Partie 1 : Noyaux itérés

Soit f € L(E), on note pour tout entier naturel k, Nj, = Ker (f*) et Z, = Im (f*).

1. Le noyau etl’'image d’une application linéaire sont des sous-espaces vectoriels.
e Soit k € Net z € Ny. On a f*(z) = f (f*(z)) = f(0) =0 donc z € Nji1. D'on

|

e Soit y € Tpy1. Il existe z € E tel que y = f*(z) . Pour a = f(z) € E on a alors

fk(a) = f**1(x) =y et doncy € Z. Ainsi .
2. Soit k € N . N, C Npqq implique dim A, < dim ANy, donc la suite (dimN), oy est
croissante.

e Comme (dimNj), .y est une suite d’entiers naturels croissante et majorée par n, celle-ci
est nécessairement constante a partir d'un certain rang kg < n .

e Soit A = {k € [0;n] | dim N, = dimNy41}. A est une partie non vide de N donc elle
posséde un plus petit élément q.

On a N, C Ny et ¢ € A done dim N, = dim N, par suite | Ny = Ny |.

3. OnaZ,y C Z,et dim Z, = n—dim N, = n—dim N, =dim Z 4y donc| Z, = Z,41|.

4. Soit x € N yN Z,. Nlexistea € E tel que x = f %(a) et f %(z) =0 donc f*'(a) =0
dota €N, 1= N parsuitez = f 9a) =0. Ainsi N ,N Z,={0}. De plus, par
le théoréme du rang : dim N, +dim Z,=dimE donc| N' ;& Z,=FE|

5. Pour tout entier naturel k, Zj est un sous espace stable de E soit ¢, = fiz, € L(Zy).

a) Le théoréme du rang donne dim Z;, = dim Ker (¢x) + dim Im (¢ .
On a:
o Im (o) = 0u(Zi) = f(Zk) = Lisa-

o Ker(pp) ={z €Zy | vr(z) =0} ={z € Zy | f(x) =0} donc Ker (¢x) = ZNKer (f)

Ainsi dim 7, = dim (Z;, N Ker (f))+dim Zy4 quis’écrit |dim Z, — dim Zy 1y = dim (Z, N Ker (f))

b) Par le théoréme du rang on a
(n —dimN) — (n — dim Ngyq) = dim Ny — dim Ny, = dim (Z;, N Ker (f))

On sait que Zy 1 C Z donc dim (Zy41 NKer (f)) < dim (Z, N Ker (f)) , par suite on
a

dim Ny o — dim Ny < dim Ny — dim N

Donc la suite (dim Ny — dim N, ), o est décroissante.

Partie 2 : Les endomorphismes nilpotents de rang n — 1

Soit U une matrice de M,,(C), de rang n — 1. On note u 'endomorphisme de E canoniquement
associé a U.

1. Soient r et s deux entiers naturels et v la restriction de u® a Im (u").
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a)
b)

c)

d)

b)

On a Im(v) = v(Im (v")) = w*(Im (u")) = Im (u**").
On a Ker(v) = Im (u") N Ker (v*) C Ker (u®).
De la question a) on a dim(Im(v)) = dim Im(u**") , le théoréme du rang donne :

dim Im(u**") 4+ dim Ker(u**") = n et dimIm(v) + dim Ker(v) = dim Im(u")

donc
n — dim Ker(u**") = dim Im(u") — dim Ker(v)

comme dim Im(u") = n— dim (Ker (u")) alors

dim Ker(u*™") = dim (Ker (u")) + dim Ker(v)

Ker(v) C Ker (v*) donc dim Ker(v) < dim Ker (u*) ainsi | dim (Ker (¢"*)) < dim (Ker (

u")) + dim |

On prouve le résultat demandé par récurrence sur .

e Initialisation : le résultat est vrai pour + = 1 car v est de rang n — 1 et donc
dim(Ker(u)) =1 .

e Hérédité : soit i € [0;n — 1] tel que le résultat soit vrai jusqu’au rang i.

