Partie I

1. Ona (f—ae)o(f—be) = f2—(a+b).f+ab.e = a*>.p+b*.q— (a+Db)(a.p+b.q)+ab.c =
a’p + b*.q — a*.p — b*.q — ab.p — ab.q + ab.e = 0 car ab.e = ab.(p + ¢). Ainsi
(f —a.e)o(f —b.e) =0, donc le polynéme P = (X — a)(X — b) est un polyndéme
annulateur de f et comme a # b, on peut dire que P est scindé a racines simples,
annulateur de f donc f est diagonalisable.

2. (a) Ona f—a.e =a.p+b.q—a.(p+q) = (b—a).q,de méme on a f—b.e = (a—0b).p,

par suite de (f —a.e)o (f —b.c) =0, on déduit —(a —b)?.(poq) = 0 et comme
a # b, on apoqg =0, et par symétrie des roles on a aussi g o p = 0, donc
finalement pog=qop=0.

Onap+q=ce,doncp?=po(p+q) —poq=p, de méme ¢*> = q.

(b) On a Sp(f) C {a,b} car P = (X —a)(X —b) annule f et les racines de P sont a
et b. Remarquons que (f —a.e)op = (a.p+b.q—a.e)op = (b.g—a.(e—p))op =
(b—a).qop =0, donc Im(p) C ker(f — a.e) et comme p # 0, on déduit que
ker(f — a.e) # {0}, donc a € Sp(f), de méme b € Sp(f) car (f —b.e)oq=0.
Finalement on a Sp(f) = {a, b}.

(c) Comme ab # 0 et Sp(f) = {a,b}, on a 0 & Sp(f), donc f est bijectif.

e Démarrage : On a (a.p+b.9)° =e=a"p+0¢=p+qg=ce.
e Hérédité : Soit m € N tel que (a.p+b.q)™ = a™.p+b™.q, alors, compte tenu
de ’hypothése de récurrence et le fait que pog=qop =20, on a:

(ap+bg)™™ = (a"p+b".q)(a.p+b.q)
= a™"Mp+ " g+ (a"b+ab™)pogq
= a"Mp4+ bty

Remarquons que (%.p%— %q) o(a.p+bq)=p+q=e=(ap+b.g)o (%.p—k %.q),
par suite (a.p + b.q)"! = (%p + %q) = f~1. Comme f~! satisfait les mémes
hypothéses que f, on peut dire que Vm € N, (f~1)™ = (%)m.p + %)m.q, ce qui
permet de conclure finalement que Vm € Z, f™ = a™.p+ b™.q

3. Soit x € ker(f — a.e) alors f(z) = a.z. On a { Z(Z()x—;i(l:fi](jf)x: fx)=ax’

= (b— a).x et comme a # b,

donc b.p(z) — a.p(x) = ba — ax, donc (b — a).p(x)
= bx, donc de la méme fagon, on

on a p(x) = x. Si x € ker(f — be) on a f(z)
a: { Z(ng;_j(lfz(x)x: Fz) = b donc (b —a).p(x) = (b —b).x = 0, ainsi on a
x € ker(f —a.e) = p(r) ==z
x € ker(f —b.e) = p(x) =0’
ker(f —a.e) parallelement a ker(f —b.e) et par symétrie des roles ¢ est la projection
sur ker(f — b.e) parallelement a ker(f — a.e).
4. On a pos¢ F = {z.p+y.q/(x,y) € C*}.
(a) On démontre que :
o I est une sous-algébre de L(E) :
eOnaec Fcare=p+q.
eSiu,v € Ftelqueu=xzp+y.qetv=a.p+y.qtel quex, 2’ y,yy € Cet
AeCialorsu+w=xp+yqg+ A2’ p+y.q) =@+ \)p+ (y+\).q,
donc u+ Av € F.
e De méme wv = (z.p+y.q)(z".p+y'.q) = (z2")p* + (zy').pq + (y")ap + (yy') @

prouvé que Vr € E, donc p est la projection sur
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et comme p> =pet ¢* =qet pg=qp =0, 0n auw = (zz’.p+ (yy').q, donc
uv € F.

eIl en découle que F' est une sous-algebre de L(E).

e On a dim(F') = 2 car, par définition (p, q) est une famille génératrice de F’
et elle est libre car sionon on aurait ¢ = ap avec o € C, donc ap? = pg = 0
donc Ap = 0 et comme p # 0 on aurait a = 0 donc ¢ = 0 chose fausse.

