
1 Partie 1
1) a) On a χM1 = X2− tr(M1)X +det(M1) = X2− 2X +1 = (X − 1)2, donc Sp(M1) = {1}, donc
1 est la seule valeur propre de M1, il en découle que f1(ω1) = ω1, donc M1ω1 = ω1, donc(

−1 1
−4 3

)(
1
α

)
=

(
1
α

)
=

(
−1 + α
−4 + 3α

)

donc α = 2 et finalement ω1 =

(
1
2

)
est l’unique vecteur propre de la matrice M1, de la forme(

1
α

)
avec α ∈ C.

On a ω2 =

(
0
1

)
, donc detC(ω1, ω2) =

∣∣∣∣ 1 0
2 1

∣∣∣∣ = 1, donc la famille Ω = (ω1, ω2) est une base de

C2.
On a Q1 =

(
1 0
2 1

)
et comme f1(ω1) = ω1 et f1(ω2) = f1(e2) = e1 + 3e2 = ω1 + ω2, on a

T1 = matΩ(f1) =

(
1 1
0 1

)
.

b) M1 est trigonalisable car toute matrice deM2(C) est trigonalisable.
c) D’après la question I.1.a) on a matC(f1) =M1 et matΩ(f1) = T1 et Q1 = PΩ

C est la matrice de
passage de C à Ω, d’après les formules de changement de base on a M1 = Q1T1Q

−1
1 et notons que

Q1 =

(
1 0
2 1

)
et Q−1

1 =

(
1 0
−2 1

)
2.a) On calcule χM = (X − 1)3, pour le calcul on fait tout au début l’operation C1 ← C1 − C2

et on factorise par (X − 1). On fait l’opération L3 ← L3 + L1 pour faire apparaître un nouveau
0 dans la première colonne. On a Sp(M) = {1}, il en découle que si M est diagonalisable alors
M = P∆P−1 avec P ∈ GL3(C) et ∆ = diag(1, 1, 1), donc M = I3, ce qui est contradictoire, donc
M n’est pas diagonalisable.

b) Soit X =

 x
y
z

 ∈ C3, alors :

X ∈ E1(M) ⇔ MX = X

⇔


y = 0
x− 2y + z = 0
2x− 5y + 2z = 0

⇔
{
y = 0
z = −x ⇔ X = x

 1
0
−1



il en découle que le vecteur demandé est v1 =

 1
0
−1

.

•On a detB(V ) =

∣∣∣∣∣∣
1 0 0
0 1 0
−1 0 1

∣∣∣∣∣∣ = 1 ̸= 0, donc V est une base de C3.
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c) On a Q =

 1 0 0
0 1 0
−1 0 1

. Comme v1 = e1 − e3, v2 = e2, v3 = e3 on déduit e1 = v1 + v3, e2 =

v2, e3 = v3, par suiteQ−1 =

 1 0 0
0 1 0
1 0 1

. Il en découle queQ−1M =

 1 0 0
0 1 0
1 0 1

 1 1 0
1 −1 1
2 −5 3

 = 1 1 0
1 −1 1
3 −4 3

, donc aussi Q−1MQ =

 1 1 0
1 −1 1
3 −4 3

 1 0 0
0 1 0
−1 0 1

 =

 1 1 0
0 −1 1
0 −4 3

.

•Déduction : On remarque que Q−1MQ =

(
1 L
0 M1

)
où L =

(
1 0

)
. Dans la question I.1.c),

on a prouvé que M1 = Q1T1Q
−1
1 , avec Q1 =

(
1 0
2 1

)
, Q−1

1 =

(
1 0
−2 1

)
et T1 =

(
1 1
0 1

)
. Il

en découle que Q−1MQ =

(
1 L
0 Q1T1Q

−1
1

)
. Posons P1 =

(
1 0
0 Q1

)
=

 1 0 0
0 1 0
0 2 1

, c’est une

matrice par blocs inversible d’inverse P−1
1 =

(
1 0
0 Q−1

1

)
=

 1 0 0
0 1 0
0 −2 1

. On a le calcul suivant

de produit de matrices par blocs :

T = P−1
1 Q−1MQP1 =

(
1 0
0 Q−1

1

)(
1 L
0 Q1T1Q

−1
1

)(
1 0
0 Q1

)
Donc

T =

(
1 0
0 T1

)
=

 1 1 0
0 1 1
0 0 1


Autrement dit si on pose P = QP1, on a T = P−1MP avec P inversible et T triangulaire supérieure.