La question précédente indique que

dim(Ker(u"™)) < dim(Ker(u")) + dim(Ker(u))

Comme u est de rang n— 1 alors Ker(u) est de dimension let ’hypothése de récurrence
donne '
dim(Ker(u'™)) <i+1

ce qui prouve le résultat au rang ¢ + 1.
Sii > n+ 1 le résultat est évident . Ainsi pour tout ¢ dans N | | dim(Ker(u?)) < 7.

OnaU"=0,donc u” =0 et u' =0 Vi>n par suite dim(Ker(u")) =n Vi > n.
On prouve le résultat demandé par récurrence sur .

e Initialisation : le résultat est vrai pour v =1 .

e Hérédité : soit ¢ € [0;n — 1] tel que le résultat soit vrai jusqu’au rang i.
D’aprés la partie 1 la suite (dim(Ker(u')));en est croissante , donc

i = dim(Ker(u')) < dim(Ker(u'™)) <i+ 1
Si dim(Ker(u"')) < i + 1 alors forcement
dim(Ker(u")) = dim(Ker(u"*))

par suite Ker(u?) = Ker(u'*!) .

Remarquons que si z € Ker(u™?) alors u(x) € Ker(u'™) = Ker(u') et u'(z) =0
donc

r € Ker(u'™) , ainsi Ker(u'?) C Ke ( 1) d’on Ker(u”Q) = Ker(u') .

Par récurrence on a donc Ker(u') = Ker(u'™!) = ... = Ker(u") = F ce qui est absurde

Donc dim(Ker(u™!)) =i+ 1 . D’ou le résultat pour i + 1.
Ainsi on a Vi € [0;n], | dim(Ker(u')) =i|.
Soit ¢ dans [0;n — 1], on a dim(Ker(u')) =4 , donc u’ # 0 .

Ainsi on a u" = 0 et pour tout i < n — 1 u* # 0 donc l'indice de nilpotence de u est
égal a n.
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c) On au" ! +#£0, il existe donc e € E\ {0} tel que u"~!(e) # 0.
Montrons que (e, u(e),...,u""*(e)) est libre. Pour cela, on suppose que

ape + aqule) + -+ ap_u"(e) =0
En composant par " !, on a alors
aou" " (e) + agu(e) + -+ 1w (e) =0

Puisque u* = 0 pour tout k > n alors apu™1(e) = 0 ainsi ag = 0.

A chaque fois on compose par ©" 2, u"3,...,u , on obtient par un processus récurrent
] = 0] = ... = Qp_1 = 0.
La famille B, est donc libre et posséde n = dim(F) éléments donc c¢’est une base de E.
o 0 ... ... O
] :
d) La matrice de u dans la base B, est donnée par 0
: .. .. . 0
0o ... 0 1 0

3. Soit A et B deux matrices nilpotentes de M,,(C) de rang n — 1 , posons f4 et fp les
endomorphismes de E canoniquement associé & A et B , il existe donc deux bases B, et
B. de E dans lesquelles les matrices de f4 et defp sont identiques & la matrice de la
question d) , ce qui prouve que A et B sont semblables .

Partie 3 : Réduction d’'un endomorphisme particulier

1. Soit 1 <k <p, onsait que fo(f— )™ = (f — )™ o f donc Ker ((f — A\idg)™)
est stable par f .

2. Les p polynémes (\; — X )™ sont deux a deux premiers entre eux, on déduit par le
théoréme de décomposition des noyaux, que

p
Ker H()\kidE — )™ =Ker (Midg — f)™ ) @ --- @ Ker (A\pidg — )™ )
k=1
p
et d’aprés le théoréme de Cayley Hamilton on a Ker [ (Aidg — f)™ = Ker(x,(f)) = £
k=1

Ainsiona | E=Fi@...® F,|

3. Pour tout entier k € [0, p], posons ¢r = fir, — Aeidp, € L(Fk) , on a pour tout z €
Fy, on(z) = f(2) — M.

a) Soit k € [0,p], pour tout x dans Fj, on a ;" (x) = (f — A\gidg)"™ (x) = 0 donc ¢,"* =0
et r est un endomorphisme nilpotent de Fj, .

