
Partie I

1. On a (f−ae)◦(f−be) = f 2−(a+b).f+ab.e = a2.p+b2.q−(a+b)(a.p+b.q)+ab.e =
a2.p + b2.q − a2.p − b2.q − ab.p − ab.q + ab.e = 0 car ab.e = ab.(p + q). Ainsi
(f − a.e) ◦ (f − b.e) = 0, donc le polynôme P = (X − a)(X − b) est un polynôme
annulateur de f et comme a ̸= b, on peut dire que P est scindé à racines simples,
annulateur de f donc f est diagonalisable.

2. (a) On a f−a.e = a.p+b.q−a.(p+q) = (b−a).q, de même on a f−b.e = (a−b).p,
par suite de (f − a.e) ◦ (f − b.e) = 0, on déduit −(a− b)2.(p ◦ q) = 0 et comme
a ̸= b, on a p ◦ q = 0, et par symétrie des rôles on a aussi q ◦ p = 0, donc
finalement p ◦ q = q ◦ p = 0.
On a p+ q = e, donc p2 = p ◦ (p+ q)− p ◦ q = p, de même q2 = q.

(b) On a Sp(f) ⊂ {a, b} car P = (X−a)(X−b) annule f et les racines de P sont a
et b. Remarquons que (f−a.e)◦p = (a.p+b.q−a.e)◦p = (b.q−a.(e−p))◦p =
(b − a).q ◦ p = 0, donc Im(p) ⊂ ker(f − a.e) et comme p ̸= 0, on déduit que
ker(f − a.e) ̸= {0}, donc a ∈ Sp(f), de même b ∈ Sp(f) car (f − b.e) ◦ q = 0.
Finalement on a Sp(f) = {a, b}.

(c) Comme ab ̸= 0 et Sp(f) = {a, b}, on a 0 ̸∈ Sp(f), donc f est bijectif.
•Démarrage : On a (a.p+ b.q)0 = e = a0p+ b0q = p+ q = e.
•Hérédité : Soit m ∈ N tel que (a.p+ b.q)m = am.p+ bm.q, alors, compte tenu
de l’hypothèse de récurrence et le fait que p ◦ q = q ◦ p = 0, on a :

(a.p+ b.q)m+1 = (am.p+ bm.q)(a.p+ b.q)

= am+1.p+ bm+1.q + (amb+ abm)p ◦ q
= am+1.p+ bm+1.q

Remarquons que ( 1
a
.p+ 1

b
.q)◦ (a.p+ b.q) = p+ q = e = (a.p+ b.q)◦ ( 1

a
.p+ 1

b
.q),

par suite (a.p + b.q)−1 = ( 1
a
.p + 1

b
.q) = f−1. Comme f−1 satisfait les mêmes

hypothèses que f , on peut dire que ∀m ∈ N, (f−1)m = ( 1
a
)m.p+ 1

b
)m.q, ce qui

permet de conclure finalement que ∀m ∈ Z, fm = am.p+ bm.q

3. Soit x ∈ ker(f − a.e) alors f(x) = a.x. On a
{

p(x) + q(x) = x
a.p(x) + b.q(x) = f(x) = a.x

,

donc b.p(x) − a.p(x) = ba − ax, donc (b − a).p(x) = (b − a).x et comme a ̸= b,
on a p(x) = x. Si x ∈ ker(f − be) on a f(x) = bx, donc de la même façon, on

a :
{

p(x) + q(x) = x
a.p(x) + b.q(x) = f(x) = b.x

, donc (b − a).p(x) = (b − b).x = 0, ainsi on a

prouvé que ∀x ∈ E,

{
x ∈ ker(f − a.e) ⇒ p(x) = x
x ∈ ker(f − b.e) ⇒ p(x) = 0

, donc p est la projection sur

ker(f−a.e) parallèlement à ker(f−b.e) et par symétrie des rôles q est la projection
sur ker(f − b.e) parallèlement à ker(f − a.e).

