1. (a)

EXERCICE

111
OnaM=1| 11 1 |, donc
111
111 111 33 3
M=MxM=|111]x|111]|=(333]|=3M
111 111 33 3

Résumé : M? = 3M.

Déduction : Il en découle que M?—3M = 0, donc le polynome P(X) = X2 —3M
est un polynome annulateur de degré 2 de M.

Le polynome P = X (X — 3) est scindé a racines simples( deux racines simples
0 et 3), par suite comme il annule M, la matrice M est diagonalisable et ses
valeurs propres sont parmi les racines 0 et 3 de P.

Le polynéome minimal 7, de M est un polyndéme unitaire de degré au moins 1
et my divise P car P(M) = 0, donc my; € {X, X — 3, P}. On ne peut pas avoir
P = X car cela veut dire M = 0, ce qui n’est pas le cas, ni mjy = X — 3 car
cela veut dire P = 315, ce qui n’est pas le cas, donc myy = P = X? — 3X.

Il découle de la question 1)c) que Sp(M) = {0,3} et comme M est diagonali-
sables les multiplicités respectives des valeurs propres 0 et 3 sont les dimensions
des sous-espaces caractéristiques associés, donc

m(0) = dim(Ey(M)) =3 —-rg(M)=3—-1=2,

par suite sans le moindre calcul m(3) =1 ( la somme des multiplicités vaut 3),
donc

xur = X*(X —3) = X° - 3X2

Autre méthode : On utilise la formule du cours
= X° —tr(M)X? + aX + det(M),a € R.
Or, rg (M) =1 donc M non inversible, donc det(M) = 0 et
v =X —3X%+aX,
or x1(3) =0, donc 3a = 0 et a = 0, donc yy = X® — 3X2.

00 0 1
donc M est diagonalisable (projecteur) et Mj est diagonale done diagonalisable,

11
on a My + My = ( 01 ) n’est pas diagonalisable car

dlm(El(Ml)) =2— rg (M2 — [2) =2—-1=1< m(l) = 2.

Non, voici un contre exemple : My = ( Ll ), My = ( 00 ), ona M= M,
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(b) Non car pour M; et Ms du 2)a), on a M; et M, sont diagonalisables et My My =

8 (13 ), n’est pas diagonalisable car si ¢’était le cas elle serait nulle car 0 est
sa seule valeur propre.
110 000
3.0ndonne A= 000 |JeteB=| 010
000 000
(a) Par les calculs habituels, on a :
110 000 110
A+B=1000]+]1010])]=10101],
000 000 000
et
110 000 010
AB=1 000 |x[ O010]=]1000
000 000 000

(b) Les matrices A et B sont diagonalisables car :
e Un calcul simple donne A% = A, donc A est la matrice d'un projecteur donc
A est diagonalisable.
e La matrice B est diagonale donc diagonalisable.

(¢) Oui A+ B est trigonalisable car elle est triangulaire supérieure.
Non A + B n’est pas diagonalisable car 1 € Sp(A + B) et mayp(1) = 2 est la

01 0
multiplicité de 1 mais A+ B—I3=| 0 0 0 |,etona:
00 —1

dlm(El(A-i- B)) =3 — rg (A-l— B — 13) =3-2=1 7& mA+B(1).

(d) Oui AB est trigonalisable car elle est triangulaire supérieure.
Non AB n’est pas trigonalisable car 0 € Sp(AB) et map(0) = 3 est la multi-
plicité de 0 mais dim(Ey(AB)) =3 —rg (AB) =3 — 1 =2 # myp(0).

PROBLEME

Partie 1

1. On rappelle que pour toute matrice M € Ms(K), on a
(X)) = X% — tr(M)X + det(M).
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On applique cette formule & chacune des matrices Ay et By, donc :

X4, =X"=3X +2=(X—1)(X —2),
il en découle que Sp(4y) = {1, 2}

De méme on a
XB, =X — X =X(X-1),

par suite Sp(By) = {0,1}.

. On effectue les calculs des images des vecteurs de la base canonique :

hAO,BO(E1,1):A0E1,1—E1,1Boz(_01 8)‘(3 g):(:? _02>
(0 0 )_(—1 —1>_(1 1)
0 —1 0 0 0 —1
(2 0)_(0 0)_(2 0)
30 2 2 1 -2

o) = o= Exato= (03 ) = (% 1) = (1)

ha, B,(F12) = AoE12 — E1 2By =

hayB,(E21) = AoEay — By 1By =

0 3
Il en découle que
-2 1 2 0
-2 1 0 2
Ho=1 _1 ¢ 1 1
0 -1 -2 4
On a
X+2 -1 -2 0
2 X —1 0 -2
XHO —det(XI4—H0) = 1 0 X—l _1
0 1 2 X -4

