Notations

Soit n et p des entiers supérieurs ou égaux à 1. \mathbb{K} désignant le corps des réels ou celui des complexes, on note $\mathcal{M}_{n,p}(\mathbb{K})$ le \mathbb{K} -espace vectoriel des matrices à coefficients dans \mathbb{K} ayant n lignes et p colonnes. Lorsque p = n, $\mathcal{M}_{n,n}(\mathbb{K})$ est noté plus simplement $\mathcal{M}_n(\mathbb{K})$ et est muni de sa structure d'algèbre, I_n représentant la matrice identité.

 $0_{n,p}$ désigne la matrice nulle de $\mathcal{M}_{n,p}(\mathbb{K})$ et 0_n la matrice nulle de $\mathcal{M}_n(\mathbb{K})$.

 $\mathbf{GL}_n(\mathbb{K})$ désigne l'ensemble des matrices inversibles de $M_n(\mathbb{K})$ et $\mathcal{T}_n(\mathbb{K})$ l'ensemble des matrices carrées d'ordre n triangulaires supérieures à éléments dans \mathbb{K} .

Tout vecteur $x = (x_i)_{1 \le i \le n}$ de \mathbb{K}^n est identifié à un élément X de $\mathcal{M}_{n,1}(\mathbb{K})$ tel que l'élément de la $i^{\text{ème}}$ ligne de X soit x_i . Dans toute la suite, nous noterons indifféremment $X = (x_i)_{1 \le i \le n}$ un élément de $\mathcal{M}_{n,1}(\mathbb{K})$ aussi bien que le vecteur de \mathbb{K}^n qui lui est associé.

Pour $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ dans $\mathcal{M}_{n,p}(\mathbb{K})$ et $X = (x_i)_{1 \leq i \leq p}$ dans \mathbb{K}^p , on note $(AX)_i$ le coefficient de la ième ligne de AX.

Pour toute matrice A de $\mathcal{M}_n(\mathbb{K})$, on note $\operatorname{Sp}(A)$ l'ensemble des valeurs propres **complexes** de A et on appelle rayon spectral de A le réel $\rho(A)$ défini par :

$$\rho(A) = \max_{\lambda \in \operatorname{Sp}(A)} |\lambda|.$$

Conformément à l'usage, on note N_{∞} la norme définie sur \mathbb{C}^n par :

$$\forall X = (x_i)_{1 \le i \le n} \in \mathbb{C}^n, N_{\infty}(X) = \max_{1 \le i \le n} |x_i|.$$

On qualifie de norme matricielle toute norme ν définie sur $\mathcal{M}_n(\mathbb{K})$ vérifiant les propriété (i) et (ii) suivantes :

$$\begin{cases} (i) & \forall (A,B) \in (\mathcal{M}_n(\mathbb{K}))^2, \nu(AB) \leq \nu(A) \cdot \nu(B) \\ (ii) & \nu(I_n) = 1 \end{cases}$$

 $\mathcal{M}_n(\mathbb{K})$ étant de dimension finie, on rappelle qu'une suite de matrices $(A_k)_{k\in\mathbb{N}}$ de $\mathcal{M}_n(\mathbb{K})$ converge vers une matrice A de $\mathcal{M}_n(\mathbb{K})$ si et seulement si la convergence a lieu dans $\mathcal{M}_n(\mathbb{K})$ muni d'une norme quelconque.

Partie I

Une matrice A de $\mathcal{M}_n(\mathbb{K})$ est dite trigonalisable si et seulement s'il existe des matrices P et T tel que :

$$(\star)$$
 $P \in \mathbf{GL}_n(\mathbb{K}), T \in \mathcal{T}_n(\mathbb{K}), A = PTP^{-1}.$

Trigonaliser A c'est trouver les matrices P et T qui vérifient (\star) ci-dessus.

