On désigne par E un \mathbb{C} -espace vectoriel de dimension finie strictement positive notée n.

- Pour tout endomorphisme u de E, on note I_u l'idéal des polynômes de $\mathbb{C}[X]$ qui annulent u. On désigne par π_u le polynôme minimal de u.
- On rappelle que $\mathbb{C}[u]$ désigne l'ensemble des endomorphismes de la forme P(u) où $P \in \mathbb{C}[X]$. De même, si x appartient à E on note $\mathbb{C}[u](x)$ l'ensemble des vecteurs de E de la forme P(u)(x), c'est-à-dire les vecteurs s'écrivant $\sum_{k=0}^d a_k u^k(x)$ où $P(X) = \sum_{k=0}^d a_k X^k$.
- Un endomorphisme u de E est dit cyclique si et seulement s'il existe $x_0 \in E$ tel que

$$(x_0, u(x_0), \dots, u^{n-1}(x_0))$$

soit une base de E.

• On définit $C(u) = \{v \in \mathcal{L}(E) \mid u \circ v = v \circ u\}.$

Partie I - Étude des endomorphismes cycliques

1. Soit u l'endomorphisme de $E=\mathbb{C}^3$ canoniquement associé à la matrice

$$A = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array}\right).$$

- (a) Déterminer le polynôme minimal de u.
- (b) Soit $x_0 = (0, 1, 1) \in \mathbb{C}^3$. Montrer que $\mathcal{B} = (x_0, u(x_0), u^2(x_0))$ est une base de E.
- (c) Écrire la matrice de u dans la base \mathcal{B} .
- 2. Soit u un endomorphisme cyclique. On pose x_0 tel que $(x_0, u(x_0), \ldots, u^{n-1}(x_0))$ soit une base de E.
 - (a) Montrer que $E = \mathbb{C}[u](x_0)$
 - (b) Soit $v \in \mathcal{C}(u)$ et $P \in \mathbb{C}[X]$ un polynôme tel que $v(x_0) = P(u)(x_0)$. Montrer que v = P(u).
 - (c) En déduire que $C(u) = \mathbb{C}[u]$.
- 3. On suppose que u est diagonalisable. On considère $\mathcal{B} = (e_1, \dots, e_n)$ une base de E constitué de vecteurs propres de u et on note, pour tout $i \in [1, n]$, $u(e_i) = \lambda_i e_i$. Soit $x_0 \in E$, on considère sa décomposition dans la base $\mathcal{B} : x_0 = \sum_{i=1}^n \alpha_i e_i$.
 - (a) Écrire la matrice $\max_{\mathcal{B}} (x_0, u(x_0), \dots, u^{n-1}(x_0)).$
 - (b) En déduire une condition nécessaire et suffisante sur les valeurs propres de u pour que u soit cyclique.

Partie II - Étude des endomorphismes nilpotents

- 1. Montrer que si u est nilpotent alors pour tout entier p > 0, Tr $(u^p) = 0$.
- 2. On suppose que pour tout entier p > 0, $\operatorname{Tr}(u^p) = 0$. On veut montrer que u est nilpotent. Soit $k \in \mathbb{N}$ la valuation de 0 dans le polynôme π_u , de sorte que $\pi_u = X^k Q(X)$ où $Q(0) \neq 0$ et donc $X^k \wedge Q = 1$. On pose $F = \operatorname{Ker}(u^k)$ et $G = \operatorname{Ker}(Q(u))$.

- (a) Montrer que F et G sont des sous-espaces stables par u et que $E = F \oplus G$.
- (b) On suppose que G n'est pas réduit à $\{0\}$ et on note u_G l'endomorphisme induit par u sur G,
 - i. Montrer que pour tout p > 0, $\text{Tr}(u_G^p) = \text{Tr}(u^p) = 0$. On pourra écrire la matrice de u dans une base adaptée à la décomposition $E = F \oplus G$.
 - ii. Calculer $\operatorname{Tr}(Q(u_G))$ de deux manières.
- (c) Conclure.
- 3. On suppose dans cette question que n=4 et que u est nilpotent d'indice 2 .
 - (a) Justifier que $\dim(\text{Ker}(u))$ vaut 2 ou 3.
 - (b) On suppose que $\dim(\operatorname{Ker}(u)) = 3$. Montrer qu'il existe une base \mathcal{B} telle que

- (c) On suppose que $\dim(\operatorname{Ker}(u)) = 2$.
 - i. Montrer que Ker(u) = Im(u).
 - ii. En déduire qu'il existe une base \mathcal{B} telle que $\max_{\mathcal{B}}(u) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$.

