 sont les dimensions
des sous-espaces caractéristiques associés, donc

m(0) = dim(E0(M)) = 3− rg (M) = 3− 1 = 2,

par suite sans le moindre calcul m(3) = 1 ( la somme des multiplicités vaut 3),
donc

χM = X2(X − 3) = X3 − 3X2.

Autre méthode : On utilise la formule du cours

χM = X3 − tr(M)X2 + aX + det(M), a ∈ R.

Or, rg (M) = 1 donc M non inversible, donc det(M) = 0 et

χM = X3 − 3X2 + aX,

or χM(3) = 0, donc 3a = 0 et a = 0, donc χM = X3 − 3X2.

2. (a) Non, voici un contre exemple : M1 =

(
1 1
0 0

)
, M2 =

(
0 0
0 1

)
, on a M 2

1 =M1,

doncM1 est diagonalisable (projecteur) etM2 est diagonale donc diagonalisable,

on a M1 +M2 =

(
1 1
0 1

)
n’est pas diagonalisable car

dim(E1(M1)) = 2− rg (M2 − I2) = 2− 1 = 1 < m(1) = 2.
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(b) Non car pour M1 et M2 du 2)a), on a M1 et M2 sont diagonalisables et M1M2 =(
0 1
0 0

)
, n’est pas diagonalisable car si c’était le cas elle serait nulle car 0 est

sa seule valeur propre.

3. On donne A =

 1 1 0
0 0 0
0 0 0

 et B =

 0 0 0
0 1 0
0 0 0

.

(a) Par les calculs habituels, on a :

A+B =

 1 1 0
0 0 0
0 0 0

+

 0 0 0
0 1 0
0 0 0

 =

 1 1 0
0 1 0
0 0 0

 ,

et

AB =

 1 1 0
0 0 0
0 0 0

×
 0 0 0

0 1 0
0 0 0

 =

 0 1 0
0 0 0
0 0 0

 .

(b) Les matrices A et B sont diagonalisables car :
•Un calcul simple donne A2 = A, donc A est la matrice d’un projecteur donc
A est diagonalisable.
•La matrice B est diagonale donc diagonalisable.

(c) Oui A+B est trigonalisable car elle est triangulaire supérieure.
Non A + B n’est pas diagonalisable car 1 ∈ Sp(A + B) et mA+B(1) = 2 est la

multiplicité de 1 mais A+B − I3 =

 0 1 0
0 0 0
0 0 −1

, et on a :

dim(E1(A+B)) = 3− rg (A+B − I3) = 3− 2 = 1 ̸= mA+B(1).

(d) Oui AB est trigonalisable car elle est triangulaire supérieure.
Non AB n’est pas trigonalisable car 0 ∈ Sp(AB) et mAB(0) = 3 est la multi-
plicité de 0 mais dim(E0(AB)) = 3− rg (AB) = 3− 1 = 2 ̸= mAB(0).

PROBLÈME

Partie I

1. On rappelle que pour toute matrice M ∈M2(K), on a

χM(X) = X2 − tr(M)X + det(M).
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On applique cette formule à chacune des matrices A0 et B0, donc :

χA0
= X2 − 3X + 2 = (X − 1)(X − 2),

il en découle que Sp(A0) = {1, 2}
De même on a

χB0
= X2 −X = X(X − 1),

par suite Sp(B0) = {0, 1}.
2. On effectue les calculs des images des vecteurs de la base canonique :

hA0,B0
(E1,1) = A0E1,1 − E1,1B0 =

(
0 0
−1 0

)
−

(
2 2
0 0

)
=

(
−2 −2
−1 0

)
hA0,B0

(E1,2) = A0E1,2 − E1,2B0 =

(
0 0
0 −1

)
−

(
−1 −1
0 0

)
=

(
1 1
0 −1

)
hA0,B0

(E2,1) = A0E2,1 − E2,1B0 =

(
2 0
3 0

)
−

(
0 0
2 2

)
=

(
2 0
1 −2

)
hA0,B0

(E2,2) = A0E2,2 − E2,2B0 =

(
0 2
0 3

)
−

(
0 0
−1 −1

)
=

(
0 2
1 4

)
Il en découle que

H0 =


−2 1 2 0
−2 1 0 2
−1 0 1 1
0 −1 −2 4


On a

χH0
= det(XI4 −H0) =

∣∣∣∣∣∣∣∣
X + 2 −1 −2 0

2 X − 1 0 −2
1 0 X − 1 −1
0 1 2 X − 4

∣∣∣∣∣∣∣∣ .
En effectuant l’opération élémentaire C1 ← C1 + C2 + C3 + C4 , il vient :