- **I.1** On note $C = (c_1, c_2)$ la base canonique de \mathbb{C}^2 et on considère la matrice $M_1 = \begin{pmatrix} -1 & 1 \\ -4 & 3 \end{pmatrix}$ et on note f_1 l'endomorphisme de \mathbb{C}^2 canoniquement associé à M_1 .
 - a) Démontrer que M_1 admet un et un seul vecteur propre de la forme $\omega_1 = \begin{pmatrix} 1 \\ \alpha \end{pmatrix}$ où $\alpha \in \mathbb{C}$ à determiner. On note $\omega_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Justifier que $\Omega = (\omega_1, \omega_2)$ est une base de \mathbb{C}^2 . On note Q_1 la matrice de passage de \mathcal{C} à Ω et $T_1 = \operatorname{mat}_{\Omega}(f_1)$. Calculer avec soin les matrices Q_1 et T_1 .

- **b)** Pourquoi M_1 est trigonalisable dans $\mathcal{M}_2(\mathbb{C})$?
- c) Trigonaliser M_1 .
- **I.2** Soit la matrice $M = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 2 & -5 & 3 \end{pmatrix}$.
 - a) La matrice M est-elle diagonalisable?
 - b) On note $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{C}^3 . Montrer que M admet un unique vecteur propre v_1 de la forme $v_1 = \begin{pmatrix} 1 \\ \beta \\ \gamma \end{pmatrix}$, les nombres complexes β et γ à determiner. Vérifier que si on pose $v_2 = e_2$ et $v_3 = e_3$ alors $\mathcal{V} = (v_1, v_2, v_3)$ est une base de \mathbb{C}^3 .
 - c) On note Q la matrice de passage de \mathcal{B} à \mathcal{V} . Calculer $Q^{-1}MQ$ et en déduire, des matrices $P \in \mathbf{GL}_3(\mathbb{C})$ et $T \in \mathcal{T}_3(\mathbb{C})$ telles que $P^{-1}MP = T$.
- **I.3** Soit $A \in \mathcal{M}_n(\mathbb{C})$. Si T est une matrice triangulaire supérieure semblable à A, que représentent, pour A, les éléments diagonaux de T?
- **I.4** Soit $S = (s_{i,j})$ et $T = (t_{i,j})$ deux matrices triangulaires supérieures de $\mathcal{M}_n(\mathbb{C})$.
 - a) Montrer que ST est une matrice triangulaire supérieure dont les coefficients diagonaux sont $s_{1,1}t_{1,1}, s_{2,2}t_{2,2}, \ldots, s_{n,n}t_{n,n}$.
 - b) Pour $k \in \mathbb{N}^*$, quels sont les éléments diagonaux de T^k ?
- **I.5** Montrer que pour toute matrice A de $\mathcal{M}_n(\mathbb{C})$, $\rho(A^k) = [\rho(A)]^k$.
- **I.6** Montrer que l'application $\psi: \mathcal{M}_n(\mathbb{C}) \to \mathbb{R}, A = (a_{i,j}) \mapsto \max_{1 \leq i,j \leq n} |a_{i,j}|$ est une norme sur $\mathcal{M}_n(\mathbb{C})$, mais n'est pas en général une norme matricielle sur $\mathcal{M}_n(\mathbb{C})$.
- I.7 En admettant l'existence de normes matricielles sur $\mathcal{M}_n(\mathbb{C})$ (la suite du problème montrera effectivement cette existence), montrer que pour toute norme N définie sur $\mathcal{M}_n(\mathbb{C})$, il existe une constante C réelle positive telle que :