4. On a posé F = {x.p+ y.q/(x, y) ∈ C2}.
(a) On démontre que :

•F est une sous-algèbre de L(E) :
•On a e ∈ F car e = p+ q.
•Si u, v ∈ F tel que u = x.p + y.q et v = x′.p + y′.q tel que x, x′, y, y′ ∈ C et
λ ∈ C, alors u + λv = x.p + y.q + λ(x′.p + y′.q) = (x + λx′).p + (y + λy′).q,
donc u+ λv ∈ F .
•De même uv = (x.p+y.q)(x′.p+y′.q) = (xx′)p2+(xy′).pq+(yx′)qp+(yy′)q2
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et comme p2 = p et q2 = q et pq = qp = 0, on a uv = (xx′.p + (yy′).q, donc
uv ∈ F .
• Il en découle que F est une sous-algèbre de L(E).
•On a dim(F ) = 2 car, par définition (p, q) est une famille génératrice de F
et elle est libre car sionon on aurait q = αp avec α ∈ C, donc αp2 = pq = 0
donc λp = 0 et comme p ̸= 0 on aurait α = 0 donc q = 0 chose fausse.

(b) Soit u = x.p + y.q ∈ F , on a u2 = x2.p + y2.q, donc u est un projecteur si et
seulement si x2 = x et y2 = y, si et seulement si x = 0 ou x = 1 et y = 0 ou
y = 1 si et seulement si u ∈ {0, e, p, q}, donc les seuls projecteurs de F sont
0, e, p, q et q.

(c) Soit u = x.p+y.q ∈ F , alors u ∈ R(f) si et seulement si u2 = f si et seulement
si x2.p + y2.q = a.p + b.q si et seulement si x2 = a et y2 = b. Deux cas sont
possibles :
•Si ab ̸= 0 admettent chacun deux racines carrées opposées a′,−a′ pour a et
b′,−b′ pour b, donc R(f) ∩ F = {±a′.p± b′.q}.
•Si b = 0 alors R(f) ∩ F = {±a′.p}.
•Si a = 0 alors R(f) ∩ F = {±b′.q}.

5. A =

 2 1 1
1 2 1
1 1 2

 et J =

 1 1 1
1 1 1
1 1 1

.

(a) On a J0 = I. Démontrons par récurrence que ∀m ∈ N∗, Jm = 3m−1J .
•Si m = 1, c’est vrai que 31−1J = J = J1.
•Soit m ∈ N∗ tel que Jm = 3m−1J , alors Jm+1 = JJm = J(3m−1J) =
3m−1J2 = 3m−1 × 3J = 3mJ .
•On a A0 = I et si m ∈ N∗, la formule du binôme de Newton permet d’écrire :

Am = (I+J)m =
m∑
k=0

(
m
k

)
Jk = I+

(
m∑
k=1

(
m
k

)
3k−1

)
J = I+ 1

3

(
m∑
k=1

(
m
k

)
3k−1

)
J =

I + 4m−1
3

J

(b) On remarque que pour tout m ∈ N, on a Am = 1mB + 4mC pour B = I − 1
3
J

et C = 1
3
J .

(c) Remarquons que B2 = B et C2 = C et BC = CB = 0, donc pour tout
(α, β) ∈ {−1, 1}×{−2, 2}, on a (αB+βC)2 = B+4C = A, ce qui fournit les
quatre matrices demandées.

Partie II

1. L’application u : C[X] → L(E);P 7→ u(P ) = P (f)−
n∑

k=1

P (xk)pk est une applica-

tion linéaire qui réalise u(Xm) = 0 pour tout m ∈ N, donc u s’annule sur la base
canonique (Xm) de C[X], donc elle est nulle, par suite :

∀P ∈ C[X], P (f) =
n∑

k=0

P (xk)pk.