(b) Soit u = z.p+y.q € F, on a u® = 2%.p + y*.q, donc u est un projecteur si et
seulement si 22 = z et y? = y, si et seulement siz =0ouxz =1et y =0 ou

= 1 si et seulement si u € {0,¢e,p, g}, donc les seuls projecteurs de F' sont
0,e,p,q et q.

(c) Soit u = z.p+y.q € F, alors u € R(f) si et seulement si u? = f si et seulement
si 22.p +1y%.q = a.p + b.q si et seulement si 22 = a et y> = b. Deux cas sont
possibles :

e Si ab # 0 admettent chacun deux racines carrées opposées a’, —a’ pour a et
b/, —b pour b, donc R(f)NF = {£ad' .p£¥.q}.
eSib=0alors R(f)NF = {+d .p}.

eSia=0alors R(f)NF = {£b'.q}.
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(a) On a J° = I. Démontrons par récurrence que ¥m € N* J™ = 3m~1 ],
eSim =1, c’est vrai que 3'71J = J = JL.
e Soit m € N* tel que J™ = 3™ 1] alors J"™ = JJm™ = J@3™ 1)) =
3n-lg2 =3m-1l 3] =3mJ.
eOna A° = I et si m € N*, la formule du binome de Newton permet d’écrire :

an = (reayn = 35 ()0 = 14 (8 ()at) g =144 (£ () g -

" k=0 k=1 -
I+ %2
(b) On remelxrque que pour tout m € N, on a A™ = 1mB +4™C pour B = [ — %J
et C' = zJ.
3

(c) Remarquons que B?> = B et C? = C et BC = CB = 0, donc pour tout
(o, 8) € {-1,1} x {=2,2}, on a (aB+ C)? = B+4C = A, ce qui fournit les
quatre matrices demandées.

Partie 11

1. L’application u : C[X] — L(E); P — u(P) = P(f) — Z P(zx)py est une applica-

tion linéaire qui réalise u(X™) = 0 pour tout m € N, donc u s’annule sur la base
canonique (X™) de C[X], donc elle est nulle, par suite :

VP e C[X Zka

2. (a) Onall(f) = Z (xy)pr = 0 car II(xy) = 0, pour tout k € [1,n]. Il en découle

que f est dlagonahsable car II est scindé a racines simples et annulateur de f.



(b) On Li(f) = 3 Li(a;)p; = X 0k jp; = Ok = pr. On a

J=1

peope = Li(f)o Le(f)

= Z Ok,j0¢,5D;

= 5k,k5é,k:pk = O¢kPk
. si k=/(
par suite pr o py = { gk Si kAL
(c) OnaSp(f) C {x1,...,x,} car II(f) = 0. Remarquons que pour tout j € [1,n]
ona (f —xje)op; =0 car

n

f—mje ="y (zx—z;)ps,

k=1

Donc :

n

(f—xje)op; = Y (xk —x;)prop;
k=1

= > (wk — ;)00
= (2 —;)p; =0
donc Im(p;) C ker(f — zje), et comme p; # 0, on a ker(f — xje) # {0}, par
suite z; € Sp(f). Donc finalement Sp(f) = {z1,...,2,}.
3. Soit j € [1,n], pour tout x € F; = ker(f — zje) on a f(x) = z;x, donc p(z) =
Li(f)(z) = Li(zj)xr = ok, donc pk( ) =xsiz € Fyetpy(x) =0siz € F;
et j # k, donc pr(x) =0six € @ F;, = Fk et alors p est la projection sur Fj,

