EXERCICE

Soit n un entier naturel non nul. \mathbb{K} désigne l'un des corps \mathbb{R} ou \mathbb{C} et E est un \mathbb{K} -espace vectoriel de dimension n. On note $\mathrm{Sp}_{\mathbb{K}}(u)$ l'ensemble des valeurs propres de u qui appartiennent à \mathbb{K} , ainsi $\mathrm{Sp}_{\mathbb{R}}(u)$ est l'ensemble des valeurs propres réelle de u et $\mathrm{Sp}_{\mathbb{C}}$ l'ensemble de toutes les valeurs propres complexes de u.

On note θ l'endomorphisme nul de E, donc $\forall x \in E$, $\theta(x) = 0$.

- 1) Démontrer que si $\mathbb{K} = \mathbb{C}$ alors $\operatorname{Sp}_{\mathbb{C}}(u) \neq \emptyset$.
- 2) Donner un exemple d'endomorphisme $u \in \mathcal{L}(\mathbb{R}^2)$ tel que $\operatorname{Sp}_{\mathbb{R}}(u) = \emptyset$. (On pourra proposer un exemple de matrice $M \in \mathcal{M}_2(\mathbb{R})$, tel que $\operatorname{Sp}_{\mathbb{R}}(M) = \emptyset$ et considérer l'endomorphisme canoniquement associé à M.)
- 3) Démontrer que si $u^3 + u = \theta$ alors $\ker(u) = \ker(u^2)$. (Indication : On peut utiliser le lemme des noyaux).
- 4) On suppose dans cette question que $\mathbb{K} = \mathbb{C}$, et que $u \in \mathcal{L}(E)$ tel $u^3 + u = \theta$.
 - a) Démontrer que u est diagonalisable.
 - b) Quelles sont les valeurs propres possibles de u?
- 5) On suppose dans cette question que $\mathbb{K} = \mathbb{C}$, et que $u \in \mathcal{L}(E)$ tel que

$$(\star) \quad \left\{ \begin{array}{l} u^3 + u = \theta \\ u \text{ est inversible.} \end{array} \right.$$

- a) Quelles sont les valeurs propres possibles de u?
- b) Démontrer que si u n'est pas une homothétie alors il existe une base $\mathscr V$ de E et un nombre complexe λ tel que

$$\max_{\mathscr{V}}(u) = \begin{pmatrix} \lambda I_p & \mathbf{O}_{p,q} \\ \mathbf{O}_{q,p} & \overline{\lambda} I_q \end{pmatrix}$$

où $p, q \in \mathbb{N}^*$ et p + q = n et $\mathbf{O}_{p,q}$ et $\mathbf{O}_{q,p}$ sont les matrices nulles respectives de $\mathcal{M}_{p,q}(\mathbb{C})$ et $\mathcal{M}_{q,p}(\mathbb{C})$. Préciser λ .

- c) Donner un exemple d'endomorphisme u qui vérifie les conditions (\star) ci-dessus dans le cas $E = \mathbb{C}^3$. (On pourra proposer une matrice $M \in \mathcal{M}_3(\mathbb{C})$ et considérer l'endomorphisme canoniquement associé à M.)
- 6) On suppose dans cette question que $\mathbb{K} = \mathbb{R}$ et que

$$(\star) \quad \left\{ \begin{array}{l} u^3 + u = \theta \\ u \text{ est inversible.} \end{array} \right.$$

- a) Démontrer que $\operatorname{Sp}_{\mathbb{R}}(u) = \emptyset$.
- b) En déduire que n est pair.
- c) Démontrer que pour tout vecteur non nul x de E, la famille (x,u(x)) est libre.

1

d) Donner un exemple d'endomorphisme u qui vérifie les conditions (\star) ci-dessus, dans le cas $E = \mathbb{R}^4$. (On pourra considérer l'endomorphisme canoniquement associé à une matrice $M \in \mathcal{M}_4(\mathbb{R})$ qu'on proposera).

PROBLÈME

Dans tout le problème, n est un entier naturel supérieur ou égal à 2. Cet entier est quelconque sauf dans la partie I, où il est égal à 2.

On note $\mathcal{M}_n(\mathbb{R})$ l'algèbre des matrices carrées d'ordre n à coefficients réels, $(E_{i,j})$ sa base canonique $(1 \leq i \leq n \text{ et } 1 \leq j \leq n)$ et I_n sa matrice unité (tous les coefficients de $E_{i,j}$ sont nuls, sauf celui situé à la j^e ligne et à la j^e colonne, qui vaut 1).

