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Problème
Notations

Soit n et p des entiers supérieurs ou égaux à 1. K désignant le corps des réels
ou celui des complexes, on note Mn,p(K) le K-espace vectoriel des matrices
à coefficients dans K ayant n lignes et p colonnes. Lorsque p = n, Mn,n(K)
est noté plus simplement Mn(K) et est muni de sa structure d’algèbre, In
représentant la matrice identité.
0n,p désigne la matrice nulle de Mn,p(K) et 0n la matrice nulle de Mn(K).
GLn(K) désigne l’ensemble des matrices inversibles de Mn(K) et Tn(K) l’en-
semble des matrices carrées d’ordre n triangulaires supérieures à éléments dans
K.
Tout vecteur x = (xi)1≤i≤n de Kn est identifié à un élément X de Mn,1(K) tel
que l’élément de la ième ligne de X soit xi. Dans toute la suite, nous noterons
indifféremment X = (xi)1≤i≤n un élément de Mn,1(K) aussi bien que le vecteur
de Kn qui lui est associé.
Pour A = (ai,j)1≤i≤n

1≤j≤p
dans Mn,p(K) et X = (xi)1≤i≤p dans Kp, on note (AX)i

le coefficient de la ième ligne de AX.
Pour toute matrice A de Mn(K), on note Sp (A) l’ensemble des valeurs propres
complexes de A et on appelle rayon spectral de A le réel ρ(A) défini par :

ρ(A) = max
λ∈Sp(A)

|λ|.

Conformément à l’usage, on note N∞ la norme définie sur Cn par :

∀X = (xi)1≤i≤n ∈ Cn, N∞(X) = max
1≤i≤n

|xi|.

On qualifie de norme matricielle toute norme ν définie sur Mn(K) vérifiant les
propriété (i) et (ii) suivantes :{

(i) ∀(A,B) ∈ (Mn(K))2, ν(AB)≤ν(A) · ν(B)
(ii) ν(In) = 1

Mn(K) étant de dimension finie, on rappelle qu’une suite de matrices (Ak)k∈N de
Mn(K) converge vers une matrice A de Mn(K) si et seulement si la convergence
a lieu dans Mn(K) muni d’une norme quelconque.
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Partie I

Une matrice A de Mn(K) est dite trigonalisable si et seulement s’il existe
des matrices P et T tel que :

(⋆) P ∈ GLn(K), T ∈ Tn(K), A = PTP−1.

Trigonaliser A c’est trouver les matrices P et T qui vérifient (⋆) ci-dessus.

I.1 On note C = (c1, c2) la base canonique de C2 et on considère la matrice

M1 =

(
−1 1
−4 3

)
et on note f1 l’endomorphisme de C2 canoniquement

associé à M1.

a) Démontrer que M1 admet un et un seul vecteur propre de la forme

ω1 =

(
1
α

)
où α ∈ C à determiner. On note ω2 =

(
0
1

)
. Justifier

que Ω = (ω1, ω2) est une base de C2. On note Q1 la matrice de
passage de C à Ω et T1 = matΩ(f1). Calculer avec soin les matrices
Q1 et T1.

b) Pourquoi M1 est trigonalisable dans M2(C) ?
c) Trigonaliser M1.

I.2 Soit la matrice M =

1 1 0
1 −1 1
2 −5 3

.

a) La matrice M est-elle diagonalisable ?
b) On note B = (e1, e2, e3) la base canonique de C3. Montrer que M

admet un unique vecteur propre v1 de la forme v1 =

 1
β
γ

 , les

nombres complexes β et γ à determiner. Vérifier que si on pose
v2 = e2 et v3 = e3 alors V = (v1, v2, v3) est une base de C3.

c) On note Q la matrice de passage de B à V . Calculer Q−1MQ et
en déduire, des matrices P ∈ GL3(C) et T ∈ T3(C) telles que
P−1MP = T .

I.3 Soit A ∈ Mn(C). Si T est une matrice triangulaire supérieure sem-
blable à A, que représentent, pour A, les éléments diagonaux de T ?

I.4 Soit S = (si,j) et T = (ti,j) deux matrices triangulaires supérieures de
Mn(C).
a) Montrer que ST est une matrice triangulaire supérieure dont les

coefficients diagonaux sont s1,1t1,1, s2,2t2,2, . . ., sn,ntn,n.
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b) Pour k ∈ N∗, quels sont les éléments diagonaux de T k ?

I.5 Montrer que pour toute matrice A de Mn(C), ρ
(
Ak
)
= [ρ(A)]k.

I.6 Montrer que l’application ψ : Mn(C) → R, A = (ai,j) 7→ max
1≤i,j≤n

|ai,j|
est une norme sur Mn(C), mais n’est pas en général une norme ma-
tricielle sur Mn(C).