2. (a) On a Π(f) =
n∑

k=1

Π(xk)pk = 0 car Π(xk) = 0, pour tout k ∈ [[1, n]]. Il en découle

que f est diagonalisable car Π est scindé à racines simples et annulateur de f .
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(b) On Lk(f) =
n∑

j=1

Lk(xj)pj =
∑

δk,jpj = δk,kpk = pk. On a :

pk ◦ pℓ = Lk(f) ◦ Lℓ(f)

= LkLℓ(f)

=
n∑

j=1

(LkLℓ)(xj)pj

=
n∑

j=1

Lk(xj)Lℓ(xj)pj

=
n∑

j=1

δk,jδℓ,jpj

= δk,kδℓ,kpk = δℓ,kpk

par suite pk ◦ pℓ =
{

pk si k = ℓ
0 si k ̸= ℓ

(c) On a Sp(f) ⊂ {x1, . . . , xn} car Π(f) = 0. Remarquons que pour tout j ∈ [[1, n]]
on a (f − xje) ◦ pj = 0 car

f − xje =
n∑

k=1

(xk − xj)pk,

Donc :

(f − xje) ◦ pj =
n∑

k=1

(xk − xj)pk ◦ pj

=
n∑

k=1

(xk − xj)δk,jpj

= (xj − xj)pj = 0

donc Im(pj) ⊂ ker(f − xje), et comme pj ̸= 0, on a ker(f − xje) ̸= {0}, par
suite xj ∈ Sp(f). Donc finalement Sp(f) = {x1, . . . , xn}.

3. Soit j ∈ [[1, n]], pour tout x ∈ Fj = ker(f − xje) on a f(x) = xjx, donc pk(x) =
Lk(f)(x) = Lk(xj)x = δk,jx, donc pk(x) = x si x ∈ Fk et pk(x) = 0 si x ∈ Fj

et j ̸= k, donc pk(x) = 0 si x ∈
n⊕

j=1
j ̸=k

Fj = F̃k et alors pk est la projection sur Fk

parallèlement à F̃k

4. (a) Par définition la famille (p1, . . . , pn) est une famille génératrice de F , on va

démontrer qu’elle est libre, si α1, . . . , αn ∈ C tel que
n∑

k=1

αkpk = 0, si j ∈ [[1, n]],

on a pj ◦ (
n∑

k=1

αkpk) = 0, donc
n∑

k=1

αk(pj ◦pk) = 0, et d’après la question II)2)b)

on a pj ◦ pk = δj,kpj, donc αjpj = 0, et comme pj ̸= 0 on a αj = 0, la famille
en question est libre et génératrice donc une base de F , donc dim(F ) = n.
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(b) Soit g un élément de R(f) et écrivons g =
n∑

k=1

tkpk, donc g2 =
n∑

k=1

t2kpk par

suite g ∈ R(f) ⇔ ∀k ∈ [[1, n]], t2k = xk et deux cas sont possibles :
• tous les xk sont non nuls, donc si zk est un nombre complexe tel que z2k = xk

on a :

R(f) ∩ F =

{
n∑

k=1

εkzkpk/(εk)1≤k≤n ∈ {−1, 1}n
}
,

par suite card(R(f) ∩ F ) = 2n.
• l’un des xk est nul, on peut choisir l’indexation de sorte que x1 = 0, donc les
xk pour k ∈ [[2, n]] sont non nuls, donc :

R(f) ∩ F =

{
n∑

k=2

εkzkpk/(εk)2≤k≤n ∈ {−1, 1}n−1

}
,

par suite card(R(f) ∩ F ) = 2n−1.

(c) Soit g un élément de R(f) et écrivons g =
n∑

k=1

tkpk, donc g2 =
n∑

k=1

t2kpk par

suite g est un projecteur si et seulement si g2 = g si et seulement si ∀k ∈
[[1, n]], t2k = tk si et seulement si ∀k ∈ [[1, n]], tk = 0 ou tk = 1. Donc l’ensembles
des projecteurs de F est :

P =

{
n∑

k=1

εkpk/(εk)1≤k≤n ∈ {0, 1}n
}
.

Si g ∈ P et g =
∑n

k=1 εkpk, tel que (εk)1≤k≤n ∈ {0, 1}n, on peut écrire

g =
∑
k∈I

zkpk,

avec
I = {k ∈ [[1, n]]/εk = 1} .

On peut donc dire que g est le projecteur sur W =
⊕
k∈I

Im(pk) parallèlement à

V =
⊕
k∈Ic

Im(pk), où Ic = [[1, n]]\I.