On note $\mathbb{R}[X]$ l'algèbre des polynômes à coefficients réels.

Dans tout le problème, A est une matrice quelconque de $\mathcal{M}_n(\mathbb{R})$ et u l'endomorphisme de \mathbb{R}^n canoniquement associé à la matrice A.

Pour tout
$$P = \sum_{k=0}^{d} a_k X^k \in \mathbb{R}[X]$$
, on note $P(A) = \sum_{k=0}^{d} a_k A^k$. L'ensemble des matrices $P(A)$ pour

tout $P \in \mathbb{R}[X]$ est noté $\mathbb{R}[A]$.

On dit que P annule A lorsque P(A) = 0, ce qui équivaut à P(u) = 0. On appelle polynôme minimal de la matrice A le polynôme minimal de l'endomorphisme u; c'est donc le polynôme unitaire de plus petit degré qui annule A.

On note ϕ_A l'application de $\mathcal{M}_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$ définie par :

$$\phi_A(M) = AM - MA$$

L'objet du problème est d'étudier quelques propriétés des éléments propres de ϕ_A . Les parties I et II étudient la diagonalisabilité de ϕ_A , les parties III et IV en étudient les vecteurs propres. Les quatre parties sont indépendantes.

Partie I. Étude du cas n=2

Dans toute cette partie, on prendra n=2.

- 1) Vérifier que l'application ϕ_A est linéaire et que I_2 et A appartiennent à $\ker \phi_A$. Dans la suite de cette partie, on pose $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$.
- 2) Donner la matrice de ϕ_A dans la base $(E_{1,1}, E_{2,2}, E_{1,2}, E_{2,1})$ de $\mathcal{M}_2(\mathbb{R})$. Dans la suite de cette partie, on suppose que $\phi_A \neq 0$ (c'est-à-dire que $A \neq \lambda I_2$ pour tout $\lambda \in \mathbb{R}$).
- 3) Donner le polynôme caractéristique de ϕ_A sous forme factorisée (on pourra utiliser la calculatrice).
- 4) En déduire que ϕ_A est diagonalisable si et seulement si $(d-a)^2 + 4bc > 0$.
- 5) Démontrer que ϕ_A est diagonalisable si et seulement si A est diagonalisable.

Partie II. Étude du cas général

On note $c = (c_1, \ldots, c_n)$ la base canonique de \mathbb{R}^n .

6) On suppose dans cette question que A est diagonalisable. On note $e = (e_1, \ldots, e_n)$ une base de vecteurs propres de u (défini au début du problème) et, pour tout entier i tel que $1 \le i \le n$, λ_i la valeur propre associée au vecteur e_i . On note

alors
$$P$$
 la matrice de passage de la base c à la base e et $D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$.

2

Enfin, pour tout couple (i, j) d'entiers tels que $1 \le i \le n$ et $1 \le j \le n$, on pose :

$$B_{i,j} = PE_{i,j}P^{-1}$$

- a) Exprimer, pour tout couple (i, j), la matrice $DE_{i,j} E_{i,j}D$ en fonction de la matrice $E_{i,j}$ et des réels λ_i et λ_j .
- b) Démontrer que, pour tout couple (i, j), $B_{i,j}$ est un vecteur propre de ϕ_A .
- c) En déduire que ϕ_A est diagonalisable.
- 7) On suppose dans cette question que ϕ_A est diagonalisable en tant qu'endomorphisme de $\mathcal{M}_n(\mathbb{R})$.

On note $(P_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ une base de vecteurs propres de ϕ_A et, pour tout couple (i,j), $\lambda_{i,j}$ la valeur propre associée à $P_{i,j}$.

- a) Dans cette question, on considère A comme une matrice à coefficients complexes $(A \in \mathcal{M}_n(\mathbb{R}) \subset \mathcal{M}_n(\mathbb{C}))$ et ϕ_A comme un endomorphisme de $\mathcal{M}_n(\mathbb{C})$ (défini par $\phi_A(M) = AM MA$ pour tout $M \in \mathcal{M}_n(\mathbb{C})$).
 - i) Justifier que toutes les valeurs propres de ϕ_A sont réelles.
 - ii) Soit $z \in \mathbb{C}$. Justifier que si z est une valeur propre de A, alors z est aussi une valeur propre de ${}^t\!A$.
 - iii) Soit $z \in \mathbb{C}$. On suppose que z et \overline{z} sont deux valeurs propres de la matrice A. On considère alors $X \in \mathcal{M}_{n,1}(\mathbb{C})$ $(X \neq 0)$ et $Y \in \mathcal{M}_{n,1}(\mathbb{C})$ $(Y \neq 0)$ tels que AX = zX et ${}^tAY = \overline{z}Y$.