b) Remarquons que ¢ = fip, — \iidp, et (X — Ag)™ est un polynome annulateur de fip,
donc
Sp(fir.) = { A} on en déduit que x . (X) = (X — A )
F}. est un sous espace stable par f donc y fir, Ix7 , ce qui donne dim Fj, < my,.
Le degré du polynéme caractéristique x s est égale a m; +mg +---+my, =n et on a
aussi



dimF; + dimFy + ... + dim F, = n , si on suppose quil existe i € [1,p] tel que
dim F; < m; alors
dim Fy +...+dim F, < my +---+m, ce qui est absurde , ainsi pour tout k dans [1, p]

ona‘dika:mk‘.

c) Montrons que 4,021’“71 =# 0 . Supposons par I'absurde que que go;cn’“*l = 0 et considérons
le polynéme

(X —\)™ = Xf(X>

i~

Q(X) = (X = x™!

i=1 A= X
i£k
On a
p
QUf) = (f = Mddp)™ o [ TT(F — Nidp)™
i=1
i£k

Les polyndémes d’un méme endomorphisme commutent , donc pour tout z € Fj, on a

Q(f)(x) = H(f — Nidp)™ | | (ef*'(x) ) =0
ik

et pour tout x € Fj avec j # k on a

p
QUI(w) = | (f = Midp)™ o | T (f = Nide)™ || (9" (2) ) =0
itk it
Comme E = F; @ --- @ F,, on a alors pour tout x € E il existe (x1,...,2,) €
Fy x -+ x F, tels que
T =1+ ...+, , donc Q(f)(z) = Q(f)(z1) + ... + Q(f)(zp) = 0.
Ainsi Q(f) = 0 avec @ de degré n—1, Q(f) est donc une combinaison linéaire non nulle
de (idg, f,- -, f*!) ce qui est contraire a '’hypotése stipulant que (idg, f,---, f*!)
est une partie libre. Donc @Z““_l #0.
On en déduit que pour tout entier k dans [1, p], 'indice de nilpotence de @y est my.

4. Pour tout entier k dans [1,p] ,¢r € L(F}) est nilpotente d’ordre my, = dim Fj, , d’aprés
la partie 2 la matrice de
¢, dans une base B., de Fj, est de la forme

O 0 ... ... 0
1 ) ) :
Mats, (p)=| 0 = . i | €Mu(©
A ¢
O ... 0 1 0

comme f|p, = @) — A¢idp, alors sa matrice dans la base B,, est de la forme

M O ... .00
B ) )
Ay = 0
0
0 0 1 X



Soit B = B, UB,,U...UB,, la base de E adaptée a la somme directe F' = F1 & --- @ F, ,
la matrice de f dans B est diagonale par blocs de la forme Matg(f) = diag( Ay, As, ... A,) .

Partie 4 : Cycles

1. Soit (xg, f (x0) ;.. .., [P~ (z0)) un p— cycle de f.
a) Pour tout entier k dans [1,p — 1] on a fP(f*(x0)) = f*(f*(x0)) = f*(z0) , comme
(wo, f (w0), ..., fP~1 (xg)) est une famille génératrice de E alors fP(x) = x pour tout

r € FE | ainsi .

b) E est de dimension n, par conséquent, une partie libre de E a au plus n éléments. De
plus zp # 0 donc 1 € F,.
Ainsi F},, est une partie non vide et majorée de N donc elle admet un maximum noté

5.

c) i) Montrons par récurrence que Vk >~ f¥(xq) € Vect(zo, f(x0), -+, f17 (o).
e y+1 ¢ F,, donc (xg, f(xg), -+, [T Hxo), [ (20)) est lite, comme (g, f(xo), -+, [T x0))
est libre alors f7(xg) € Vect(zo, f(zo), -+, [ (z0)) .
e Supposons que f¥(xq) € Vect(zo, f(z0), -, £ (x0)), alors f5+1(zg) € Vect(f (o), f2(x0), - -
et comme f7(xq) € Vect(zo, f(x0),- -+, f7 1 (xg)) on abien f* 1 (zy) € Vect(zg, f(xg), -, f771
Finalement pour tout entier k > v | f* (xq) € Vect (zo, f (z0),..., 77 (x0)) |

i) (2o, f (z0),..., fP" (x0)) est une famille génératrice de E et Vk > v, f¥(zg) €