Un calcule donne P =

 1 0 0
0 1 0
1 2 1

 et P−1 =

 1 0 0
0 1 0
−1 −2 1

 et on résume par :

M =

 1 0 0
0 1 0
−1 2 1

 1 1 0
0 1 1
0 0 1

 1 0 0
0 1 0
1 −2 1


ce qui constitue une trigonalisation de M .

3) Deux matrices semblables ont le même polynôme caractéristique ; les valeurs propres d’une
matrice triangulaire sont les termes de la diagonale . Donc si A ∈Mn(C) est semblable à T ∈ Tn(C)
, alors les termes diagonaux de T sont les valeurs propres de A

4) a) Par hypothèse : j < i⇒ si,j = ti,j = 0 . Soit U = ST = (ui,j) : ui,j =
∑n

k=1 si,ktk,j . Si i > j
alors pour k < i : si,k = 0 et pour k ≥ i , k > j ⇒ tk,j = 0 donc ui,j = 0 .
Donc ST ∈ Tn(C) . Enfin si i = j seul k = i donne un terme non nul : ui,i = si,iti,i
b) On prend S = T : T 2 ∈ Tn(C) , de t. diagonaux (ti,i)

2 . Par récurrence : si T p ∈ Tn(C) , de t.
diagonaux (ti,i)

p , on prend S = T p d’où T p+1 ∈ Tn(C) , de t. diagonaux (ti,i)
p+1 .
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5) Soit A ∈ Mn(C) . D’après 2) , ∃T ∈ Tn(C) , ∃P ∈ GLn(C) tq T = P−1AP . D’après 4) , les
termes diagonaux t1,1, ..., tn,n de T sont les valeurs propres λ1, ..., λn de A . D’après 5) , les termes
diagonaux de T k sont (λ1)

k , ..., (λn)
k ; d’après 4) et T k = P−1AkP , ce sont les valeurs propres de

Ak . Donc ρ(Ak) = max
{∣∣∣(λi)k∣∣∣ , 1 ≤ i ≤ n

}
= (max {|λi| , 1 ≤ i ≤ n})k

Conclusion : ρ(Ak) = [ρ(A)]k

6) ∀A ∈Mn(C) , ψ(A) existe et ψ(A) ≥ 0 ; ψ(A) = 0⇔ A = 0n ; ∀A ∈Mn(C) ,∀λ ∈ C , ψ(λA) =
|λ|ψ(A) ; ∀A,B ∈Mn(C) , ψ(A+B) ≤ ψ(A) + ψ(B) : ψ est une norme sur Mn(C)
Soit U ∈ Mn(C) tq ∀i, j , ui,j = 1 : ψ(U) = 1 , U2 = nU donc ψ(U2) = n et si n ≥ 2 l’inégalité :
ψ(U × U) ≤ ψ(U)× ψ(U) n’est pas vérifiée , donc ψ n’est pas une norme matricielle

7) La norme N et une norme matricielle φ sont équivalentes car Mn(C) est un EV de dim finie .
Par définition : ∃α , β > 0 tq ∀A ∈Mn(C) , αφ(A) ≤ N(A) ≤ βφ(A)
Alors ∀A,B ∈Mn(C) , N(AB) ≤ βφ(AB) ≤ βφ(A)φ(B) ≤ β

α2N(A)N(B)

8) Soit ∀k , Bk = P−1AkP et B = P−1AP . ∀k , Bk −B = P−1(Ak − A)P
Soit N une norme matricielle : 0 ≤ N(Bk − B) ≤ N(P−1)N(Ak − A)N(P ) d’où : N(Ak − A) →
0 qd k → +∞ ⇒ N(Bk −B)→ 0 qd k → +∞
Réciproque : si (Bk) CV vers B , alors (PBkP

−1) CV vers PBP−1 d’où (Ak) CV vers A

9) a) ∀k ∈ N∗ , T k =

(
λk kλk−1µ
0 λk

)
. Ak de terme général a(k)i,j CV vers A si et seulement si

∀i, j , lim
k→+∞

a
(k)
i,j = 0 . Donc la suite

(
T k

)
converge si et seulement si les suites complexes

(
λk
)

et(
kλk−1µ

)
convergent. On va distinguer les divers cas possibles ensuite, on fera une synthèse :

•Si |λ| < 1,
• il est connu que lim

k→+∞
λk = 0.