Partie III Étude de quelques endomorphismes cycliques

- 1. (a) Dans cette question seulement, on considère $E = \mathbb{K}_{n-1}[X]$ l'espace vectoriel des polynômes dans $\mathbb{K}[X]$ de degré inférieur ou égal à n-1.
 - i. Soit f l'endomorphisme de E défini, pour tout $Q(X) \in E$, par f(Q(X)) = Q'(X) (polynôme dérivé de Q(X)).

Montrer que f est un endomorphisme cyclique et nilpotent de E.

- ii. Soit g l'application définie par $g: E \longrightarrow E, Q(X) \longmapsto Q(X+1) Q(X)$. Montrer que g est bien une application et que g est un endomorphisme de E cyclique et nilpotent.
- (b) Cas général : Montrer que si f est un endomorphisme nilpotent de E, alors f est cyclique si et seulement si son indice de nilpotence est égal à n.
- 2. Dans cette question seulement, on considère $\mathbb{K} = \mathbb{R}$ et dim E = 2.

Soit $f \in \mathcal{L}(E)$ tel qu'il existe $p \in \mathbb{N} \setminus \{0, 1, 2\}$ tel que $f^p = \mathrm{Id}_E$ et pour tout entier k tel que $0 < k < p, f^k \neq \mathrm{Id}_E$.

Soit B une base quel conque de E et A la matrice de f dans B.

- (a) Montrer que A est diagonalisable dans $\mathcal{M}_2(\mathbb{C})$.
- (b) i. Montrer que si λ est une valeur propre réelle de A alors $\lambda=\pm 1$.

- ii. En déduire que A n'a pas de valeur propre réelle.
- iii. Montrer que, pour tout vecteur non nul y de E, la famille C = (y, f(y)) est une base de E.
- (c) i. Montrer que les valeurs propres de A sont deux nombres complexes conjugués λ_1 et λ_2 , et que, plus précisément, il existe k premier avec p tel que

$$\lambda_1 = e^{\frac{2ik\pi}{p}}$$
 et $\lambda_2 = e^{-\frac{2ik\pi}{p}}$.

ii. Soit un vecteur non nul y de E et C = (y, f(y)) la base de E ainsi construite. Montrer que la matrice de f dans C est $\begin{pmatrix} 0 & -1 \\ 1 & 2\cos(\frac{2k\pi}{p}) \end{pmatrix}$.

Partie IV : Sous-groupes de $\operatorname{GL}_n(\mathbb{C})$ dans lesquels $X^p = I_n$ où $p \in \mathbb{N}^*$.

Soit n un entier naturel supérieur ou égal à 2 et (G, \times) un sous-groupe de $\mathbf{GL}_n(\mathbb{C})$. On suppose qu'il existe $p \in \mathbb{N}^*$ tel que $\forall X \in G, \quad X^p = I_n$. Soit V = Vect(G) le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{C})$ engendré par la partie G.

- 1. (a) Vérifier que V est un espace vectoriel de dimension finie.
 - (b) Montrer qu'il existe $r \in \mathbb{N}^*$ et une famille (M_1, \dots, M_r) d'éléments de G qui soit une base de V.

On ne cherchera pas à calculer r ni à déterminer les matrices M_j .

- 2. On note $\mathbb{U}_p = \{z \in \mathbb{C}/z^p = 1\}$ l'ensemble des racines p-ièmes de l'unité.
 - (a) Préciser le cardinal de \mathbb{U}_p et expliciter ses éléments.
 - (b) Soit X une matrice élément de G et λ une valeur propre de X. Montrer que $\lambda \in \mathbb{U}_p$.
- 3. Prouver que tout élément de G est diagonalisable.
- 4. Prouver que l'ensemble $\mathcal{S} = \{ \operatorname{Tr}(X), X \in G \}$ est fini. Donner un majorant du cardinal de \mathcal{S} . On considère alors l'application $\varphi : X \in G \mapsto \varphi(X) = (\operatorname{Tr}(XM_1), \dots, \operatorname{Tr}(XM_r)) \in \mathbb{C}^r$.
- 5. Soient A et B deux éléments de G tels que $\varphi(A) = \varphi(B)$. On note $N = AB^{-1} I_n$.
 - (a) Justifier que $AB^{-1} \in G$. En déduire que N est diagonalisable.
 - (b) Montrer que

$$\forall i \in \{1, \dots, r\}, \quad \operatorname{Tr}(AM_i) = \operatorname{Tr}(BM_i)$$

En déduire que $\forall X \in V$, $\operatorname{Tr}(AX) = \operatorname{Tr}(BX)$.