I.7 En admettant l’existence de normes matricielles sur Mn(C) (la suite
du problème montrera effectivement cette existence), montrer que pour
toute norme N définie sur Mn(C), il existe une constante C réelle
positive telle que :

∀(A,B) ∈ (Mn(C))2 , N(AB) ≤ CN(A)N(B).

I.8 Soit (Ak)k∈N une suite de matrices de Mn(C), et soit A ∈ Mn(C)
et P ∈ GLn(C). Montrer que la suite (Ak)k∈N converge vers A si et
seulement si la suite

(
P−1AkP

)
k∈N converge vers P−1AP .

I.9 a) Soit T =

(
λ µ
0 λ

)
un élément de M2(C). Pour tout k ∈ N∗, calcu-

ler T k et en déduire que la suite
(
T k
)
k∈N∗ converge si et seulement

si (|λ| < 1) ou (λ = 1 et µ = 0).
b) Soit A ∈ M2(C) diagonalisable. Donner une condition nécessaire

et suffisante sur les valeurs propres de A pour que la suite (Ak)k∈N
soit convergente.

c) Soit A ∈ M2(C) non diagonalisable. Montrer que la suite (Ak)k∈N
est convergente si et seulement si ρ(A) < 1. Dans ce cas, préciser
lim

k→+∞
Ak.

d) Soit A ∈ M2(C). Donner une condition nécessaire et suffisante sur
ρ(A) pour que la suite (Ak)k∈N converge vers la matrice nulle.

Partie II

Soit A = (ai,j) une matrice de Mn(C) et N une norme quelconque sur Cn.
On pose :

MA = max
1≤i≤n

n∑
j=1

|ai,j|.

II.1 a) Montrer que pour tout X ∈ Cn : N∞(AX)≤MAN∞(X).
b) Montrer qu’il existe une constante réelle CA telle que :

∀X ∈ Cn, N(AX)≤CAN(X).
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c) Montrer que l’ensemble
{
N(AX)

N(X)
| X ∈ Cn \ {0}

}
possède une

borne supérieure dans R.
On notera dans la suite :

Ñ(A) = sup
X∈Cn\{0}

N(AX)

N(X)
.

d) Montrer que : Ñ∞(A)≤MA.
e) On reprend dans cette question la matrice M introduite en I.2.

Déterminer un vecteur X0 de C3 tel que


N∞(X0) = 1
et
N∞(MX0) = 10

.

En déduire la valeur de Ñ∞(M).

II.2 Soit i0 un entier compris entre 1 et n tel que
n∑

j=1

|ai0,j| = MA. En

considérant le vecteur Y de Cn de composantes yj définies par :

yj =
ai0,j
|ai0,j|

si ai0,j ̸=0 et yj = 1 si ai0,j = 0

montrer que MA ≤ Ñ∞(A) et en déduire Ñ∞(A) =MA.
II.3 Démontrer que Ñ est une norme matricielle sur Mn(C). On lui donne

le nom de norme matricielle subordonnée à la norme N .
II.4 a) En considérant une valeur propre λ de A telle que |λ| = ρ(A),

montrer que :
ρ(A)≤Ñ(A).

b) Donner un exemple simple de matrice A non nulle vérifiant la re-
lation ρ(A) = Ñ∞(A).

c) Montrer que si A est nilpotente non nulle, on a l’inégalité stricte :

ρ(A) < Ñ(A).

d) Montrer que si lim
k→+∞

Ak = 0n, alors ρ(A) < 1.

II.5 a) Soit D = diag(α1, · · · , αn) et ∆ = diag(β1, · · · , βn) deux matrices
diagonales de Mn(C). On considère M = (mij)1≤i,j≤n ∈ Mn(C).
Donner le terme général m′

ij de la matrice M ′ = DA∆. En déduire
le terme général de M ′ dans le cas αk = pk et βk = p−k où p ∈ N∗

donné et k ∈ [[1, n]].

b) Pour tout X = (xi)1≤i≤n ∈ Cn, on pose ∥X∥2 =
(

n∑
i=1

|xi|2
) 1

2

. On

rappelle que ∥.∥2 est une norme de Cn et on ne demande pas de le
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démontrer. On note |||.|||2 la norme subordonnée de ∥.∥2. Démontrer
que si D = diag(α1, · · · , αn) est une matrice diagonale de Mn(C)
alors |||D|||2 = ρ(D).