•Par ailleurs, on a aussi dans ce cas lim
k→+∞

kλk−1 = 0, chose claire si λ = 0, sinon 0 < |λ| < 1, donc

|kλk−1| = k exp((k − 1) ln |λ|) −→
k→+∞

0

•Si |λ ≥ 1 alors si on suppose que λk −→
k→+∞

ℓ forcément ℓ ̸= 0 et on a aussi λk+1 −→
k→+∞

ℓ. Comme

λk ̸= 0, on a 1 = lim
k→+∞

λk+1

λk = λ, donc λ = 1.

• Il en découle que si |λ| = 1 et λ ̸= 1, la suite (Ak) est divergente.
• Il reste le cas λ = 1, pour lequel (Ak) converge si et seulement si (µk) est convergente si et
seulement si µ = 0.
• Il découle de cette analyse que la suite (Ak) converge si et seulement si |λ| < 1, pour lequel
lim

k→+∞
Ak = O2, ou λ = 1 et µ = 0, pour lequel lim

k→+∞
Ak = I2.

b) ∃P ∈ GL2(C) tq P−1AP = D =

(
λ1 0
0 λ2

)
. Alors Dk =

(
(λ1)

k 0

0 (λ2)
k

)
. D’après 9)

(
Ak

)
CV ssi

(
Dk

)
CV . Les cas de CV sont :

|λi| < 1 pour i = 1 et 2 (limite 02)
λi = 1 et |λj| < 1 pour i ̸= j

λ1 = λ2 = 1
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c) Si A n’est pas diagonalisable , nécéssairement ses valeurs propres sont égales . D’après 2) elle est

trigonalisable : ∃P ∈ GL2(C) tq P−1AP = T =

(
λ µ
0 λ

)
et µ ̸= 0 (sinon A serait diagonalisable)

. Donc d’après a) , la suite
(
T k

)
CV ssi |λ| < 1 et d’après 9) ,

(
Ak

)
CV ssi

(
T k

)
CV . Ici ρ(A) = |λ|

. Donc
(
Ak

)
CV ssi ρ(A) < 1 et la limite est 02

d) D’après b) , si A est diagonalisable :
(
Ak

)
CV vers 02 ssi (|λ1| < 1 et |λ1| < 1) , ssi ρ(A) < 1 .

En conclusion de b) et c) :
(
Ak

)
CV vers 02 ssi ρ(A) < 1

2 Partie 2

1) a) Posons Y = AX = (yi)1≤i≤n, donc pour tout i ∈ [[1, n]], on a : yi =
n∑

j=1

ai,jxj . On a

∀j , |xj| ≤ N∞(X), donc |yi| ≤
(∑n

j=1 |ai,j|
)
N∞(X) ≤MAN∞(X) donc N∞(AX) ≤MAN∞(X).

b) L’ application φA : X 7→ AX est une application linéaire de Cn vers Cn muni de la norme N
, donc elle est continue (dimension finie). Donc il existe une constante CA tel que N(φA(X)) ≤
CAN(X) pour tout X ∈ Cn. Donc ∀X ∈ Cn, N(AX) ≤ CAN(X)

ò
Une autre méthode est d’utiliser l’équivalence des normes. Notamment N et N∞ sont
équivalentes

ò
donc il existe α, β tel que αN∞ ≤ N ≤ βN∞, donc N(AX) ≤ βN∞(AX) ≤
βMAN∞(X) ≤ βMA

α
N(X)

c) ∀X ̸= 0 , N(AX)
N(X)

≤ CA . L’ensemble
{

N(AX)
N(X)

, X ∈ Cn − {0}
}

est une partie non vide et majorée
de R donc admet une borne supérieure .

d) Cette borne sup est le plus petit majorant et CA est un majorant donc Ñ(A) ≤ CA . Dans le
cas de la norme N∞ , on peut prendre CA =MA donc : Ñ∞(A) ≤MA .