7j=1
J#k

parallélement a ﬁ;

4. (a) Par définition la famille (py,...,p,) est une famille génératrice de F', on va

n
démontrer qu’elle est libre, si oy, ..., a, € C tel que Z agpr = 0,81 j € [1,n],

onap;o (Z axpr) = 0, donc Z ag(pjopr) = 0, et d’aprés la question 1I)2)b)

on a p; Opk = d;kpj, donc ajp] =0, et comme p; # 0 on a a; = 0, la famille
en question est libre et génératrice donc une base de F', donc dlm(F) = n.



(b)

n n
Soit g un élément de R(f) et écrivons g = > typy, donc g? = > t2p;, par
k=1 k=1
suite g € R(f) & Vk € [1,n],t: = z; et deux cas sont possibles :
e tous les z; sont non nuls, donc si zj est un nombre complexe tel que z; =

on a :

R(/)NF = {Z exzrpPr/ (Ex)1<k<n € {—1, 1}"} 7

k=1
par suite card(R(f) N F) = 2™.

e ['un des xj, est nul, on peut choisir I'indexation de sorte que x; = 0, donc les
xy, pour k € [2,n] sont non nuls, donc :

R(f)NF = {Z exzkpr/ (Ek)2<k<n € {1, 1}n_1} ;
k=2
par suite card(R(f) N F) = 2" 1.

Soit g un élément de R(f) et écrivons g = Zn: tipi, donc g% = Y t2py par
suite ¢ est un projecteur si et seulement si Zglz g si et seulemggg si Vk €

[1,n],t =t si et seulement si V& € [1,n],t; = 0 ou ¢; = 1. Donc I'ensembles
des projecteurs de F' est :

P = {Z expr/ (€x)1<k<n € {0, 1}"} -
k=1
Sige P et g=> 1, bk, tel que (ex)1<k<n € {0,1}", on peut écrire

g = Z ZkPk;

kel
avec
I={ke[l,n]/ex =1}.
On peut done dire que g est le projecteur sur W = @ Im(p;,) parallelement a
kel
V = @ Im(py), ou I¢ = [1,n]\1.

kelc

5. On suppose que n = N

(a)

Puisque n = N les sous-espaces propres de f sont des droites vectorielles et

si g € L(E) tel que go f = f o g alors les sous-espaces propres Fj sont

stables par g et sont des droites vectorielles, donc si Ej, = Cuy on a la famille

g(vg), vg) est lice, donc il existe py, € C tel que g(vg) = pxvy, par suite vy
n

est aussi un vecteur propre de g associé a pi. On a alors g = > ugpr par
k=1

suite ¢ € F. Réciproquement pour tout g € F tel que ¢ = > yxpr on a
k=1

fog=gof=> wyrpk, donc Vg € L(E),go f=fogegeF.
Remarquons que si g € R(f) alors ¢> = f donc go f = fog = ¢, par
suite d’apres la question ci-dessus, g € F. Il en découle que R(f) C F donc
card(R(f)) = card(R(f) N F) et on a vu dans la question 1I)4)b) que ce
cardinal est 2V si les x; sont tous non nuls et 2V~1 §’il existe un z;, nul.



6. Comme h est diagonalisable E est la somme directe des sous-espaces propres de
n

h, si on note Ej, = ker(h — xye) et g la projection sur Ej, parallélement a Vi, = @

j=1
Jj#k
alors on a h = Y xqy.
k=1
0 1 —1
7. On donne A = 1 0 —1
11 0

(a) On a x4 = X(X? — 1), donc les valeurs propores de A sont

1 = —1,1'2:0,1‘3: 1.

(b) On a L; = X()g_l), Ly=1—-X2% Ly,= w, donc

L(A) = S(A? — A), Lo(A) = I — 4%, Ly(A) = (A + A).