En effectuant 'opération élémentaire C7 <— C7 + Cy + C3 + Cy , il vient :

XHy = (X_l)

et en effectuant les operations élémentaires Ly <— Ly — Ly, Vk € {2, 3,4}, on trouve

1 -1 -2 0
0 X 2 _2

xu =X =Dl o v
0 2 4 X-—4



alors

X 2 —2 X 2 0
Xm = (X=1|1 X+1 -1 [=(X-1)X|1 X+1 1
2 4 X —4 2 4 1
(on a effectué Cs < C3 + C5)
X 2 0
= X| -1 X =3 0|(Ls+ Lo— Ls)
2 4 1
X 2 1 2
= X(X-1) 1 X_3|:X(X—1)(X_2)‘_1 X_g‘
( on a effectué Cy + C; — ()
1 2

- X(X—l)(X—Q)' ‘(L2<—L2+L1)

0 X—-1
= X(X -1*X -2)

Alors Sp(Hy) = {0,1,2}.

Le tableau suivant résume les valeurs de a — b pour (a,b) € Sp(A4y) X Sp(By) :

—Tol1
110,
2 (21

on a bien
Sp(Ho) = Sp(Ag) — Sp(Bo) = {a — b/(a,b) € Sp(Ay) x Sp(By)}-
. Les matrices Ay et By sont toutes les deux diagonalisables car leurs polynomes

caractéristiques respectifs sont scindés a racines simples.

. Comme yp, = X(X — 1)*(X —2) (scindé sur C, bien évidemment) et comme les
dimensions des sous-espaces propres associés aux valeurs propres sont aux moins

égales a 1, Hy est diagonalisable si et seulement si dim(FEy(Hy)) = 2, or par le
théoréeme du rang, dim(FEy(Hy)) =4 —rg (Hp — 14). On a
-3 1 2 0
-2 0 0 2
Ho=h=1_1 ¢ o 1|
0 -1 -2 3

de colonnes Cy, k € [1,4] avec comme on l'observe facilement
C3 =20y et Cy=—C1—3C5 et la famille (C1, Cy) est libre

car sinon on aurait un nombre complexe « tel que Cy = aC} par suite on aurait
—3a =1et —2a = 0, ce qui est absurde. Il découle de tout ¢a que rg (Hy — I4) = 2,
donc on a bien dim(F;(Hy)) = 2, donc Hy est diagonalisable.
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Partie 11

5. On a
xpT = det(XT — B') =det((XI — B)")) = det(XI — B) = x5,

donc xp et xpT ont mémes racines et ainsi B et BT ont méme spectre.

U1 wy
6. (a) En posant V = : et W = : ],ona:
vn wn
U1 ntwr ... MWy
T _ : _ S : — (00
VW' = : (wy,...,wy) = : . ; = <U%w3)1<i,j<n
Un VpWy ... UpWy

Comme V n’est pas nulle, il existe iy € [1,n] tel que v;, # 0. De méme il existe
Jo € [1,n] tel que w;, # 0. Ainsi V'W n’est pas nulle puisque son coefficient
v;,wj, de la ligne ¢ et la colonne jy d’indice est non nul.

(b) On a

hap (VW) = AVIW —VIWB = (AV)'W — V' ('BW)
= (aV)'W = VI(OW) = (a — DV'W

Comme V'W est de plus non nul, ¢’est un vecteur propre de hy p associé a la
valeur propre a — b.

(c) Par la question précédente, {a — b/(a,b) € Sp(A) x Sp(B)} C Sp(hap).
7. (a) Soit ¢ et j compris entre 1 et n.PE;; = (0]...|0]V;|0]...|0) ot la colonne V;
est a la 5™ place.

Wy

jéme place :

W,

(b) L’application 1) de M,,(C) dans lui-méme qui & toute matrice M associe PM QT
est un automorphisme car elle est linéaire bijective (sa réciproque étant I'appli-
cation M’ — P~1M’ (Q_l)T ). Comme (Ej;),; i, est une base de M,(C),
son image (V;W.1 par v est une base de M, (C).

J )1<i,j<n

8. Supposons A et B diagonalisables dans M,,(C). Remarquons que B est aussi dia-
gonalisable car si B = RDR™ avec R € GL,(C) et D réelle diagonale, alors
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BT = (RT)_1 DR'. Choisissant (V1,...,V,) base de vecteurs propres de A et
(W1, ..., W,) base de vecteurs propres de B', la famille (V;W]T)1<ij<n est une
base de vecteurs propres de h4 p. Ainsi hg p est diagonalisable.

n

9. On a : xa(B) = [] (B—agl). Si chacun des facteurs du produit ci-dessus est
k=1
inversible, alors x 4(B) est inversible comme produit de matrices inversibles.