e) X0 =

 1
−1
1

⇒ GX0 =

 0
3
10

 . On a : N∞(X0) = 1 ,N∞(GX0) = 10 d’où N∞(GX0)
N∞(X0)

= 10 ⇒

Ñ∞(G) ≥ 10 . De plus MG = 10 donc Ñ∞(G) ≤ 10 . Conclusion : Ñ∞(G) =MG = 10

2) ∀j , |yj| = 1⇒ N∞(Y ) = 1 . Soit Z = AY . ∀i , |zi| =
∣∣∣∑n

j=1 ai,jyj

∣∣∣ ≤∑n
j=1 |ai,j| ≤MA

Si ai0j = 0 alors ai0,jyj = 0 = |ai0,j| , sinon ai0,jyj = |ai0,j| car ∀u ∈ C∗ , u u
|u| = |u| . Donc

zi0 =
∑n

j=1 |ai0,j| = MA . N∞(Z) = MA ⇒ N∞(AY )
N∞(Y )

= MA ⇒ Ñ∞(A) ≥ MA . En utilisant 1)d) on
peut conclure : Ñ∞(A) =MA

3) a) Ñ(A) = 0⇔ ∀X ̸= 0 , N(AX) = 0⇔ ∀X ̸= 0 , AX = 0⇔ ∀X , AX = 0⇔ A = 0n

b) ∀X ̸= 0 , N(λAX)
N(X)

= |λ|N(AX)
N(X)

≤ |λ| Ñ(A) donc Ñ(λA) ≤ |λ| Ñ(A)
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c) Si λ ̸= 0 : Ñ(A) = Ñ( 1
λ
λA) ≤

∣∣ 1
λ

∣∣ Ñ(λA)⇒ |λ| Ñ(A) ≤ Ñ(λA) d’où |λ| Ñ(A) = Ñ(λA)
Si λ = 0 on a égalité car les 2 membres sont nuls .

d) ∀X ̸= 0 , N [(A+B)X] = N(AX +BX) ≤ N(AX)+N(BX)⇒ N [(A+B)X]
N(X)

≤ N(AX)
N(X)

+ N(BX)
N(X)

≤
Ñ(A)+ Ñ(B) donc Ñ(A+B) ≤ Ñ(A)+ Ñ(B)

e) ∀X ̸= 0 , N(AX)
N(X)

≤ Ñ(A)⇒ N(AX) ≤ Ñ(A)N(X) et si X = 0 les 2 membres sont nuls .

f) On déduit de a),c),d) que Ñ est une norme sur Mn(C) . De plus : ∀A,B ∈ Mn(C) , ∀X ∈
Cn , N(ABX) ≤ Ñ(A)N(BX) ≤ Ñ(A)Ñ(B)N(X) d’où : Ñ(AB) ≤ Ñ(A)Ñ(B)

Conclusion : Ñ est une norme matricielle sur Mn(C) (ce qui en prouve l’existence)

4)a) Soit λ ∈ Sp(A) et X un vecteur propre associé : X ̸= 0 et AX = λX ⇒ N(AX)
N(X)

= |λ| donc
|λ| ≤ Ñ(A) . En particulier pour λ telle que |λ| = ρ(A) . Donc ρ(A) ≤ Ñ(A)

b) Si A = In : ρ(A) = 1 et ∀X , AX = X donc Ñ(A) = 1 : on a égalité .

c) Si A ̸= 0n alors Ñ(A) ̸= 0 d’après 3)a) . Si de plus A est nilpotente , sa seule valeur propre est
0 donc ρ(A) = 0 et : ρ(A) < Ñ(A)

d) Si
(
Ak

)
converge vers 0n alors Ñ(Ak) → 0 qd k → +∞ . [ρ(A)]k = ρ(Ak) ≤ Ñ(Ak) donc

[ρ(A)]k → 0 qd k → +∞ . D’où : ρ(A) < 1 .