- (c) Soit $k \in \mathbb{N}$. En écrivant que $(AB^{-1})^k = AB^{-1} \dots AB^{-1}$ (k facteurs) et en utilisant la question précédente, montrer que $\operatorname{Tr}\left((AB^{-1})^k\right) = n$.
- (d) Calculer alors $Tr(N), Tr(N^2), \ldots, Tr(N^n)$. Que peut-on dire de la matrice N?
- (e) Montrer que φ est injective.
- 6. Montrer que $\varphi(G) \subset \mathcal{S}^r$.
- 7. En déduire que G est fini.

Partie V : Réduction de Jordan

On veut montrer que si u est nilpotent il existe des sous-espaces $F_1, F_2, \ldots F_p$ stables par u tels que $E = F_1 \oplus \cdots \oplus F_p$ et que pour tout k, l'endomorphisme u_{F_k} induit par u sur F_k soit cyclique. On procède par récurrence forte sur la dimension n de E.

- 1. Justifier que si n=1 tout endomorphisme de E est cyclique. Soit $n \ge 2$, on suppose que le résultat est vrai si dim $E \in [1, n-1]$ et on veut le démontrer dans le cas où dim E = n. On considère donc un endomorphisme u de E nilpotent.
- 2. Justifier que Im(u) est stable par u et que $\dim(\text{Im}(u)) < n$.
- 3. Démontrer le résultat dans le cas où $\dim(\operatorname{Im}(u)) = 0$. On suppose maintenant que $\dim(\operatorname{Im}(u)) \in [1, n-1]$ et on applique l'hypothèse de récurrence à l'endomorphisme induit $u_{\operatorname{Im}(u)} \in \mathcal{L}(\operatorname{Im}(u))$. On note donc

$$\operatorname{Im}(u) = \bigoplus_{k=1}^{p} F_k$$

où les F_k sont stables par $u_{\text{Im}(u)}$ et les endomorphismes u_{F_k} induits par u sur F_k sont cycliques. Pour tout $k \in [1, p]$ on pose d_k est la dimension de F_k et on considère $y_k \in F_k$ tel que

$$\mathcal{B}_{k} = \left(y_{k}, u\left(y_{k}\right), \dots, u^{d_{k}-1}\left(y_{k}\right)\right)$$

est une base de F_k . Comme y_k appartient à Im(u), on considère de plus un antécédent x_k de y_k par u.

- 4. Soit k dans [1, p].
 - (a) Montrer que $F_k = \mathbb{C}[u](y_k)$.
 - (b) Soit $P \in \mathbb{C}[X]$ tel que $P(u)(x_k) \in \text{Ker}(u)$. Justifier que $P(u)(y_k) = 0$ puis que $P(u_{F_k}) = 0$.
 - (c) Justifier que le polynôme minimal de u_{F_k} est X^{d_k} .
- 5. En utilisant la question précédente, montrer que les espaces vectoriels $\mathbb{C}[u](x_1), \ldots, \mathbb{C}[u](x_p)$ sont en somme directe.

Pour finir, on pose $G = \text{Ker}(u) \cap \text{Im}(u)$ et on note H un supplémentaire de G dans Ker(u).

- 6. Montrer que $E = \mathbb{C}[u](x_1) \oplus \cdots \oplus \mathbb{C}[u](x_p) \oplus H$.
- 7. Conclure la récurrence.
- 8. Soit u un endomorphisme nilpotent.
 - (a) Montrer qu'il existe une base \mathcal{B} telle que la matrice de u dans \mathcal{B} soit diagonale par blocs avec des blocs diagonaux de la forme

$$\begin{pmatrix} 0 & \cdots & \cdots & \cdots & 0 \\ 1 & \ddots & & & \vdots \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 1 & 0 \end{pmatrix}.$$

(b) Déterminer le nombre de blocs diagonaux en fonction de la dimension de Ker(u).