On a:
0 1 -1 2 -1 -1
A= 1 0 -1 |,A4%=1 0 -1
-1 1 0 1 -1 0
Il en découle que
1 -1 0 -1 11
Li(A)=10 0 0 |, (A= -1 11 ],
1 -1 0 -1 11
et
10 -1
Ly(A)=| 1 0 —1
00 O

(c) En vertu de pp = Li(f), on a P, = Ly(A), P, = Ly(A), Ps = L3(A), donc
compte tenu de n = N = 3, on est dans les conditions de la question II.5)
pourn=N=3etx;=—-1,20=0,23=1.0na A=—-1.P+0.P+1.P =
—1.P; + P3, donc les racines carrées de A sont de la forme M = +iP; + P;,

qui sont :

1+1 — —1 1—1 —1 1

M, = 1 0 —1 |,M,= -1 0

) —i 0 1 —1
—i+1 7 —1 —1—1 4 1
Mz = 1 0 —1 |, ,My= -1 01
7 1 0 —1 1 0

Partie III

1. (a) Commeu"! # 0, il existe z € E tel que u"*(z) # 0. La famille (z, u(z), ..., u" ' (z))
convient(classique).
(b) Le polynéme minimal de u est X™.
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(c) Supposons que R(u) # 0, alors il existe v € L(F) tel que v? = u, donc v?" =0
et v¥72 £ 0. Si ¥ =0, il existe x € E tel que la famille (u*(x))o<p<on_2
est libre et comme cette famille posséde 2n — 1 vecteurs, on a 2n —1 < N,
donc n < % Si vt £0,0na2n < N, donc n < %, aussi dans ce cas.
+oo
2. (a) On a le développement en série enticre : 1+ 2z = (1 +2)2 =1+ 3. (%):p"
n=1

avec, pour tout entier naturel non nul n :

()= () = G e

k=1

n n—1 e
(—212 kH (2]{3 . 1) _ (=1)"(2n=2)!
=1

Il en découle que ag = 1 et Vn € N*, o, = PP (CES LR
En résumé on a :

(=1)"(2n — 2)!

n2n((n —1)NH)?%"

ag=1et Vn € N, o, =

n—1
(b) Ona P,(x) = Y. agz®. On sait que v/1 + z = P,(2)+0(2") = B,(z)+z"(z)
k=0

avec 7 une fonction bornée sur un segment [—n,n] avec n > 0. En élevant au
carré on a

Vo € I, 1+ 3 = Pi(x) + 20" Pa(a)y (@) + 27 (@),
donc
(x) Vxel, Piz)—z—1=—-a"2P,(z)y(z)+ 2"y (z)).

La division eu euclidienne de Q(X) = P?(X) — X — 1 par X" s’écrit Q(X) =
X"Q1(X) + R(X) avec R € C,,_1[X], donc (%) ci dessus s’écrit :

Vo €I, 2"Qi(r)+ R(x) = —2"(2P,(x)y(z) + 2"v*(z)).

Il en découle que

R(z
ve e M0, P9 = Q,(a) — 2P () (x) +42(a),
donc Dapplication z — 22 est bornée sur I,\{0}, et comme R € C,_1[X] on

a forcément R = 0, donc X”|P2( )— X —1.

3. (a) Ona 1+ x = P,(x)+O(a™). Supposons que @ € C,,_1[X] tel que X" divise
Q? — X — w?, alors il existe un polynéme U tel que Q? — X — w? = X"U(X).
Pour tout = € R, on a = + w? = Q*(x) + z"U(z), donc

(%) Q*(x) =2+ w*+2"U(x)

or au voisinage de 0, on a :

w,/1+:f —wP< )+0( N = Qo () + O(z").



donc @,

Comme z"U(x)

développent

—w«/1+w2+0
(*)/ 2

limité Q? =

nw?

n,w

, ce qui fournit

(x):x—l—w2+0(

")
O(z") au voisinage de 0, on a en vertu de l'unicité du
ce qui fournit la réponse désirée.