5) a) On a m′
ij = αiβjmij. On en déduit pour le cas indiqué : m′

ij = pip−jmij = pi−jmij

b) Soit X = (xi) ∈ Cn, alors ∥DX∥22 =
n∑

k=1

|αk|2|xk|2 ≤ (ρ(D))2∥X∥22. Il en découle que |||D|||2 ≤

ρ(D). Soit j ∈ [[1, n]] tel que ρ(A) = |λj| et X0 ∈ Cn tel que ∀i ∈ [[1, n]], (X0)i = δij On a ∥X0∥ = 1
et |||DX0||| = |αj| = ρ(D)

c) Pour tout λ ∈ C et X, Y ∈ Cn, on a :
• si ∥X∥Q = 0 alors QX = 0 et comme Q est inversible on a X = 0.
• ∥X + Y ∥Q = ∥Q(X + Y )∥ = ∥QX +QY ∥ ≤ ∥QX∥+ ∥QY ∥ = ∥X∥Q + ∥Y ∥Q.
• ∥λX∥Q = ∥λQX∥ = |λ|∥QX∥ = |λ|∥X∥Q

6)
a) Comme A ∈ Mn(C) , on a A est trigonalisable, donc il existe T triangulaire supérieure et P
inversible tel que A = PTP−1. Les λk sont les valeurs propres de A.

b) Le terme général que Tp est tpij = pi−jtij, donc :
Si i > j on a tpij = 0.
Si i = j on a tpij = λi
Si i < j on a tpij = tijp

i−j → 0, quand p→ +∞ puisque i− j < 0
Donc lim

p→+∞
Tp = ∆

c) Par définition de la limite il existe p0 ∈ N tel que pour tout p ≥ p0, on a : ∥Tp −∆∥2 < ε. En
particulier pour m = p0, on a : ∥Tm −∆∥2 < ε, donc :

∥Tm∥2 − ∥∆∥2 ≤ ∥Tm −∆∥2 < ε
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Compte tenu de ∥∆∥2 = ρ(∆) = ρ(A), on a alors :

∥Tm∥2 ≤ ε+ ρ(A)

soit :
∥DmTD

−1
m ∥2 ≤ ε+ ρ(A)

d) On a T = P−1AP , donc le résultat de c) ci-dessus donne :

|||DmP
−1APD−1

m |||2 ≤ ε+ ρ(A) =
1 + ρ(A)

2
.

Posons Q = DmP
−1. Il vient : |||A|||Q < 1+ρ(A)

2
.

e) Posons τ = 1+ρ(A)
2

, alors τ < 1 Donc lim
p→+∞

τ p = 0 Or d’après d) et compte tenu du fait que |||.|||
est une norme matricielle, on a pour tout p ∈ N∗ :

|||Ap|||Q ≤ (|||A|||Q)p ≤ τ p → 0

quand p tends vers +∞.
Conclusion : lim

p→+∞
Ap = 0

7) a) De l’inégalité vue en 5) on déduit pour k ∈ N∗ : ρ(A) ≤
[
Ñ(Ak)

] 1
k

b)Comme A ∈Mn(C), elle est trigonalisable, donc

A = P


λ1 ∗ · · · · · · ∗
0

. . . . . . ...
... . . . . . . . . . ...
... . . . . . . ∗
0 · · · · · · 0 λn

P−1

où P est une matrice inversible. Il en résulte que :

αA = P


αλ1 ∗ · · · · · · ∗
0

. . . . . . ...
... . . . . . . . . . ...
... . . . . . . ∗
0 · · · · · · 0 αλn

P−1

On en déduit que :

ρ(αA) = max{|αλk|/k ∈ [[1, n]]}
= |α|max{|λk|/k ∈ [[1, n]]}
= |α|ρ(A)
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c) On prend α = 1
ρ(A)+ε

(α > 0) et on applique a) : ρ(Aε) = αρ(A) = ρ(A)
ρ(A)+ε

< 1 car ε > 0

D’après la question II.6.e), et compte tenu de ρ(Aε) < 1, on a lim
k→+∞

(Aε)
k = 0, donc ∃kε tq

∀k ≥ kε , Ñ
(
(Aε)

k
)
≤ 1 . (Aε)

k = αkAk ⇒ Ñ
(
(Aε)

k
)
= αkÑ(Ak) Donc αkÑ(Ak) ≤ 1 ⇒

Ñ(Ak) ≤ (ρ(A) + ε)k .

d) ∀k ≥ kε , ρ(A) ≤
[
Ñ(Ak)

] 1
k ≤ ρ(A) + ε : c’est la définition de lim

k→+∞

[
Ñ(Ak)

] 1
k
= ρ(A).