χH0
= (X − 1)

∣∣∣∣∣∣∣∣
1 −1 −2 0
1 X − 1 0 −2
1 0 X − 1 −1
1 1 2 X − 4

∣∣∣∣∣∣∣∣
et en effectuant les operations élémentaires Lk ← Lk −L1, ∀k ∈ {2, 3, 4}, on trouve

χH0
= (X − 1)

∣∣∣∣∣∣∣∣
1 −1 −2 0
0 X 2 −2
0 1 X + 1 −1
0 2 4 X − 4

∣∣∣∣∣∣∣∣
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alors

χH0
= (X − 1)

∣∣∣∣∣∣
X 2 −2
1 X + 1 −1
2 4 X − 4

∣∣∣∣∣∣ = (X − 1)X

∣∣∣∣∣∣
X 2 0
1 X + 1 1
2 4 1

∣∣∣∣∣∣
( on a effectué C3 ← C3 + C2)

= X

∣∣∣∣∣∣
X 2 0
−1 X − 3 0
2 4 1

∣∣∣∣∣∣ (L2 ← L2 − L3)

= X(X − 1)

∣∣∣∣ X 2
−1 X − 3

∣∣∣∣ = X(X − 1)(X − 2)

∣∣∣∣ 1 2
−1 X − 3

∣∣∣∣
( on a effectué C1 ← C1 − C2)

= X(X − 1)(X − 2)

∣∣∣∣ 1 2
0 X − 1

∣∣∣∣ (L2 ← L2 + L1)

= X(X − 1)2(X − 2)

Alors Sp(H0) = {0, 1, 2}.
Le tableau suivant résume les valeurs de a− b pour (a, b) ∈ Sp(A0)× Sp(B0) :

− 0 1

1 1 0

2 2 1

,

on a bien

Sp(H0) = Sp(A0)− Sp(B0) = {a− b/(a, b) ∈ Sp(A0)× Sp(B0)}.

3. Les matrices A0 et B0 sont toutes les deux diagonalisables car leurs polynômes
caractéristiques respectifs sont scindés à racines simples.

4. Comme χH0
= X(X − 1)2(X − 2) (scindé sur C, bien évidemment) et comme les

dimensions des sous-espaces propres associés aux valeurs propres sont aux moins
égales à 1, H0 est diagonalisable si et seulement si dim(E1(H0)) = 2, or par le
théorème du rang, dim(E1(H0)) = 4− rg (H0 − I4). On a

H0 − I4 =


−3 1 2 0
−2 0 0 2
−1 0 0 1
0 −1 −2 3

 ,

de colonnes Ck, k ∈ [[1, 4]] avec comme on l’observe facilement

C3 = 2C2 et C4 = −C1 − 3C3 et la famille (C1, C2) est libre

car sinon on aurait un nombre complexe α tel que C2 = αC1 par suite on aurait
−3α = 1 et −2α = 0, ce qui est absurde. Il découle de tout ça que rg (H0− I4) = 2,
donc on a bien dim(E1(H0)) = 2, donc H0 est diagonalisable.
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Partie II

5. On a

χB⊤ = det(XI −B⊤) = det((XI −B)⊤)) = det(XI −B) = χB,

donc χB et χB⊤ ont mêmes racines et ainsi B et B⊤ ont même spectre.

6. (a) En posant V =

 v1
...
vn

 et W =

 w1
...
wn

, on a :

VW⊤ =

 v1
...
vn

 (w1, . . . , wn) =

 v1w1 . . . v1wn
... . . . ...

vnw1 . . . vnwn

 = (viwj)1⩽i,j⩽n

Comme V n’est pas nulle, il existe i0 ∈ [[1, n]] tel que vi0 ̸= 0. De même il existe
j0 ∈ [[1, n]] tel que wj0 ̸= 0. Ainsi V tW n’est pas nulle puisque son coefficient
vi0wj0 de la ligne i0 et la colonne j0 d’indice est non nul.