$$\forall (A, B) \in (\mathcal{M}_n(\mathbb{C}))^2, N(AB) \leq CN(A)N(B).$$

- **I.8** Soit $(A_k)_{k\in\mathbb{N}}$ une suite de matrices de $\mathcal{M}_n(\mathbb{C})$, $A\in\mathcal{M}_n(\mathbb{C})$ et $P\in\mathbf{GL}_n(\mathbb{C})$. Montrer que la suite $(A_k)_{k\in\mathbb{N}}$ converge vers A si et seulement si la suite $(P^{-1}A_kP)_{k\in\mathbb{N}}$ converge vers $P^{-1}AP$.
- **I.9 a)** Soit $T = \begin{pmatrix} \lambda & \mu \\ 0 & \lambda \end{pmatrix}$ un élément de $\mathcal{M}_2(\mathbb{C})$. Pour tout $k \in \mathbb{N}^*$, calculer T^k et en déduire que la suite $(T^k)_{k \in \mathbb{N}^*}$ converge si et seulement si $(|\lambda| < 1)$ ou $(\lambda = 1 \text{ et } \mu = 0)$.
 - b) Soit $A \in \mathcal{M}_2(\mathbb{C})$ diagonalisable. Donner une condition nécessaire et suffisante sur les valeurs propres de A pour que la suite $(A^k)_{k\in\mathbb{N}}$ soit convergente.
 - c) Soit $A \in \mathcal{M}_2(\mathbb{C})$ non diagonalisable. Montrer que la suite $(A^k)_{k \in \mathbb{N}}$ est convergente si et seulement si $\rho(A) < 1$. Dans ce cas, préciser $\lim_{k \to +\infty} A^k$.
 - d) Soit $A \in \mathcal{M}_2(\mathbb{C})$. Donner une condition nécessaire et suffisante sur $\rho(A)$ pour que la suite $(A^k)_{k \in \mathbb{N}}$ converge vers la matrice nulle.

Partie II

Soit $A = (a_{i,j})$ une matrice de $\mathcal{M}_n(\mathbb{C})$ et N une norme quelconque sur \mathbb{C}^n . On pose :

$$M_A = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}|.$$

- **II.1** a) Montrer que pour tout $X \in \mathbb{C}^n : N_{\infty}(AX) \leq M_A N_{\infty}(X)$.
 - b) Montrer qu'il existe une constante réelle C_A telle que :

$$\forall X \in \mathbb{C}^n, N(AX) \leq C_A N(X).$$

c) Montrer que l'ensemble $\left\{\frac{N(AX)}{N(X)} \mid X \in \mathbb{C}^n \setminus \{0\}\right\}$ possède une borne supérieure dans \mathbb{R} .

On notera dans la suite :

$$\widetilde{N}(A) = \sup_{X \in \mathbb{C}^n \setminus \{0\}} \frac{N(AX)}{N(X)}.$$

- **d)** Montrer que : $\widetilde{N_{\infty}}(A) \leq M_A$.
- e) On reprend dans cette question la matrice M introduite en **I.2**. Déterminer un vecteur X_0 de \mathbb{C}^3 tel que $N_{\infty}(X_0) = 1$ et $N_{\infty}(MX_0) = 10$. En déduire la valeur de $\widetilde{N_{\infty}}(M)$.
- **II.2** Soit i_0 un entier compris entre 1 et n tel que $\sum_{j=1}^n |a_{i_0,j}| = M_A$. En considérant le vecteur Y de \mathbb{C}^n de composantes y_j définies par :

$$y_j = \frac{\overline{a_{i_0,j}}}{|a_{i_0,j}|} \text{ si } a_{i_0,j} \neq 0 \text{ et } y_j = 1 \text{ si } a_{i_0,j} = 0$$

montrer que $M_A \leq \widetilde{N_{\infty}}(A)$ et en déduire $\widetilde{N_{\infty}}(A) = M_A$.

- II.3 Montrer que :
 - a) $\forall A \in \mathcal{M}_n(\mathbb{C}), \quad \widetilde{N}(A) = 0 \Leftrightarrow A = 0_n.$
 - **b)** $\forall A \in \mathcal{M}_n(\mathbb{C}), \forall \lambda \in \mathbb{C}, \widetilde{N}(\lambda A) = |\lambda| \widetilde{N}(A).$
 - c) $\forall A, B \in \mathcal{M}_n(\mathbb{C}), \widetilde{N}(A+B) \leq \widetilde{N}(A) + \widetilde{N}(B).$
 - d) $\forall X \in \mathbb{C}^n, N(AX) \leq \widetilde{N}(A)N(X).$
 - e) Déduire de ces résultats que \widetilde{N} est une norme matricielle sur $\mathcal{M}_n(\mathbb{C})$. On lui donne le nom de norme matricielle subordonnée à la norme N.
- II.4 a) En considérant une valeur propre λ de A telle que $|\lambda| = \rho(A)$, montrer que :

$$\rho(A) \leq \widetilde{N}(A)$$
.