(b) On a X"|Q, donc X"|Q,., — X —w? et comme u™ =0, on a (Qy,(u))? —u —

w2

donc R(u +

w?e) # 0.

4. On suppose que n = N, soit z € E tel que (z,u(z),...

g € R(u+ w?e).

e =0, donc u+ w?e = v? ot v = Q,,,(u). Il en découle que v € R(u+ w?e),

,u™ 1(x)) soit libre et

(a) On a ¢? = u + w?e, donc u = g — w?e, donc uo g =gou = g°> — wiq.

(b) Comme la famllle

Z apuf(x), donc g(x) =

tel que g(x) =

bien que P € (Cn 1[ ]
e Pour prouver que g = P(u), il suffit de prouver que g et P(u) coincident

sur la base .Z, ci-dessus, et c’est le cas puisque g(x) =

g o u, on déduit que pour tout £ € N, on a :

g(u*(x))

gou
g(u*(z)) = u*(g(x)) = u*(P(u)(x)) et comme u* o P(u)
P(u)(u*(z)), ce qui termine la preuve de g =
D’aprés la question précédente si g € R(u), il est de la forme g = P(u) avec
P € C,_4[X], donc (P(u))? = u + w?e. Donc P? —

X —

» ci-dessus est une base de E il existe (ag)o<k<n—1 € C"

n—1

(P(u))(z) avec P = Y apX*, on voit

k=0

r)etdeuog=
°g, par suite
u) o u¥, on a

k

e
—p
P(u).

w? est un polynoéme

annulateur de u, et comme n = N = dim(F£), le polynéme minimal de u est

XN

= X" donc X"|P? — X

onaP e {£+Q,.}

5. O0OnaA=1+Javec J =

f Pendomorphisme canoniquement associé & A on a f = u+ 2e = 2(e +
on est dans les conditions de la question 4) ci dessus, on

)X3 donc Py = 1+% - X2 4 X2

posant w = \% et u =

2

aPy=1+3X+
On a
Qu
ce qui fournit
NG
%
M=v2| 25
4
2

o O O
SO =

0
1
0
000

1
2V,

11

(-

23
X
(5)=Q1(2X)=
0 0 0
e
20 0
V22
2 2
_V2 V2 V2
4 2 2

1) X7+ (%—1)(

_ O O

0

D=

== O O

1 1
2 2

_— o O O

=T

t>37.0naTl xEy,, =FE,xT=0pusque T x £, =

w?, et d’aprés la question 3)a) de cette partie,

, donc J* = 0 et J? # 0, donc si on note

u). En

NN OO
N O OO

. Comme R(u) # 0 il existe v € L(C") tel que v? = u, forcément v est nilpotent,
donc il existe une base Z# de C" tel que maty(v)
triangulaire supérieure stricte, donc [1];; = 0 pour tout (i,j) €

ou 71 est une matrice
[1,n]? tel que
> 1By x By =

1<ij<n



> [T1ij61,;Ein, orsi j =1alors [T];; =0 et sij# 1 alors §; ; = 0. De méme

1<i,j<n

El,n x T = Z [T]i,jEi,nEi,j = Z [T]i,j(;i,nEi,j et comme en haut, sin =1

1<ij<n 1<ij<n

alors [T;; = [T]n; = 0 et si n # i alors 6,,;0. On a aussi Ef,, = 0, par suite pour
tout nombre complexe A, on a (T'+AE}, = T donc si on note vy 'endomorphisme
tel que maty(vg) = Ey, alors

VA € C, (v+ Myp)? = u,
et comme vy # 0, Pensemble v + Cuy est infini contenu dans R(u), donc R(u) est

infini.