(b) On a

hA,B

(
V tW

)
= AV tW − V tWB = (AV )tW − V t

(
tBW

)
= (aV )tW − V t(bW ) = (a− b)V tW

Comme V tW est de plus non nul, c’est un vecteur propre de hA,B associé à la
valeur propre a− b.

(c) Par la question précédente, {a− b/(a, b) ∈ Sp(A)× Sp(B)} ⊂ Sp (hA,B).
7. (a) Soit i et j compris entre 1 et n.PEi,j = (0| . . . |0 |Vi| 0| . . . |0) où la colonne Vi

est à la jème place.

PEi,jQ
⊤ =

0n,1 . . . 0n,1, Vi︸︷︷︸
jème place

, 0n,1, . . . , 0n,1



W⊤

1
...

W⊤
j
...

W⊤
n

 = ViW
⊤
j .

(b) L’application ψ deMn(C) dans lui-même qui à toute matriceM associe PMQ⊤

est un automorphisme car elle est linéaire bijective (sa réciproque étant l’appli-
cation M ′ 7→ P−1M ′ (Q−1)⊤ ). Comme (Ei,j)1⩽i,j⩽n est une base de Mn(C),
son image

(
ViW

⊤
j

)
1⩽i,j⩽n

par ψ est une base deMn(C).

8. Supposons A et B diagonalisables dansMn(C). Remarquons que B⊤ est aussi dia-
gonalisable car si B = RDR−1 avec R ∈ GLn(C) et D réelle diagonale, alors
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B⊤ =
(
R⊤

)−1
DR⊤. Choisissant (V1, . . . , Vn) base de vecteurs propres de A et

(W1, . . . ,Wn) base de vecteurs propres de B⊤, la famille
(
ViW

⊤
j

)
1⩽i,j⩽n

est une
base de vecteurs propres de hA,B. Ainsi hA,B est diagonalisable.

9. On a : χA(B) =
n∏

k=1

(B − akI). Si chacun des facteurs du produit ci-dessus est

inversible, alors χA(B) est inversible comme produit de matrices inversibles.
Si au contraire au moins un des facteurs B − ak0I du produit ci-dessus est non
inversible donc de rang strictement inférieur à n, alors le rang de χn, qui est inférieur
ou égal au rang de chacun des facteurs B − akI, est strictement inférieur à n donc
χA(B) n’est pas inversible. variante : les B − akI sont tous des polynômes en B
donc commutent, donc χA(B) est égale à C (B − ak0I) (pour une certaine matrice
C ∈ C[A] et son noyau contient donc celui de B−ak0I qui n’est pas réduit à 0Mn,1(C)
) Ainsi

χA(B) est inversible ⇐⇒ ∀k ∈ [[1, n]], B − akI est inversible
⇐⇒ ∀k ∈ [[1, n]], ak /∈ Sp(B)

⇐⇒ Sp(A) ∩ Sp(B) = ∅
10. Soit λ ∈ Sp(hA,B), et M ∈Mn(C)\{0Mn,1(C)} un vecteur propre associé.

(a) Par hypothèse, λM = hA,B(M) = AM −MB. On en déduit que

AM =MB + λM = N (B + λIn) .

Montrons alors par récurrence sur k que pour tout k dans N, AkM =M (B + λIn)
k.

• Initialisation : Pour k = 0, on trouve M =M qui est vrai.
•Hérédité : Soit k ∈ N. On suppose que AkM =M (B + λIn)

k. On a alors

Ak+1M = A
(
AkM

)
= AM (B + λIn)

k par HR

=M (B + λIn)
k+1 d’après la formule ci-dessus

•Conclusion : On a bien montré que pour tout entier k dans N, on a la relation
AkM =M (B + λIn)

k .

(b) Soit P ∈ C[X]. On pose P =
N∑
k=0

akX
k où N est supérieur au degré de P .