- b) Donner un exemple simple de matrice A non nulle vérifiant $\rho(A) = \widetilde{N_{\infty}}(A)$.
- c) Montrer que si A est nilpotente non nulle, on a l'inégalité stricte :

$$\rho(A) < \widetilde{N}(A).$$

- d) Montrer que si $\lim_{k\to+\infty} A^k = 0_n$, alors $\rho(A) < 1$.
- **II.5** a) Soit $D = \operatorname{diag}(\alpha_1, \dots, \alpha_n)$ et $\Delta = \operatorname{diag}(\beta_1, \dots, \beta_n)$ deux matrices diagonales de $\mathcal{M}_n(\mathbb{C})$. On considère $M = (m_{ij})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{C})$. Donner le terme général m'_{ij} de la matrice $M' = DA\Delta$. En déduire le terme général de M' dans le cas $\alpha_k = p^k$ et $\beta_k = p^{-k}$ où $p \in \mathbb{N}^*$ donné et $k \in [1, n]$.
 - b) Pour tout $X = (x_i)_{1 \le i \le n} \in \mathbb{C}^n$, on pose $||X||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}$. On rappelle que $||.||_2$ est une norme de \mathbb{C}^n et on ne demande pas de le démontrer. On note $||.||_2$ la norme subordonnée de $||.||_2$. Démontrer que si $D = \operatorname{diag}(\alpha_1, \dots, \alpha_n)$ est une matrice diagonale de $\mathcal{M}_n(\mathbb{C})$ alors $|||D|||_2 = \rho(D)$.

c) Soit $Q \in \mathbf{GL}_n(\mathbb{C})$. Pour tout $X \in \mathbb{C}^n$, on pose : $||X||_Q = ||QX||_2$. Montrer que $||.||_Q$ est une norme sur \mathbb{C}^n et que sa norme subordonnée est $||.||_Q$ tel que

$$||M||_Q = ||QMQ^{-1}||_2$$

pour tout $M \in \mathcal{M}_n(\mathbb{C})$.

- **II.6** On suppose que $\rho(A) < 1$ et soit $\varepsilon = \frac{1-\rho(A)}{2}$.
 - a) Justifier l'existence d'une matrice $T = (T_{ij})_{1 \leq i,j \leq n}$ triangulaire supérieure et une matrice inversible P tel que $A = PTP^{-1}$. On pose $\lambda_i = t_{ii}$ pour tout $i \in [1, n]$ et soit $\Delta = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Que constituent $\lambda_1, \dots, \lambda_n$ pour A?
 - b) Pour tout $p \in \mathbb{N}^*$ on pose $D_p = \operatorname{diag}(p^k)_{1 \leq k \leq n}$ et $T_p = D_p T D_p^{-1}$. Démontrer que $\lim_{p \to +\infty} T_p = \Delta$.
 - c) En déduire qu'il existe $m \in \mathbb{N}^*$ tel que : $||D_m T D_m^{-1}||_2 \le \rho(A) + \varepsilon$.
 - d) Démontrer qu'il existe $Q \in \mathbf{GL}_n(\mathbb{C})$ tel que $||A||_Q \leq \frac{1+\rho(A)}{2}$.
 - e) En déduire que : $\lim_{p\to+\infty} A^p = 0_n$
- II.7 a) Montrer que pour tout k entier naturel non nul : $\rho(A) \leq \left\lceil \widetilde{N}\left(A^{k}\right) \right\rceil^{\frac{1}{k}}$.
 - **b)** Montrer que pour tout $\alpha \in \mathbb{C}$, $\rho(\alpha A) = |\alpha| \rho(A)$.
 - c) Soit $\varepsilon > 0$ et $A_{\varepsilon} = \frac{A}{\rho(A) + \varepsilon}$. Vérifier que $\rho(A_{\varepsilon}) < 1$ et en déduire l'existence d'un entier naturel k_{ε} tel que :

$$\forall k \in \mathbb{N}, \quad k \ge k_{\varepsilon} \Rightarrow \widetilde{N}(A^k) \le (\rho(A) + \varepsilon)^k.$$

d) En déduire $\lim_{k\to +\infty} \left[\widetilde{N}\left(A^k\right) \right]^{\frac{1}{k}} = \rho(A)$.