Vect (xo, f (z0), ..., f7 (20)), donc

E = Vect(xq, f(z0),- - ,fp_l(xo)) = Vect(xo, f(xo), - - ,fv—l(xo))

comme (g, f(xg), -+, f7 " (xg)) est libre alors c’est une base de E et dim E = n =
7.

iii) D’aprés la question a) f? = idg avec p = n = v, donc X" — 1 est un polyndéme
annulateur de f , par suite le polynéme minimal 7, divise X" —1 .
Posons 7¢(X) = X%ag 1 X +...4ag avec d < n,onaalors f4(xq)+ag_1 f (zo)+
...+ apro = 0 donc la famille (xg, f(z0), -+, f%(wo)) est lide, par suite d+1 ¢ F, et
forcement d +1 >n , ainsid =n .
On sait que les valeurs propre de f sont exactement les racines de 7 , donc
Sp(f) = {e**™ k € [1,n]} et f admet n valeurs propres distinctes .

a) Soit B,, = (xo, f(xo)...... , "1 (x0)) un n-cycle de f , ce qui signifie B,, est une
famille génératrice de E' de cardinal n = dim F donc elle constitue une base de F.

b) Ona f(f~(x0)) = { filzo)sil<j<n—2

. ce qui donne
Tg sij=n—1 » 04

0 O 1
1

G = Matgs, (f)=| o
. 0
0 0O 1 0



c) Soit k € [1,n] . On a GU = . = w *U,, . Donc Uy est un vecteur propre
1)k

de G associé a la valeur propre w*.

2. Soit M = (Mpr) < pe,, de My (C), telle que my,, = Wk Onnote M = (T k)
ou M e est le conjugué de my g

a) Posons M M = (ayy)

1<k, <n>

\<ku<n- Pour tout (k) € [1,7]? on a

n
ke = E:kam 3t
j=1

n
= E Tt
j=1
n

= 3y

j=1
: : el ()" 0—k\™
Si ¢ =k alors axy = n et si £ # k alors apy = w"™"————"— =0 ( car (w ) =
’ ’ 1— wt*
(W) =1).
On conclus que | M M =nl,|.
11—
b) Ainsi M € GL,(C) et | M~'= =M |.
n
bo bo_1 . by bl
by by
3. Soit (bg,by1,...,b,_1) € C" et H = :
bn—2 bn—l
bnfl bn72 . bl bo
a) Remarquons que G* = Matg, (f?) et
0 1 0
1
Matg, (f*) = | 1 :
: SN
0 1 0 0
de méme pour tout k € [3,n — 1]
0 0 1 0\ o 1
0 1 — k
k
G == Matlgxo (fk) = .
1 0
0 1 0 ... 0 «—n




Nous avons alors H = byly + b1G + ... + b, G" L.

Comme G admet n valeurs propres distinctes alors elle est diagonalisable, elle s’écrit
de la forme H = PDP~! avec D matrice diagonale et P matrice inversible, par suite
G* = PD¥P~! pour tout k € [1,n] , ainsi H est semblable & la matrice diagonale :
boly + 1D + ...+ b,_1 D" ' . H est donc diagonalisable .

b) D’apreés la question 1) on a D = diag(w ,w 2,...,w ") , si on pose Q(X) = bg+b X +...+

Dans

. Une base de T est la famille (Ej;);>; qui est est de cardinal ™= donc |dim 7~ =221 |

. Soit F' un sous-espace vectoriel de M, (R) contenu dans N tel que dim(F) >

. Soit F un sous-espace vectoriel de M,,(R) contenu dans N tel que dim(F) >

b,_1 X" talors H est semblable a la matrice Q(D) = diag (Q (w),Q (@?),....Q (@ ™))
, ce qui donne Sp(H) ={Q (@),Q @?),...,Q(w™)} et on a (Uy,...,U,) est une base
de C" formée de vecteurs propres de H.