5. On suppose que n = N

(a) Puisque n = N ,les sous-espaces propres de f sont des droites vectorielles et
si g ∈ L(E) tel que g ◦ f = f ◦ g alors les sous-espaces propres Ek sont
stables par g et sont des droites vectorielles, donc si Ek = Cvk on a la famille
g(vk), vk) est liée, donc il existe µk ∈ C tel que g(vk) = µkvk, par suite vk

est aussi un vecteur propre de g associé à µk. On a alors g =
n∑

k=1

µkpk par

suite g ∈ F . Réciproquement pour tout g ∈ F tel que g =
n∑

k=1

ykpk on a

f ◦ g = g ◦ f =
∑

xkykpk, donc ∀g ∈ L(E), g ◦ f = f ◦ g ⇔ g ∈ F .
(b) Remarquons que si g ∈ R(f) alors g2 = f donc g ◦ f = f ◦ g = g3, par

suite d’après la question ci-dessus, g ∈ F . Il en découle que R(f) ⊂ F donc
card(R(f)) = card(R(f) ∩ F ) et on a vu dans la question II)4)b) que ce
cardinal est 2N si les xk sont tous non nuls et 2N−1 s’il existe un xk nul.
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6. Comme h est diagonalisable E est la somme directe des sous-espaces propres de

h, si on note Ek = ker(h−xke) et qk la projection sur Ek parallèlement à Vk =
n⊕

j=1
j ̸=k

alors on a h =
n∑

k=1

xkqk.

7. On donne A =

 0 1 −1
1 0 −1
−1 1 0

.

(a) On a χA = X(X2 − 1), donc les valeurs propores de A sont

x1 = −1, x2 = 0, x3 = 1.

(b) On a L1 =
X(X−1)

2
, L2 = 1−X2, L2 =

X(X+1)
2

, donc

L1(A) =
1

2
(A2 − A), L2(A) = I3 − A2, L3(A) =

1

2
(A2 + A).

On a :

A =

 0 1 −1
1 0 −1
−1 1 0

 , A2 =

 2 −1 −1
1 0 −1
1 −1 0


Il en découle que

L1(A) =

 1 −1 0
0 0 0
1 −1 0

 , L2(A) =

 −1 1 1
−1 1 1
−1 1 1

 ,

et

L3(A) =

 1 0 −1
1 0 −1
0 0 0

 .

(c) En vertu de pk = Lk(f), on a P1 = L1(A), P2 = L2(A), P3 = L3(A), donc
compte tenu de n = N = 3, on est dans les conditions de la question II.5)
pour n = N = 3 et x1 = −1, x2 = 0, x3 = 1. On a A = −1.P1 + 0.P2 + 1.P2 =
−1.P1 + P3, donc les racines carrées de A sont de la forme M = ±iP1 ± P3,
qui sont :

M1 =

 i+ 1 −i −1
1 0 −1
i −i 0

 ,M2 =

 i− 1 −i 1
−1 0 1
i −i 0



M3 =

 −i+ 1 i −1
1 0 −1
i i 0

 ,M4 =

 −i− 1 i 1
−1 0 1
−i i 0


Partie III

1. (a) Comme un−1 ̸= 0, il existe x ∈ E tel que un−1(x) ̸= 0. La famille (x, u(x), . . . , un−1(x))
convient(classique).

(b) Le polynôme minimal de u est Xn.
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(c) Supposons que R(u) ̸= ∅, alors il existe v ∈ L(E) tel que v2 = u, donc v2n = 0
et v2n−2 ̸= 0. Si v2n−1 = 0, il existe x ∈ E tel que la famille (uk(x))0≤k≤2n−2

est libre et comme cette famille possède 2n − 1 vecteurs, on a 2n − 1 ≤ N ,
donc n ≤ N+1

2
. Si v2n−1 ̸= 0, on a 2n ≤ N , donc n ≤ N+1

2
, aussi dans ce cas.