3 Partie 3

1) A =

(
0 1
0 0

)
vérifie A ≥ 0 , A ̸= 0 mais pas A > 0

2) a) Soit U = AA′ ; V = BB′ . ∀i, j , ui,j =
n∑

k=1

ai,ka
′
k,j ; vi,j =

n∑
k=1

bi,kb
′
k,j . Par hypothèse :

∀i, j , 0 ≤ ai,j ≤ bi,j et 0 ≤ a′i,j ≤ b′i,j donc ∀i, j , 0 ≤ ui;j ≤ vi,j : 0 ≤ AA′ ≤ BB′

b) On prend A′ = A et B′ = B et on procède par récurrence .

c) Rappelons que Ñ∞(A) = MA . Or ∀i ,
n∑

j=1

|ai,j| =
n∑

j=1

ai,j ≤
n∑

j=1

bi,j d’où en passant au sup :

MA ≤MB donc Ñ∞(A) ≤ Ñ∞(B)

d) D’après b) et c) : ∀k , 0 ≤ Ak ≤ Bk ⇒ Ñ∞(Ak) ≤ Ñ∞(Bk) ⇒
[
Ñ∞(Ak)

] 1
k ≤

[
Ñ∞(Bk)

] 1
k d’où

en passant à la limite : ρ(A) ≤ ρ(B)

e) Par hyp : ∀i, j , 0 ≤ ai,j < bi,j . Si A ̸= 0n , soit c = supi,j{
ai,j
bi,j
} . On a un nombre fini de termes

tous strictement inférieurs à 1 et non tous nuls donc c < 1 et c > 0 . Si A = 0n tout c ∈]0, 1[
convient . ∀i , ai,j ≤ cbi,j donc A ≤ cB
D’après d) et II)6)b) : ρ(A) ≤ cρ(B) . Enfin B admet au moins une valeur propre non nulle car

Tr(B) =
n∑

i=1

bi,i > 0 et Tr(B) est la somme des valeurs propres de B . Donc ρ(B) > 0 et c < 1 donc

cρ(B) < ρ(B) et en conclusion : ρ(A) < ρ(B)

3) Soit V ∈ Cn tq ∀i , vi = 1 . AV = αV donc α ∈ Sp(A) (et α ≥ 0) . On en déduit que :
α ≤ ρ(A) . Pour cette matrice on a : MA = α et d’après II)2) : Ñ∞(A) =MA = α ; d’après II 4)a)
ρ(A) ≤ Ñ∞(A) donc : Ñ∞(A) = ρ(A) = α

4) Si α = 0 l’inégalité α ≤ ρ(A) est évidente . Si α > 0 , on a ∀i ,
n∑

j=1

bi,j = α
αi

n∑
j=1

ai,j = α B

vérifie les hypothèses de 3) donc ρ(B) = α . De plus ∀i, j , 0 ≤ bi,j ≤ ai,j donc 0 ≤ B ≤ A et

d’après 2)d) : ρ(B) ≤ ρ(A) . Donc α ≤ ρ(A) et α = min
1≤i≤n

n∑
j=1

ai,j. Finalement, d’après II)4)a), on

a ρ(A) ≤ Ñ∞(A) =MA et MA = max
1≤i≤n

n∑
j=1

|ai,j| = max
1≤i≤n

n∑
j=1

ai,j.
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5) Soit U = ADx : ∀i, j , ui,j = xjai,j Soit V = D−1
x U : ∀i, j , vi,j = 1

xi
ui,j =

xj

xi
ai,j. A et V

sont semblables donc ρ(A) = ρ(V ) . Notons Y = AX :
n∑

j=1

vi,j =
1
xi

n∑
j=1

xjai,j =
yi
xi

donc d’après la

question 4) : mini
yi
xi
≤ ρ(V ) ≤ maxi

yi
xi

d’où : mini
(AX)i
xi
≤ ρ(A) ≤ maxi

(AX)i
xi

6) SiX est vecteur propre strictement positif de A : AX = λX et on peut appliquer 5) : ∀i , (AX)i
xi

=

λ donc λ ≤ ρ(A) ≤ λ donc λ = ρ(A) ; les ensembles
{
mini

(AX)i
xi

, X > 0
}

et
{
maxi

(AX)i
xi

, X > 0
}

admettent ρ(A) pour respectivement maximum et minimum .
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