7. On donne A =

o = O
o O O

- N O O O

(a) Une matrice M = commute avec A si et seulement si AM =

S 0 O g

c
z
w
0
b
0

O R O =

2
E

b 0 0
M A si et seulement si y 0 0 | sietseulementsib=c=
v 0 0
a 0 O
v=0eta=ysietseulementsi M = | = a z |, avec (a,z,z u,w) € C®
u 0 w
(b) Si M est une racine carrée de A alors M commute avec A donc elle est de la
a 0 0
forme précédente dans la question ci-dessus, donc M = | * a 2z |, avec
u 0 w
a? 0 0
(a,z,z,u,w) € C°, donc M? = | 2ax +2u za az+zw | donc M? = Asi
ua +wu 0 w?
0 00
et seulement si a = w = 0 et zu = 1 si et seulement si M = xr 0 =z
210 0

avec x € Cet z € C*

Partie IV

1. (a) Cest le polynéme minimal de f.
(b) Puisque K = C, le polynéme minimal ®; de f est scindé donc, compte tenu
du fait que ®|Py, il s’écrit : ;= [[(X — xx)" avec pour tout k € [1,n],
k=1
ona f; € Net 1<, < ay (cette derniére inégalité est une conséquence de
O ¢|Py.
2. Puisque g = f,ona gof = fogdonc g et f—x e commutent pour tout k € [1,n],
donc Ej, = ker(f — zxe) est stable par g, donc g(Ey) C FE.

3. (a) Supposons que 1 = 0 et §; > 2 alors 0 € Sp(f) et By = ker(f*!) est

stable par f et f induit un endomorphisme f; de E; nilpotent d’indice de
nilpotence 1 et comme dim(F;) = ;. Si on suppose que R(f) # (), il existe



g € L(E) tel que g*> = f, comme g et f commutent, on a F est stable par g et
’endomorphisme induit g; réalise g7 = fi, en appliquant la question III)1)c),
si R(f1) # 0 alors 51 < ‘“2“, ce qui contredit 'hypothése 5, > ‘“2“, donc
R(f) = 0.

Supposons que 0 ¢ ker(f), alors pour tout k& € [1,n], on a zx # 0, donc
rr € C*, donc il existe wy € C* tel que x, = wi. Le sous-espace Ej est
stable par f et f induit sur Ej; un endomorphisme f; tel que fy — zr.e = uy
est nilpotent, donc, en vertu du III)3)b), fi = u + wie réalise R(fi) # 0,
donc il existe g, € L(FE}) tel que g = f. Si on note g = g1 & -+ D gu,
I'endomorphisme défini par Vx € E, g(z) = gr(pr(x)) ot py est la projection
sur By parallelement a Vi, = @ E;, on a g* = f donc R(f) # 0.

Tk

Supposons que x; = 0 et ay > 2. Si R(f) # 0 on en déduit que si f; est
I’endomorphisme induit par f sur F; alors R(f1) # 0 et comme dim(E;) =
a; > 2, on déduit en vertu de la question III)7)b) que R(f1) est infini. Par
ailleurs F' = @,_, Ej est stable par f et 'endomorphisme induit f" vérifie
0 ¢ Sp(f’) donc d’aprés IV)3)b) on a R(f’") # 0, fixons donc ¢ € L(E') tel
que g”* = f’ alors pour tout g; € R(f1), ona g= g, ®g € R(f), donc R(f)
est infini.

Puisque ay, = 8, 'endomorphisme fj est nilpotent d’indice de nilpotence oy =
dim(F%), on est dans les condition du III)4), en particulier card(R(f;)) = 2,
par suite compte tenu que si on pose R(fi) = {£gr} la forme générale des
¢léments de R(f) est +g; - - - &+ gpn, donc card(R(f)) = 2™.

Sixzy =0et ag =1 alors dim(ker(f)) = 1 et si on note f’ 'endomorphisme
induit par f sur E’, les valeurs propres de f’ sont en nombre de n — 1 a
savoir s, ..., T, et elles sont toutes non nulles et on a toujours ay = [ pour
tout k € [2,n]. Un endomorphisme g de E réalise g> = f si et seulement si
g% = f', et comme E’ est dans les conditions du IV)4)a), on a card(R(f)) =
card(R(f")) = 2n~!