2. (a) On a le développement en série entière :
√
1 + x = (1 + x)

1
2 = 1 +

+∞∑
n=1

( 1
2
n

)
xn

avec, pour tout entier naturel non nul n :(
1
2

n

)
=

1

n!

n−1∏
k=0

(
1

2
− k

)
=

(−1)n

2n!

n−1∏
k=1

(2k − 1)

Il en découle que α0 = 1 et ∀n ∈ N∗, αn = (−1)n

2n!

n−1∏
k=1

(2k − 1) = (−1)n(2n−2)!
n2n((n−1)!)2

.

En résumé on a :

α0 = 1 et ∀n ∈ N∗, αn =
(−1)n(2n− 2)!

n2n((n− 1)!)2
.

(b) On a Pn(x) =
n−1∑
k=0

αkx
k. On sait que

√
1 + x = Pn(x)+O(xn) = Pn(x)+xnγ(x)

avec γ une fonction bornée sur un segment [−η, η] avec η > 0. En élevant au
carré on a

∀x ∈ Iη, 1 + x = P 2
n(x) + 2xnPn(x)γ(x) + x2nγ2(x),

donc

(⋆) ∀x ∈ Iη, P 2
n(x)− x− 1 = −xn(2Pn(x)γ(x) + xnγ2(x)).

La division eu euclidienne de Q(X) = P 2
n(X)−X − 1 par Xn s’écrit Q(X) =

XnQ1(X) +R(X) avec R ∈ Cn−1[X], donc (⋆) ci dessus s’écrit :

∀x ∈ Iη, xnQ1(x) +R(x) = −xn(2Pn(x)γ(x) + xnγ2(x)).

Il en découle que

∀x ∈ Iη\{0},
R(x)

xn
= −Q1(x)− 2Pn(x)γ(x) + γ2(x),

donc l’application x 7→ R(x)
xn est bornée sur Iη\{0}, et comme R ∈ Cn−1[X] on

a forcément R = 0, donc Xn|P 2
n(X)−X − 1.

3. (a) On a
√
1 + x = Pn(x)+O(xn). Supposons que Q ∈ Cn−1[X] tel que Xn divise

Q2 −X − ω2, alors il existe un polynôme U tel que Q2 −X − ω2 = XnU(X).
Pour tout x ∈ R, on a x+ ω2 = Q2(x) + xnU(x), donc

(⋆) Q2(x) = x+ ω2 + xnU(x)

or au voisinage de 0, on a :

ω

√
1 +

x

ω2
= ωPn

( x

ω2

)
+O(xn) = Qn,ω(x) +O(xn).
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donc Qn,ω(x) = ω
√

1 + x
ω2 +O(xn), ce qui fournit

(⋆)′ Q2
n,ω(x) = x+ ω2 +O(xn)

Comme xnU(x) = O(xn) au voisinage de 0, on a en vertu de l’unicité du
développent limité Q2 = Q2

n,ω, ce qui fournit la réponse désirée.
(b) On a Xn|Q, donc Xn|Qn,ω −X − ω2 et comme un = 0, on a (Qn,ω(u))

2 − u−
ω2e = 0, donc u+ω2e = v2 où v = Qn,ω(u). Il en découle que v ∈ R(u+ω2e),
donc R(u+ ω2e) ̸= ∅.

4. On suppose que n = N , soit x ∈ E tel que (x, u(x), . . . , un−1(x)) soit libre et
g ∈ R(u+ ω2e).
(a) On a g2 = u+ ω2e, donc u = g − ω2e, donc u ◦ g = g ◦ u = g2 − ω2g.
(b) Comme la famille Fx ci-dessus est une base de E il existe (αk)0≤k≤n−1 ∈ Cn

tel que g(x) =
n−1∑
k=0

αku
k(x), donc g(x) = (P (u))(x) avec P =

n−1∑
k=0

αkX
k, on voit

bien que P ∈ Cn−1[X].
•Pour prouver que g = P (u), il suffit de prouver que g et P (u) coincident
sur la base Fx ci-dessus, et c’est le cas puisque g(x) = P (u)(x) et de u ◦ g =
g ◦ u, on déduit que pour tout k ∈ N, on a : g ◦ uk = uk ◦ g, par suite
g(uk(x)) = uk(g(x)) = uk(P (u)(x)) et comme uk ◦ P (u) = P (u) ◦ uk, on a
g(uk(x)) = P (u)(uk(x)), ce qui termine la preuve de g = P (u).