c) Soit Q ∈ GLn(C). Pour tout X ∈ Cn, on pose : ∥X∥Q = ∥QX∥2.
Montrer que ∥.∥Q est une norme sur Cn et que sa norme subordon-
née est |||.|||Q tel que

|||M |||Q = |||QMQ−1|||2

pour tout M ∈ Mn(C).
II.6 On suppose que ρ(A) < 1 et soit ε = 1−ρ(A)

2 .
a) Justifier l’existence d’une matrice T = (Tij)1≤i,j≤n triangulaire su-

périeure et une matrice inversible P tel que A = PTP−1. On pose
λi = tii pour tout i ∈ [[1, n]] et soit ∆ = diag(λ1, · · · , λn). Que
constituent λ1, · · · , λn pour A ?

b) Pour tout p ∈ N∗ on pose Dp = diag(pk)1≤k≤n et Tp = DpTD
−1
p .

Démontrer que lim
p→+∞

Tp = ∆.

c) En déduire qu’il existe m ∈ N∗ tel que : |||DmTD
−1
m |||2 ≤ ρ(A) + ε.

d) Démontrer qu’il existe Q ∈ GLn(C) tel que |||A|||Q ≤ 1+ρ(A)
2 .

e) En déduire que : lim
p→+∞

Ap = 0n .

II.7 a) Montrer que pour tout k entier naturel non nul : ρ(A)≤
[
Ñ
(
Ak
)] 1

k

.

b) Montrer que pour tout α ∈ C, ρ(αA) = |α| ρ(A).

c) Soit ε > 0 et Aε =
A

ρ(A) + ε
. Vérifier que ρ(Aε) < 1 et en déduire

l’existence d’un entier naturel kε tel que :

∀k ∈ N, k≥kε ⇒ Ñ
(
Ak
)
≤ (ρ(A) + ε)k .

d) En déduire lim
k→+∞

[
Ñ
(
Ak
)] 1

k

= ρ(A).

Partie III

Une matrice A de Mn,p(R) est dite positive (resp. strictement positive)
et on note A≥0 (resp. A > 0) si et seulement si tous ses coefficients sont
positifs ou nuls (resp. strictement positifs). Si A et B sont deux matrices
de Mn,p(R), on note A≥B (resp. A≤B, A > B, A < B) si et seulement
si A−B≥0 (resp. B − A≥0, A−B > 0, B − A > 0).
Notons que grâce à l’identification de Rn et Mn,1(R), on pourra parler de
vecteur de Rn positif ou strictement positif.
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III.1 Donner un exemple de matrice A montrant que les conditions A≥0 et
A̸=0 n’impliquent pas nécessairement A > 0.

III.2 A, B, A′, B′ désignent des matrices de Mn(R).
a) Montrer que si 0≤A≤B et 0≤A′≤B′, alors 0≤AA′≤BB′.
b) Montrer que si 0≤A≤B, alors pour tout k ∈ N∗, 0≤Ak≤Bk.
c) Montrer que si 0≤A≤B, alors Ñ∞(A)≤Ñ∞(B).
d) Montrer que si 0≤A≤B, alors ρ(A)≤ρ(B).
e) Montrer que si 0≤A < B, il existe c ∈ ]0, 1[ tel que A≤cB et en

déduire ρ(A) < ρ(B).

III.3 Soit A une matrice positive de Mn(R) telle que la somme des termes
de chaque ligne soit constante égale à α. Montrer que α est valeur
propre de A et que :

ρ(A) = α = Ñ∞(A).

III.4 Soit A une matrice positive de Mn(R). Pour tout i ∈ {1, . . ., n}, on
note αi la somme des termes de la ième ligne de A et α = min

1≤i≤n
αi.

On définit la matrice B = (bi,j) par B = 0n si α = 0 et bi,j =
α

αi
ai,j si

α > 0. Montrer à l’aide de la matrice B ainsi construite que :

min
1≤i≤n

(
n∑

j=1

ai,j

)
≤ρ(A)≤ max

1≤i≤n

(
n∑

j=1

ai,j

)
.

III.5 Soit A une matrice positive de Mn(R) et X = (xi) un vecteur stric-
tement positif de Rn.
On note Dx la matrice diagonale de Mn(R) ayant pour termes diago-
naux x1, x2, . . ., xn. Calculer les éléments de la matrice D−1

x ADx et
en déduire :

min
1≤i≤n

(AX)i
xi

≤ρ(A)≤ max
1≤i≤n

(AX)i
xi

.

III.6 Soit A une matrice positive de Mn(R). Montrer que si A admet un
vecteur propre strictement positif, alors la valeur propre associée est
ρ(A) et :

ρ(A) = sup
X>0

(
min
1≤i≤n

(AX)i
xi

)
= inf

X>0

(
max
1≤i≤n

(AX)i
xi

)
.
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