Partie III

Une matrice A de $\mathcal{M}_{n,p}(\mathbb{R})$ est dite positive (resp. strictement positive) et on note $A \geq 0$ (resp. A > 0) si et seulement si tous ses coefficients sont positifs ou nuls (resp. strictement positifs). Si A et B sont deux matrices de $\mathcal{M}_{n,p}(\mathbb{R})$, on note $A \geq B$ (resp. $A \leq B$, A > B, A < B) si et seulement si $A - B \geq 0$ (resp. $B - A \geq 0$, A - B > 0, B - A > 0).

Notons que grâce à l'identification de \mathbb{R}^n et $\mathcal{M}_{n,1}(\mathbb{R})$, on pourra parler de vecteur de \mathbb{R}^n positif ou strictement positif.

- III.1 Donner un exemple de matrice A montrant que les conditions $A \ge 0$ et $A \ne 0$ n'impliquent pas nécessairement A > 0.
- **III.2** A, B, A', B' désignent des matrices de $\mathcal{M}_n(\mathbb{R})$.
 - a) Montrer que si $0 \le A \le B$ et $0 \le A' \le B'$, alors $0 \le AA' \le BB'$.
 - **b)** Montrer que si $0 \le A \le B$, alors pour tout $k \in \mathbb{N}^*$, $0 \le A^k \le B^k$.
 - c) Montrer que si $0 \le A \le B$, alors $\widetilde{N_{\infty}}(A) \le \widetilde{N_{\infty}}(B)$.
 - **d)** Montrer que si $0 \le A \le B$, alors $\rho(A) \le \rho(B)$.
 - e) Montrer que si $0 \le A < B$, il existe $c \in]0,1[$ tel que $A \le cB$ et en déduire $\rho(A) < \rho(B)$.
- III.3 Soit A une matrice positive de $\mathcal{M}_n(\mathbb{R})$ telle que la somme des termes de chaque ligne soit constante égale à α . Montrer que α est valeur propre de A et que :

$$\rho(A) = \alpha = \widetilde{N_{\infty}}(A).$$

III.4 Soit A une matrice positive de $\mathcal{M}_n(\mathbb{R})$. Pour tout $i \in \{1, ..., n\}$, on note α_i la somme des termes de la $i^{\text{ème}}$ ligne de A et $\alpha = \min_{1 \leq i \leq n} \alpha_i$. On définit la matrice $B = (b_{i,j})$ par $B = 0_n$ si $\alpha = 0$ et $b_{i,j} = \frac{\alpha}{\alpha_i} a_{i,j}$ si $\alpha > 0$. Montrer à l'aide de la matrice B ainsi construite que :

$$\min_{1 \le i \le n} \left(\sum_{j=1}^n a_{i,j} \right) \le \rho(A) \le \max_{1 \le i \le n} \left(\sum_{j=1}^n a_{i,j} \right).$$

III.5 Soit A une matrice positive de $\mathcal{M}_n(\mathbb{R})$ et $X = (x_i)$ un vecteur strictement positif de \mathbb{R}^n .

On note D_x la matrice diagonale de $\mathcal{M}_n(\mathbb{R})$ ayant pour termes diagonaux x_1, x_2, \ldots, x_n . Calculer les éléments de la matrice $D_x^{-1}AD_x$ et en déduire :

$$\min_{1 \le i \le n} \frac{(AX)_i}{x_i} \le \rho(A) \le \max_{1 \le i \le n} \frac{(AX)_i}{x_i}.$$

III.6 Soit A une matrice positive de $\mathcal{M}_n(\mathbb{R})$. Montrer que si A admet un vecteur propre strictement positif, alors la valeur propre associée est $\rho(A)$ et :

$$\rho(A) = \sup_{X>0} \left(\min_{1 \le i \le n} \frac{(AX)_i}{x_i} \right) = \inf_{X>0} \left(\max_{1 \le i \le n} \frac{(AX)_i}{x_i} \right).$$