En calculant $\phi_A(X^tY)$, démontrer que $z-\overline{z}$ est une valeur propre de ϕ_A .

- b) En déduire que la matrice A a au moins une valeur propre réelle. On note λ une valeur propre réelle de A et $X \in \mathcal{M}_{n,1}(\mathbb{R})$ $(X \neq 0)$ une matrice colonne telle que $AX = \lambda X$.
- c) Démontrer que, pour tout couple (i, j), il existe un réel $\mu_{i,j}$, que l'on exprimera en fonction de λ et $\lambda_{i,j}$, tel que $AP_{i,j}X = \mu_{i,j}P_{i,j}X$.
- \mathbf{d}) En déduire que A est diagonalisable.

Partie III. Étude des vecteurs propres de ϕ_A associés à la valeur propre 0 Soit m le degré du polynôme minimal de A.

- 8) Démontrer que la famille $(I_n, A, \ldots, A^{m-1})$ est une base de $\mathbb{R}[A]$.
- 9) Vérifier que $\mathbb{R}[A]$ est inclus dans $\ker \phi_A$ et en déduire une minoration de dim $\ker \phi_A$.
- 10) Un cas d'égalité

On suppose que l'endomorphisme u (défini au début du problème) est nilpotent d'indice n (c'est-à-dire que $u^n = 0$ et $u^{n-1} \neq 0$). On considère un vecteur y de \mathbb{R}^n tel que $u^{n-1}(y) \neq 0$ et, pour tout entier i tel que $1 \leq i \leq n$, on pose $e_i = u^{n-i}(y)$.

- a) Démontrer que la famille (e_1, e_2, \dots, e_n) est une base de \mathbb{R}^n .
- b) Soient $B \in \ker \phi_A$ et v l'endomorphisme de \mathbb{R}^n canoniquement associé à B.

3

Démontrer que si
$$v(y) = \sum_{i=1}^{n} \alpha_i e_i \ (\alpha_i \in \mathbb{R}) \text{ alors } v = \sum_{i=1}^{n} \alpha_i u^{n-i}.$$

c) En déduire $\ker \phi_A$.

11) Cas où u est diagonalisable

On suppose que u est diagonalisable. On note $\lambda_1, \lambda_2, \ldots, \lambda_p$ $(1 \leq p \leq n)$ les p valeurs propres distinctes de u et, pour tout entier k tel que $1 \leq k \leq p$, $E_u(\lambda_k)$ le sous-espace propre associé à la valeur propre λ_k . On note m_k la dimension de cet espace propre.

- a) Soient $B \in \mathcal{M}_n(\mathbb{R})$ et v l'endomorphisme de \mathbb{R}^n canoniquement associé à B. Démontrer que $B \in \ker \phi_A$ si et seulement si, pour tout entier k tel que $1 \le k \le p$, $E_u(\lambda_k)$ est stable par v (c'est-à-dire v ($E_u(\lambda_k)$) $\subset E_u(\lambda_k)$).
- b) En déduire que $B \in \ker \phi_A$ si et seulement si la matrice de v, dans une base adaptée à la décomposition de \mathbb{R}^n en somme directe des sous-espaces propres de u, a une forme que l'on précisera.
- c) Préciser la dimension de $\ker \phi_A$.
- d) Lorsque n = 7, donner toutes les valeurs possibles pour cette dimension en envisageant les différentes valeurs possibles de p et des m_k (on ne demande pas de justification).

Partie IV. Étude des vecteurs propres de ϕ_A associés à une valeur propre non nulle

Dans cette partie, α est une valeur propre non nulle de ϕ_A et B un vecteur propre associé ($B \in \mathcal{M}_n(\mathbb{R}), B \neq 0$). On note π_B le polynôme minimal de B et d le degré de π_B .

- **12)** Démontrer que, pour tout $k \in \mathbb{N}$, $\phi_A(B^k) = \alpha k B^k$.
- **13)** Soit $P \in \mathbb{R}[X]$. Exprimer $\phi_A(P(B))$ en fonction de α , B et P'(B).
- 14) Démontrer que le polynôme $X\pi'_B d\pi_B$ est le polynôme nul $(\pi'_B$ étant le polynôme dérivé du polynôme minimal de la matrice B).
- 15) En déduire que $B^d = 0$.