Partie 5 : La dimension maximale d’un sous-espace
vectoriel des matrices nilpotentes

2 2

. Soit M une matrice nilpotente, donc my(X) = X? avec p € N* | ce qui donne Sp(M) =

{0} et xar(X) = X™ qui est scindé , donc M est trigonalisable et elle est semblable & une
matrice triangulaire de diagonale nulle .

. On a S,(R)NT = {0} donc la somme S,(R) + 7 est directe et on a dim(S,(R)) =

2D alors dim S, (R) + dim 7" = n? ce qui prouve que | M, (R) = S,(R)@ T |.

2

n(n—1)
2 Y
si on suppose que dim( S,(R)NF) = 0 alors S,(R) et F' sont en somme directe et

dim(S,(R) ® F) = dim(S,(R)) + dim(F), on a dim(S,(R)) = =t dim(F) > 21
donc dim(S,(R) & F) > n?, ce qui est absurde . Ainsi |dim ( S,(R) N F) > 0|

n(n—1)
2

d’aprés la question 4) on a dim ( S,(R) N F') > 0.

Soit M € S, (R)NF , M est symétrique et réelle donc diagonalisable et elle est nilpotente
donc Sp(M) = {0} ,on en déduit que M =0 et S,,(R) N F' = {0} ce qui est absurde.
Ainsi tout sous-espace vectoriel F' de M,,(R) contenu dans N vérifie dim(F) < @

. Or T est un sous-espace vectoriel de M, (R) contenu dans N et dim(7) = @ ;
donc la dimension maximale d'un sous-espace vectoriel de M, (R) contenu dans N est
n(n—1)

—5 .

Partie 6 : L’équation X° = X? dans M;3(R)

toute cette partie on note F = R3.

. Comme M? = M? on a aussi uv* = u = 2, donc le polynéme P = X3 — X? = X?(X — 1)

est un polynome scindé unitaire de degré 3 annulateur de wu.

. Le polynéme minimal 7, de u est un polynéme unitaire diviseur de P et comme deg(m,) >

1 les seules possibilité pour 7, sont les éléments de 'ensemble : {X, X% X — 1, X (X —
1), P}. 1l en découle que m, € {X, X — 1, X2 X2 — X, X3 — X?}.
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3. Si on suppose M # 0 alors m, # X et si I'on suppose M non inversible, on exclu la
polynéme X — 1, donc si on ajoute M non nulle et non inversible on a 7, € {X? X? —
X, X3 — X2},

4. Si m, = X? — X alors m, est scindé a racines simples 0 et 1, donc u est diagonalisable
représenté par une matrice diagonale A a coefficients diagonaux des 0 et des 1 tous
présents dans la diagonale. Les cas possibles dépendent de la multiplicité de 0 par exemple,
soit m(0) = 1, alors A = diag(0,1,1) = M3 ou m(0) = 2, alors A = (0,0,1) = M, donc
M est semblable a 'une des matrices My ou Ms.

5.a) Comme 7, = X? on a u? =6, donc Im(u) C Ker(u) car pour tout z € Im(u) il existe
y € E tel que u(y) = x, donc u(z) = v*(y) = 6(y) = 0.
Il en découle que rg(u) < dim(Ker(u)), et comme, par le théoréme du rang on a rg(u)+
dim(Ker(u)) = 3, on a les possibilités (0, 3), (1,2) pour le couple (rg (u), dim(Ker(u)),
le cas (0,3) est a exclure car u # 0, il s’en suit que rg (u) = 1 et dim(Ker(u)) = 2.

b) On a u ¢ GL(F) donc Ker(u) # {0} donc {0} € Ker(u). On a Ker(u) C Ker(u?) = E.
Si on suppose que Ker(u) = Ker(u?), on aurait Ker(u) = F, donc u = 0, ce qui n’est
pas le cas car m, = X?. 1l en découle que {0} C Ker(u) C Ker(u?) = FE.