On déduit de ce qui précède que :

P (A)M =
N∑
k=0

akA
kM =

N∑
k=0

akM (B + λIn)
k

= M
N∑
k=0

ak (B + λIn)
k =MP (B + λIn)
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(c) On peut appliquer ce qui précède au polynôme χA. Comme, d’après le théorème
de Cayley-Hamilton, χA(A) = 0 on obtient :

MχA (B + λIn) = χA(A)M = 0

Supposons par l’absurde que χA (B + λIn) est inversible. En multipliant par son
inverse on en déduit M = 0 ce qui est absurde car M était supposé non nul
puisque c’est un vecteur propre de hA,B. On en déduit que χA (B + λIn) n’est
pas inversible.

(d) On a vu à la question II.6) que :

Sp (hA,B) ⊂ {a− b/(a, b) ∈ Sp(A)× Sp(B)}.
Montrons l’inclusion inverse. Soit λ ∈ Sp (hA,B). D’après II.10.c), χA (B + λIn)
n’est pas inversible ce qui implique, d’après II.9) que Sp(A)∩Sp(B+λIn) ̸= ∅.
Soit x un élément de cet ensemble. Il existe a ∈ Sp(A) tel que x = a et un
élément b ∈ Sp(B) tel que x = b + λ (car les éléments du spectre de B + λIn
sont les éléments obtenus en ajoutant λ aux éléments du spectre de B ). On en
déduit que a = b+ λ et donc λ = a− b. Finalement,

Sp(hA,B) = {a− b/(a, b) ∈ Sp(A)× Sp(B)}.

(e) Le fait qu’il existe une matrice non nulle de Mn(C) telle que AM = MB

est équivalent au fait que 0 est valeurs propre de hA,B. D’après II.10.d) cela
est équivalent à 0 ∈ {a − b/(a, b) ∈ Sp(A) × Sp(B)}. On en déduit donc
qu’il existe M non nulle dans Mn(C) telle que AM = MB si et seulement si
Sp(A) ∩ Sp(B) ̸= ∅.

11. (a) Montrons que la famille de matrices (Mij)(i,j)∈[[1,n]]2 est libre. Soit (λij)(i,j)∈[[1,n]]2
une famille de scalaires telle que

∑
(i,j)∈[[1,n]]2

λijMij = 0. Pour tout k ∈ [[1, n]],

0 =

 ∑
(i,j)∈[[1,n]]2

λijMij

Vk =
n∑

i=1

λikVi

Comme la famille (Vi)1⩽i⩽n est libre (puisque c’est une base) on en déduit que
pour tout i ∈ [[1, n]], λik = 0. Ceci étant vrai pour tout k ∈ [[1, n]], on obtient
finalement que tous les λij sont nuls ce qui implique que la famille de matrices
(Mij)(i,j)∈[[1,n]]2 est libre. C’est une famille qui contient n2 matrices et Mn(C)
est un espace vectoriel de dimension n2. La famille (Mij)(i,j)∈[[1,n]]2 est une base
deMn(R).

(b) Soit (i, j, k) ∈ [[1, n]]3, alors :

hA(Mij)Vk = (AMij −MijA)Vk

= AMijVk −MijAVk

= AMijVk − λkMijVk.
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La dernière égalité vient du fait que Vk est un vecteur propre pour la valeur
propre λk associé à A.
• Si k ̸= j alors MijVk = 0, donc hA (Mij)Vk = 0 = (λi − λj)MijVk.
• Si k = j alors MijVk = Vi et AMijVk = AVi = λiVi = λiMijVk. On en déduit
que hA (Mij)Vk = λiMijVk − λkMijVk = (λi − λj)MijVk car k = j. Dans tous
les cas, on a bien, hA (Mij)Vk = (λi − λj)MijVk.
Maintenant, si on considère T et S les endomorphismes deMn,1(C) définis par
T : X 7→ hA (Mij)X et S : X 7→ (λi − λj)MijX. On vient de montrer que
ces deux endomorphismes coincident sur la base (Vk)k∈[[1,n]]. Ils sont donc égaux,
d’où l’égalité matricielle hA (Mij) = (λi − λj)Mij. Cela signifie bien que les
matrices Mij sont des vecteurs propres de hA.