Si au contraire au moins un des facteurs B — ayp,/ du produit ci-dessus est non
inversible donc de rang strictement inférieur a n, alors le rang de x,,, qui est inférieur
ou égal au rang de chacun des facteurs B — a; I, est strictement inférieur a n donc
X4(B) n'est pas inversible. variante : les B — ai/ sont tous des polynémes en B
donc commutent, donc y4(B) est égale a C' (B — ay,I) (pour une certaine matrice

C' € C[A] et son noyau contient donc celui de B —ay, I qui n’est pas réduit a 0 Mo1(C)
) Ainsi

xa(B) est inversible <= Vk € [1,n], B — a;/ est inversible
<= Vk € [1,n],ar ¢ Sp(B)
< Sp(A)N Sp(B) =10
10. Soit A € Sp(ha,p), et M € M,,(C)\{Ou, ,(c)} un vecteur propre associé.
(a) Par hypothése, AM = hg (M) =AM — MB. On en déduit que
AM = MB +AM = N (B + \L).
Montrons alors par récurrence sur k que pour tout k dans N, A¥M = M (B + )\In)k.

e [nitialisation : Pour £ = 0, on trouve M = M qui est vrai.
o Herédité : Soit k € N. On suppose que A¥M = M (B + A,,)". On a alors

AMINM = A (AYM)
— AM (B 4 \,)" par HR
=M (B + )\In)]ﬁrl d’apres la formule ci-dessus

e Conclusion : On a bien montré que pour tout entier k£ dans N, on a la relation
AFM = M (B + \I,)".

N
(b) Soit P € C[X]. On pose P = " ap X" ot N est supérieur au degré de P.
k=0
On déduit de ce qui précede que :

N N
P(AM = Y ayA"M =" a,M (B + AL,)"
k=0
N

= M) ay(B+\,)" = MP(B+A,)
k=0



11.

(c)

(b)

On peut appliquer ce qui précéde au polynéome y 4. Comme, d’apres le théoréme
de Cayley-Hamilton, y4(A) = 0 on obtient :

MXA (B + )\In) = XA(A)M =0

Supposons par U'absurde que x4 (B + Al,) est inversible. En multipliant par son
inverse on en déduit M = 0 ce qui est absurde car M était supposé non nul
puisque c’est un vecteur propre de hg p. On en déduit que x4 (B 4+ A,,) n’est
pas inversible.

On a vu a la question I1.6) que :

Sp(hap) C {a—b/(a,b) € Sp(A) x Sp(B)}.
Montrons I'inclusion inverse. Soit A € Sp (ha ). D’aprés I1.10.c), x4 (B + Al,,)
n’est pas inversible ce qui implique, d’aprés I1.9) que Sp(A) NSp(B+ Al,) # 0.
Soit x un élément de cet ensemble. Il existe a € Sp(A) tel que z = a et un
¢lément b € Sp(B) tel que © = b+ A (car les éléments du spectre de B + A,
sont les éléments obtenus en ajoutant A aux éléments du spectre de B ). On en
déduit que a = b+ X et donc A = a — b. Finalement,

Sp(ha,p) = {a—b/(a,b) € Sp(A) x Sp(B)}.

Le fait qu’il existe une matrice non nulle de M,,(C) telle que AM = MB
est équivalent au fait que 0 est valeurs propre de hy p. D’apres 11.10.d) cela
est équivalent & 0 € {a — b/(a,b) € Sp(A) x Sp(B)}. On en déduit donc
qu’il existe M non nulle dans M,,(C) telle que AM = MB si et seulement si
Sp(4) NSp(B) # 0.

Montrons que la famille de matrices (Mij) ; jycpy g2 €8t libre. Soit (Aij) ; jyepiap2

une famille de scalaires telle que >~ \;;M;; = 0. Pour tout k € [1,n],
(i.7)€[1n]?

n
0= Z NijMij | Vi = Z Air Vi
(i.7)€[1,n]? =1
Comme la famille (V;), ., est libre (puisque c’est une base) on en déduit que
pour tout i € [1,n], A\jx = 0. Ceci étant vrai pour tout k£ € [1,n], on obtient
finalement que tous les A;; sont nuls ce qui implique que la famille de matrices

(Mij)(i Hefrape €st libre. C’est une famille qui contient n? matrices et M, (C)
est un espace vectoriel de dimension n?. La famille (M; ) (ij)epnp €St une base
de M,,(R).

Soit (7,7, k) € [1,n]?, alors :
AMiVi, — My AV,
AMVi, — NM; Vi



La derniere égalité vient du fait que V) est un vecteur propre pour la valeur
propre A, associé a A.

eSi k 75 ] alors MZ]‘/]Q = O, donc hA (sz) Vk =0= ()\z - /\j) MZ]Vk

e Si k = j alors MV, = V; et AM;;Vi, = AV, = Vi = A\iM;;Vj.. On en déduit
que hy (M) Vi = \iM;jVie — Mo M;i Vi = (N — Aj) M;;Vi, car k = j. Dans tous
les cas, on a bien, hy (M;;) Vi, = ()\ Aj) M;; V.