c) Comme u # 6, il existe au moins V3 € E tel que u(V3) # 0. On pose Vi = u(V5)
comme V3 # 0, on a si (V,V3) est liée, il existe a € R tel que V; = aV3, donc on
aurait aVs = u(V3) donc au(Vs) = u*(V3) = 0 et oV = 0, donc a = 0 et cela conduit
a V; =0, absurde, donc la famille (V;, V3) est libre.

d) La famille (Vi,V3) est libre et V3 € Ker(u) car u(V3) = u*(V;) = 0, et comme
dim(Ker(u)) = 2, le théoréme de la base incompléte garantie I'existence d’un vec-
teur Vo € E tel que (V,,V3) est une base de Ker(u) et comme V; ¢ Ker(u), la fa-
mille (V7, Va, V3) est libre donc une base de E puisqu’elle posséde trois vecteurs. On a
u(Va) = 0 par définition de V5.

e) Sionnote ¥ = (Vi, Vs, V3) la matrice de u relativement & 7 est maty (u) =

_ o O
o O O
o O O

M, il en découle que M est semblable a Mj.
6. On suppose 7, = X? — X2,

a) On a 7, est scindé, donc u est trigonalisable et comme 7, n’est pas a racines simples
alors u n’est pas diagonalisable.

b) Comme X3—X? =7, = X?(X—1) et que X*A(X —1) = 1, le lemme de décomposition
des noyaux permet de dire que F = Ker(u?) @ Ker(u — Idg). Comme 0 € Sp(u) on a u
non injectif, donc {0} C Ker(u). Si on suppose que Ker(u) = Ker(u?), la somme directe
ci-dessus devient £ = Ker(u) @ Ker(u — Idg) et u serait diagonalisable car F serait
somme directe des sous-espaces propres de u. Il en découle que Ker(u) C Ker(u?). On
am, = X?(X —1) donc u® # 0 car sinon on aurait m,|X?, ce qui n’est pas le cas, donc
on a aussi Ker(u?) C E. Finalement on a {0} C Ker(u) C Ker(u?) C E.

c) Sion note dj, = dim(Ker(u*)) pour tout £ € N, on a en vertu de la question ci-dessus :
0=dy < di <dy <3, par suite 1 < d; < dy < 2, la seule possibilité est d; = 1 et
dy = 2.

Si on suppose que Ker(u) NIm(u) = {0}, alors par le théoréme du rang, on aurait
Im(u) ® Ker(u) = E, soit alors € Ker(u?) alors u(z) € Ker(u) NIm(u) donc u(z) =0
et x € Ker(u), donc Ker(u) N Im(u) = {0} = ker(u) = Ker(u?) et comme Ker(u)
Ker(u?), on a Im(u) N Ker(u) # {0}, soit alors V; € Im(u) N Ker(u), donc u(V;) =0
et il existe V5 € E tel que u(V2) = V;. Finalement comme 7,(1) =0, on a 1 € spec(u),
soit V3 un vecteur propre associé a 1 alors u(V3) = V3 . Montrons que la famille



vV = (V1,Va, V3) est libre. Soit ag, e, a3 € R tel que oV + anVs + 3V3 = 0, comme
u(Vh) = 0 et u(Va) = V4, on a en appliquant u a la relation (1) : aeV; + a3V3 = 0,
encore une fois azV3 = 0, donc oy = ap, = a3 = 0 et ¥ est une base de E.
010
d) Onamaty(u)=| 0 0 0 | = M,, par suite M est semblable a M.
0 01

7. L’équation X? = X? admet une solution triviale qui est 0, et si X est une solution
inversible forcément X = I5. Finalement si X # 0 et X non inversible ’étude ci-dessus
montre que X est semblable a I'une des matrices My, My, M3, M,. Notons que les quatre
matrices sont deux & deux non semblables(facile en utilisant le rang et la trace) donc elle
représentent des classes de similitude différente. L’ensemble des solutions de I’équation en
question est

¢ ={0,13, PM, P, PMyP™ ", PMsP~', PM,P~' /P € GL3(R)}