(c) D’après la question précédente si g ∈ R(u), il est de la forme g = P (u) avec
P ∈ Cn−1[X], donc (P (u))2 = u + ω2e. Donc P 2 − X − ω2 est un polynôme
annulateur de u, et comme n = N = dim(E), le polynôme minimal de u est
XN = Xn, donc Xn|P 2 −X − ω2, et d’après la question 3)a) de cette partie,
on a P ∈ {±Qn,ω}.

5. On a A = I+J avec J =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

, donc J4 = 0 et J3 ̸= 0, donc si on note

f l’endomorphisme canoniquement associé à A on a f = u + 2e = 2(e + 1
2
u). En

posant ω = 1√
2

et u = 1
2
v, on est dans les conditions de la question 4) ci dessus, on

a P4 = 1+ 1
2
X+ 1

2
1
2

(
1
2
− 1

)
X2+ 1

6
1
2

(
1
2
− 1

) (
1
2
− 2

)
X3, donc P4 = 1+ X

2
− X2

8
+ X3

16
.

On a

Qω(
X

ω2
) = Q 1√

2
(2X) =

√
2

2
+

√
2

2
X −

√
2

4
X2 +

√
2

4
X3,

ce qui fournit :

M =
√
2


√
2
2

0 0 0√
2
2

√
2
2

0 0

−
√
2
4

√
2
2

√
2
2

0√
2
4

−
√
2
4

√
2
2

√
2
2

 =


1 0 0 0
1 1 0 0
−1

2
1 1 0

1
2

−1
2

1 1

 =
1

2


2 0 0 0
2 2 0 0
−1 2 2 0
1 −1 2 2


6. Comme R(u) ̸= ∅ il existe v ∈ L(Cn) tel que v2 = u, forcément v est nilpotent,

donc il existe une base B de Cn tel que matB(v) = T où T est une matrice
triangulaire supérieure stricte, donc [T ]i,j = 0 pour tout (i, j) ∈ [[1, n]]2 tel que
i > j. On a T × E1,n = E1,n × T = 0 puisque T × E1,n =

∑
1≤i,j≤n

[T ]i,jEi,j × E1,n =
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∑
1≤i,j≤n

[T ]i,jδ1,jEi,n, or si j = 1 alors [T ]i,j = 0 et si j ̸= 1 alors δ1,j = 0. De même

E1,n × T =
∑

1≤i,j≤n

[T ]i,jEi,nEi,j =
∑

1≤i,j≤n

[T ]i,jδi,nEi,j et comme en haut, si n = i

alors [T ]i,j = [T ]n,i = 0 et si n ̸= i alors δn,i0. On a aussi E2
1,n = 0, par suite pour

tout nombre complexe λ, on a (T +λE2
1,n = T 2 donc si on note v0 l’endomorphisme

tel que matB(v0) = E1,n alors

∀λ ∈ C, (v + λv0)
2 = u,

et comme v0 ̸= 0, l’ensemble v + Cv0 est infini contenu dans R(u), donc R(u) est
infini.

7. On donne A =

 0 0 0
1 0 0
0 0 0


(a) Une matrice M =

 a b c
x y z
u v w

 commute avec A si et seulement si AM =

MA si et seulement si

 0 0 0
a b c
0 0 0

 =

 b 0 0
y 0 0
v 0 0

 si et seulement si b = c =

v = 0 et a = y si et seulement si M =

 a 0 0
x a z
u 0 w

, avec (a, x, z, u, w) ∈ C5

(b) Si M est une racine carrée de A alors M commute avec A donc elle est de la

forme précédente dans la question ci-dessus, donc M =

 a 0 0
x a z
u 0 w

, avec

(a, x, z, u, w) ∈ C5, donc M2 =

 a2 0 0
2ax+ zu xa az + zw
ua+ wu 0 w2

 donc M2 = A si

et seulement si a = w = 0 et zu = 1 si et seulement si M =

 0 0 0
x 0 z
z−1 0 0


avec x ∈ C et z ∈ C∗

Partie IV

1. (a) C’est le polynôme minimal de f .
(b) Puisque K = C, le polynôme minimal Φf de f est scindé donc, compte tenu

du fait que Φf |Pf , il s’écrit : Φf =
n∏

k=1

(X − xk)
βk avec pour tout k ∈ [[1, n]],

on a βk ∈ N et 1 ≤ βk ≤ αk (cette dernière inégalité est une conséquence de
Φf |Pf .