(c) D’après la question précédente la famille (Mij)(i,j)∈[[1,n]]2 est une base de vecteurs
propres pour hA. Le noyau de hA est donc l’espace vectoriel engendré par les
matrices Mij telles que hA (Mij) = 0. Or, en utilisant la question II.11.b), on a
hA (Mij) = (λi − λj)Mij et donc hA (Mij) = 0 ⇐⇒ λi = λj ⇐⇒ (i, j) ∈ J .
On en déduit que Ker (hA) = Vect {Mij, (i, j) ∈ J}. De ce fait dim (Ker (hA))
est égal au cardinal de l’ensemble J . En posant pour tout k ∈ [[1, p]],

Jk = {(i, j), λi = λj = µk} ,
on a

dim (Ker (hA)) = #J =

p∑
k=1

#Jk =

p∑
k=1

m2
k

(d) D’après la question précédente,

dim (Ker (hA)) =

p∑
k=1

m2
k ⩾

p∑
k=1

mk = n.

En effet, comme mk est supérieur ou égal à 1,m2
k ⩾ mk. De plus, il n’y a égalité

que si mk = 1. De ce fait, dim (Ker (hA)) = n si et seulement si pour tout entier
k,mk = 1 ce qui signifie que A admet n valeurs propres distinctes.

(e) Si les n valeurs propres de A sont distinctes on sait que le polynôme minimal

µA =
n∏

i=1

(X − λi) est de degré n donc ( In, A,A2, · · · , An−1 ) est une famille

libre qui constitue une base de R[A]. Comme il est clair que toute matrice M
de R[A] (c’est-à-dire un polynôme en A ) commute à A, on a

hA(M) = AM −MA = 0.

Cela signifie que C[A] ⊂ Ker (hA). Comme d’après ce qui précède,

dimKer (hA) = n = dimC[A],

on obtient bien que Ker (hA) = C[A]
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12. On suppose que hA est diagonalisable On note (Pij)(i,j)∈[[1,n]]2 une base de vecteurs
propres de hA, chaque matrice Pij étant associée à la valeur propre λij. Soit λ
une valeur propre de A et X est un vecteur propre de A associé à λ. Soit Y un
vecteur de Cn, il existe une matrice M ∈ Mn(C) telle que MX = Y . Pour s’en
convaincre il suffit de compléter la famille libre {X} (elle est libre car X ̸= 0 puisque
c’est un vecteur propre) en une base B = (X,X1, . . . , Xn−1) de Cn. On sait alors
qu’il existe un endomorphisme de Cn qui envoie tous les vecteurs de la base B
vers le vecteur Y . Maintenant, comme (Pij)(i,j)∈[[1,n]]2 est une base de Mn(C), il
existe une famille (λij)(i,j)∈[[1,n]]2 de scalaires tels que

∑
(i,j)∈[[1,n]]2

λijPij = M et donc

Y = MX =
∑

(i,j)∈[[1,n]]2
PijX. Cela montre bien que Y est dans l’espace vectoriel

engendré par la famille de vecteurs (PijX)(i,j)∈[[1,n]]2. Maintenant, la famille considérée
ci-dessus est une famille génératrice de Rn. On peut donc en extraire une base.
Il existe alors J une partie de [[1, n]]2 de cardinal n tel que (PijX)(i,j)∈J soit une
base de Rn. Notons alors que pour tout (i, j) ∈ J . comme hA (Pij) = λijPij, on a
alors APijX = (PijA+ λijPij)X = (λ+ λij)PijX. On a donc trouvé une base de
vecteurs propres de A. Cela implique que A est diagonalisable.

13. L’argument ci-dessus se recopie quand le corps de base est R. Il faut juste s’assurer
que si A ∈ Mn(R) et hA est diagonalisable sur R alors A a (au moins) une valeur
propre réelle. Par l’absurde, supposons que A n’ait pas de valeurs propres réelles.
Elle a au moins une valeur propre complexe ω (de partie imaginaire non nulle). On
sait que ω est aussi une valeur propre de A car A est une matrice réelle. D’après les
calculs de la question II)6) (qui restent vrais dans R ), on peut alors en déduire que
ω−ω est une valeur propre de hA. Cela est absurde car ω−ω est un imaginaire pur
et hA étant diagonalisable (sur R ) il n’a que des valeurs propres réelles. Finalement,
A admet au moins une valeur propre réelle et donc A est diagonalisable.
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