Maintenant, si on considére 7" et S les endomorphismes de M, ;1(C) définis par
T:X = hg(Mj)X et S: X — (N—A\j)M;X. On vient de montrer que
ces deux endomorphismes coincident sur la base (V;) ke[t,n]- 11s sont donc égaux,
d’ot I'égalité matricielle hy (M;;) = (A — Aj) M;;. Cela signifie bien que les
matrices M;; sont des vecteurs propres de h 4.
D’aprés la question précédente la famille (Mij>(z',j) c[1,n]2 €St une base de vecteurs
propres pour h4. Le noyau de h4 est donc l'espace vectoriel engendré par les
matrices M;; telles que hy (M;;) = 0. Or, en utilisant la question I1.11.b), on a
h 4 (Ml]) = ()\z — )\]) Ml‘j et donc hy (MZJ) =0 < )\ = )\j < (Z,]) e J.
On en déduit que Ker (hy) = Vect {M,;, (i, ) € J}. De ce fait dim (Ker (hy))
est égal au cardinal de I'ensemble J. En posant pour tout k € [1, p],

Jk; = {(17])7>\Z = >\j = Mk})

on a

i
NE
3,

p
dim (Ker (h4)) Z
k=1

e
Il
—

D’apres la question précédente,

P P
dim (Ker (h4)) g m g myp = n.
k=1 k=1

En effet, comme my, est supérieur ou égal a 1, m2 > my. De plus, il n'y a égalité

que si my, = 1. De ce fait, dim (Ker (h4)) = n si et seulement si pour tout entier
k,mj =1 ce qui signifie que A admet n valeurs propres distinctes.
Si les n valeurs propres de A sont distinctes on sait que le polynome minimal

pa = J] (X — X\;) est de degré n donc ( I,, A, A%,--- A" ) est une famille
i=1
libre qui constitue une base de R[A]. Comme il est clair que toute matrice M

de R[A] (c’est-a-dire un polynéme en A ) commute & A, on a
ha(M) =AM — MA = 0.
Cela signifie que C[A] C Ker (hy). Comme d’aprés ce qui précéde,
dim Ker (h4) = n = dim C[A4],
on obtient bien que Ker (hy) = C[A]
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12.

13.

On suppose que hy est diagonalisable On note (F;;) (i.j)e[Ln]2 U0e base de vecteurs
propres de hy, chaque matrice Pj; étant associée a la valeur propre A;;. Soit A
une valeur propre de A et X est un vecteur propre de A associé a A. Soit Y un
vecteur de C", il existe une matrice M € M, (C) telle que M X = Y. Pour s’en
convaincre il suffit de compléter la famille libre { X'} (elle est libre car X # 0 puisque
c’est un vecteur propre) en une base £ = (X, Xy,...,X,-1) de C". On sait alors
qu’il existe un endomorphisme de C" qui envoie tous les vecteurs de la base %
vers le vecteur Y. Maintenant, comme (Pij)(m)e[[l,n]]? est une base de M, (C), il

existe une famille (Aij)(; ;e 2 de scalaires tels que > AjjF; = M et donc
o (i.4)€[1,n]?

Y = MX = Y. P X. Cela montre bien que Y est dans 'espace vectoriel
ij)el1,n]?

engendré par la(fa)m[[ille]] de vecteurs (F;;X)(; jye[1,n)2- Maintenant, la famille considérée

ci-dessus est une famille génératrice de R™. On peut donc en extraire une base.

Il existe alors J une partie de [1,n]? de cardinal n tel que (Pin)(z',j)eJ soit une

base de R". Notons alors que pour tout (¢,j) € J. comme hy (P;;) = A;j; P, on a

alors AP;; X = (PjA+ X\ijP;;) X = (A + \jj) P;;X. On a donc trouvé une base de

vecteurs propres de A. Cela implique que A est diagonalisable.

L’argument ci-dessus se recopie quand le corps de base est R. Il faut juste s’assurer
que si A € M,,(R) et hy est diagonalisable sur R alors A a (au moins) une valeur
propre réelle. Par 'absurde, supposons que A n’ait pas de valeurs propres réelles.
Elle a au moins une valeur propre complexe w (de partie imaginaire non nulle). On
sait que @ est aussi une valeur propre de A car A est une matrice réelle. D’aprés les
calculs de la question IT)6) (qui restent vrais dans R ), on peut alors en déduire que
w — w est une valeur propre de h 4. Cela est absurde car w — @ est un imaginaire pur
et hy étant diagonalisable (sur R ) il n’a que des valeurs propres réelles. Finalement,
A admet au moins une valeur propre réelle et donc A est diagonalisable.