2. Puisque g2 = f , on a g◦f = f ◦g donc g et f−xke commutent pour tout k ∈ [[1, n]],
donc Ek = ker(f − xke) est stable par g, donc g(Ek) ⊂ Ek.

3. (a) Supposons que x1 = 0 et β1 > α1+1
2

, alors 0 ∈ Sp(f) et E1 = ker(fα1) est
stable par f et f induit un endomorphisme f1 de E1 nilpotent d’indice de
nilpotence β1 et comme dim(E1) = α1. Si on suppose que R(f) ̸= ∅, il existe
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g ∈ L(E) tel que g2 = f , comme g et f commutent, on a E1 est stable par g et
l’endomorphisme induit g1 réalise g21 = f1, en appliquant la question III)1)c),
si R(f1) ̸= ∅ alors β1 ≤ α1+1

2
, ce qui contredit l’hypothèse β1 > α1+1

2
, donc

R(f) = ∅.
(b) Supposons que 0 ̸∈ ker(f), alors pour tout k ∈ [[1, n]], on a xk ̸= 0, donc

xk ∈ C∗, donc il existe ωk ∈ C∗ tel que xk = ω2
k. Le sous-espace Ek est

stable par f et f induit sur Ek un endomorphisme fk tel que fk − xk.e = uk

est nilpotent, donc, en vertu du III)3)b), fk = uk + ω2
ke réalise R(fk) ̸= ∅,

donc il existe gk ∈ L(Ek) tel que g2k = fk. Si on note g = g1 ⊕ · · · ⊕ gn,
l’endomorphisme défini par ∀x ∈ E, g(x) = gk(pk(x)) où pk est la projection

sur Ek parallèlement à Vk =
n⊕

j=1
j ̸=k

Ej, on a g2 = f donc R(f) ̸= ∅.

(c) Supposons que x1 = 0 et α1 ≥ 2. Si R(f) ̸= ∅ on en déduit que si f1 est
l’endomorphisme induit par f sur E1 alors R(f1) ̸= ∅ et comme dim(E1) =
α1 ≥ 2, on déduit en vertu de la question III)7)b) que R(f1) est infini. Par
ailleurs F =

⊕n
k=2Ek est stable par f et l’endomorphisme induit f ′ vérifie

0 ̸∈ Sp(f ′) donc d’après IV)3)b) on a R(f ′) ̸= ∅, fixons donc g′ ∈ L(E ′) tel
que g′2 = f ′ alors pour tout g1 ∈ R(f1), on a g = g1 ⊕ g′ ∈ R(f), donc R(f)
est infini.

4. (a) Puisque αk = βk, l’endomorphisme fk est nilpotent d’indice de nilpotence αk =
dim(Ek), on est dans les condition du III)4), en particulier card(R(fk)) = 2,
par suite compte tenu que si on pose R(fk) = {±gk} la forme générale des
éléments de R(f) est ±g1 · · · ± gn, donc card(R(f)) = 2n.

(b) Si x1 = 0 et α1 = 1 alors dim(ker(f)) = 1 et si on note f ′ l’endomorphisme
induit par f sur E ′, les valeurs propres de f ′ sont en nombre de n − 1 à
savoir x2, . . . , xn et elles sont toutes non nulles et on a toujours αk = βk pour
tout k ∈ [[2, n]]. Un endomorphisme g de E réalise g2 = f si et seulement si
g′2 = f ′, et comme E ′ est dans les conditions du IV)4)a), on a card(R(f)) =
card(R(f ′)) = 2n−1
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