QUESTIONS COURTES OU DE COURS

- 1. Quels sont les générateurs du groupe monogène additif $(\mathbb{Z}, +)$?
- 2. Quelle est la forme générale d'un sous-groupe de $(\mathbb{Z}, +)$? (on ne demande pas de preuve).
- 3. Quel est le sous-groupe de $(\mathbb{Z}, +)$ engendré par \mathbb{N} ?
- 4. On considère le groupe $(\mathbb{Q}, +)$ des nombres rationnels. Soit $A = \{\frac{1}{2}, \frac{1}{5}\}$. Démontrer que le sous-groupe $\langle A \rangle$ engendré par A et monogène et préciser ses générateurs.
- 5. Prouver que le groupe $H = \mathbb{Z}/35\mathbb{Z}$ est isomorphe au groupe $G = \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$. Est ce que G est cyclique? si oui quel est le nombre de ses générateurs.
- 6. Donner la définition de l'indicatrice d'Euler φ .
- 7. Calculer $\varphi(2200)$.
- 8. Soit $(A, +, \times)$ un anneau commutatif intègre. Donner la définition d'un élément irréductible de $(A, +, \times)$.

PROBLÈME 1

Partie 1 : Anneaux $\mathbb{Z}[\sqrt{n}]$

Soit n un entier naturel qui n'est pas le carré d'un entier. On désigne par $\mathbb{Z}[\sqrt{n}]$ l'ensemble des réels de la forme $a+b\sqrt{n}$, où a et b sont des entiers relatifs quelconques.

- 1. (a) Démontrer que $\sqrt{n} \notin \mathbb{Q}$.
 - (b) Montrer que l'application de \mathbb{Z}^2 dans $\mathbb{Z}[\sqrt{n}]$ définie par $(a,b)\mapsto a+b\sqrt{n}$ est bijective.
- 2. Montrer que $\mathbb{Z}[\sqrt{n}]$ est un sous-anneau de \mathbb{R} . On rappelle que $\mathscr{U}(\mathbb{Z}[\sqrt{n}])$ est l'ensemble des inversibles de $\mathbb{Z}[\sqrt{n}]$ et que c'est un groupe pour la multiplication.
- 3. L'anneau $\mathbb{Z}[\sqrt{n}]$ est-il intègre?
- 4. Montrer que l'application

$$\psi : \begin{cases} \mathbb{Z}[\sqrt{n}] & \longrightarrow \mathbb{Z}[\sqrt{n}] \\ x = a + b\sqrt{n} & \longmapsto \psi(x) = a - b\sqrt{n} \end{cases}$$

est un morphisme d'anneau involutif de $\mathbb{Z}[\sqrt{n}]$.

Rappel:

un morphisme Θ d'un anneau $(R, +, \times)$ vers $(R, +, \times)$ est dit involutif lorsque $\Theta \circ \Theta = \mathrm{Id}_R$.

- 5. Pour tout élément x de $\mathbb{Z}[\sqrt{n}]$, on considère le produit $N(x) = x\psi(x)$.
 - (a) Montrer que : $\forall x \in \mathbb{Z}[\sqrt{n}], \quad N(x) = 0 \Leftrightarrow x = 0.$
 - (b) Montrer que $\forall (x,y) \in \mathbb{Z}[\sqrt{n}]^2$, N(xy) = N(x)N(y).
- 6. Montrer qu'un élément x de $\mathbb{Z}[\sqrt{n}]$ est inversible dans $\mathbb{Z}[\sqrt{n}]$ si et seulement si |N(x)| = 1.

Partie 2 : Anneau $\mathbb{Z}[\sqrt{5}]$

On rappelle ce qui suit :

— On dit que deux éléments x et y de $\mathbb{Z}[\sqrt{5}]$ sont associés si et seulement si

$$\exists \varepsilon \in \mathscr{U}(\mathbb{Z}[\sqrt{5}]), \quad y = \varepsilon x.$$

- Si $x \in \mathbb{Z}[\sqrt{5}]$ alors x est irréductible si et seulement si x n'est pas inversible et les seuls diviseurs de x sont les inversibles de $\mathbb{Z}[\sqrt{5}]$ et les associés de x dans $\mathbb{Z}[\sqrt{5}]$.
- 1. Soit $x \in \mathbb{Z}[\sqrt{5}]$ un élément non inversible. Démontrer que x est irréductible dans $\mathbb{Z}[\sqrt{5}]$ si et seulement si :

$$\forall y, z \in \mathbb{Z}[\sqrt{5}], \quad yz = x \Rightarrow y \in \mathscr{U}(\mathbb{Z}[\sqrt{5}]) \quad \text{ou} \quad z \in \mathscr{U}(\mathbb{Z}[\sqrt{5}]).$$

- 2. (a) Justifier que $u = 2 + \sqrt{5} \in \mathcal{U}(\mathbb{Z}[\sqrt{5}])$ et préciser u^{-1} .
 - (b) Démontrer que $\mathscr{U}(\mathbb{Z}[\sqrt{5}])$ possède une infinité d'éléments.
- 3. (a) Soit $\gamma, \delta \in \mathbb{Z}/4\mathbb{Z}$, montrer que $\gamma^2 5\delta^2 \in \{\overline{0}, \overline{1}, \overline{3}\}$.
 - (b) En déduire qu'il n'existe pas d'entiers relatifs c et d tels que $|c^2 5d^2| = 2$.
 - (c) En déduire que l'élément 2 est irréductible dans l'anneau $\mathbb{Z}[\sqrt{5}]$.
- 4. Soit I l'ensemble des éléments $x = a + b\sqrt{5}$ de $\mathbb{Z}[\sqrt{5}]$ tels que les entiers a et b soient de même parité. Démontrer que I est un idéal de l'anneau $\mathbb{Z}[\sqrt{5}]$.
- 5. On suppose que l'idéal I est engendré par un élément x.
 - (a) Montrer qu'il existe des éléments y et z de $\mathbb{Z}[\sqrt{5}]$ tels que 2=xy et $1+\sqrt{5}=xz$.
 - (b) Trouver une contradiction.
 - (c) Que peut-on dire de l'anneau $\mathbb{Z}[\sqrt{5}]$.

PROBLÈME 2

Notations et rappels :

Dans tout ce problème :

- $\bullet \mathbb{K}$ désigne l'un des corps \mathbb{R} ou \mathbb{C} .
- E est un \mathbb{K} -espace vectoriel de dimension n avec $n \geq 1$.
- Id désigne l'application identique de E et θ l'application de E vers E identiquement nulle, c'est-à-dire que : $\forall x \in E, \quad \left\{ \begin{array}{l} \operatorname{Id}(x) = x \\ \theta(x) = 0 \end{array} \right.$
- $u \in \mathcal{L}(E)$ un endomorphisme de E.
- Pour $m \in \mathbb{N}$, on définit u^m par : $\begin{cases} u^0 = \operatorname{Id} \\ \forall m \in \mathbb{N}, u^{m+1} = u^m \circ u \end{cases}$, donc si $m \in \mathbb{N}^*$ alors $u^m = \underbrace{u \circ \cdots \circ u}_{m \text{ fois}}$.
- Un projecteur de E est un endomorphisme $u \in \mathcal{L}(E)$ tel que $u^2 = u$.

Partie I: Noyaux itérés, endomorphisme nilpotent

Pour tout $k \in \mathbb{N}$, on note $N_k = \ker(u^k)$ et $I_k = \operatorname{Im} u^k$.

- 1. Prouver que : $\forall k \in \mathbb{N}, \quad \begin{cases} N_k \subset N_{k+1} \\ I_{k+1} \subset I_k \end{cases}$.
- 2. Démontrer que : $\forall m \in \mathbb{N}^*, N_m = N_{m+1} \Leftrightarrow I_m = I_{m+1}$.
- 3. Soit $m \in \mathbb{N}^*$ tel que $N_m = N_{m+1}$. Démontrer que :

$$\forall k \in \mathbb{N}^*, k \ge m \Rightarrow N_k = N_m \quad \text{et} \quad I_k = I_m$$

4. Démontrer que $\exists m \in \mathbb{N}^*$, $N_m = N_{m+1}$. On définit alors l'entier naturel

$$\pi(u) = \min \{ m \in \mathbb{N}^* / N_m = N_{m+1} \}$$

- 5. (a) Calculer $\pi(\mathrm{Id})$ et $\pi(\theta)$.
 - (b) Soit f un isomorphisme de E, calculer $\pi(f)$.
 - (c) Soit f un projecteur de E. Calculer $\pi(f)$.
- 6. Démontrer que si $p = \pi(u)$ alors $\ker(u^p) \oplus \operatorname{Im}(u^p) = E$.
- 7. On dit que u est nilpotent s'il existe $k \in \mathbb{N}^*$ tel que $u^k = \theta$. Si c'est le cas l'entier naturel $\nu(u) = \min \{k \in \mathbb{N}^*/u^k = \theta\}$ s'appelle l'indice de nilpotence de u. On suppose dans cette question que u est nilpotent d'indice de nilpotence p.

3

(a) Donne $\pi(u)$ en fonction de p.

- (b) Démontrer qu'il existe $x \in E$ tel que la famille $\mathscr{F} = (x, u(x), \dots, u^{p-1}(x))$ est libre.
- (c) En déduire que $p \leq n$.
- (d) Prouver que pour tout endomorphisme $f \in \mathcal{L}(E)$, on a f est nilpotent si et seulement si $f^n = \theta$.

Partie 2 : Exemple dans \mathbb{R}^3

On suppose dans cette partie que $E = \mathbb{R}^3$ et on note $\mathscr{E} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Soit $u \in \mathcal{L}(\mathbb{R}^3)$ tel que :

$$\forall X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3, u(X) = \begin{pmatrix} x - y \\ x + y + 2z \\ 2x - y + z \end{pmatrix}..$$

On note $A = \max_{\mathscr{E}}(u)$ la matrice de u relativement à \mathscr{E} .

- 1. Déterminer A puis calculer rg(A) et $rg(A^2)$.
- 2. Déterminer $N_k = \ker u^k$ et $I_k = \operatorname{Im} u^k$, pour tout $k \in \{1, 2, 3\}$.
- 3. En déduire $\pi(u)$. On note alors $p = \pi(u)$.
- 4. Vérifier qu'on a effectivement $\ker u^p \oplus \operatorname{Im} u^p = E$.
- 5. On considère les vecteurs : $\begin{cases} \omega_1 = e_1 + e_2 + 2e_3 \\ \omega_2 = e_1 e_2 + e_3 \\ \omega_3 = e_1 + e_2 e_3 \end{cases}$, et on note :

$$F = \text{Vect}(\omega_1, \omega_2)$$
 et $G = \text{Vect}(\omega_3)$.

- (a) Prouver que $\Omega = (\omega_1, \omega_2, \omega_3)$ est une base de E.
- (b) Montrer que $\operatorname{Im} u = F$ et $\ker u = G$. En déduire que l'on a :

$$u(F) \subset F$$
 et $u(G) \subset G$

- (c) Démontrer que l'application $g: F \to F; x \mapsto g(x) = u(x)$ est un isomorphisme de F et calculer la matrice $A_1 = \max_{\mathscr{V}}(g)$, où $\mathscr{V} = (\omega_1, \omega_2)$.
- (d) Calculer $A' = \text{mat}_{\mathscr{W}}(u)$ où $\mathscr{W} = (\omega_1, \omega_2, \omega_3)$.
- (e) Trouver une matrice $B \in \mathcal{M}_3(\mathbb{R})$ tel que : (\star) $\begin{cases} AB = BA \\ A^2B = A \\ B^2A = B \end{cases}$
- (f) Démontrer que B vérifiant les conditions (\star) est unique.
- 6. Démontrer que $\operatorname{Im} u = \ker (u^2 3u + 6 \operatorname{Id})$