
Partie 1 : Noyaux itérés

Soit f ∈ L(E), on note pour tout entier naturel k,Nk = Ker
(
fk

)
et Ik = Im

(
fk

)
.

1. Le noyau etl’image d’une application linéaire sont des sous-espaces vectoriels.
• Soit k ∈ N et x ∈ Nk. On a fk+1(x) = f

(
fk(x)

)
= f(0) = 0 donc x ∈ Nk+1. D’où

Nk ⊂ Nk+1 .
• Soit y ∈ Ik+1. Il existe x ∈ E tel que y = fk+1(x) . Pour a = f(x) ∈ E on a alors
fk(a) = fk+1(x) = y et donc y ∈ Ik. Ainsi Ik+1 ⊂ Ik .

2. Soit k ∈ N . Nk ⊂ Nk+1 implique dimNk ≤ dimNk+1 donc la suite (dimNk)k∈N est
croissante.

• Comme (dimNk)k∈N est une suite d’entiers naturels croissante et majorée par n, celle-ci
est nécessairement constante à partir d’un certain rang k0 ≤ n .
• Soit A = {k ∈ [[0;n]] | dimNk = dimNk+1}. A est une partie non vide de N donc elle
possède un plus petit élément q.
On a Nq ⊂ Nq+1 et q ∈ A donc dim Nq = dim Nq+1 par suite Nq = Nq+1 .

3. On a Iq+1 ⊂ Iq et dim Ia = n−dim Nq = n−dim Nq+1 = dim Iq+1 donc Iq = Iq+1 .

4. Soit x ∈ N q ∩ I q. Il existe a ∈ E tel que x = f q(a) et f q(x) = 0 donc f q+1(a) = 0
d’où a ∈ N q+ 1 = N q par suite x = f q(a) = 0 . Ainsi N q ∩ I q = {0}. De plus, par
le théorème du rang : dim N q + dim I q = dimE donc N q ⊕ I q = E .

5. Pour tout entier naturel k, Ik est un sous espace stable de E soit φk = f|Ik ∈ L(Ik).

a) Le théorème du rang donne dim Ik = dimKer (φk) + dim Im (φk) .
On a :
• Im (φk) = φk(Ik) = f(Ik) = Ik+1.

• Ker (φk) = {x ∈ Ik | φk(x) = 0} = {x ∈ Ik | f(x) = 0} donc Ker (φk) = Ik∩Ker (f)
.
Ainsi dim Ik = dim (Ik ∩Ker (f))+dim Ik+1 qui s’écrit dim Ik − dim Ik+1 = dim (Ik ∩Ker (f))

b) Par le théorème du rang on a

(n− dimNk)− (n− dimNk+1) = dimNk+1 − dimNk = dim (Ik ∩Ker (f))

On sait que Ik+1 ⊂ Ik donc dim (Ik+1 ∩Ker (f)) ≤ dim (Ik ∩Ker (f)) , par suite on
a

dimNk+2 − dimNk+1 ≤ dimNk+1 − dimNk

Donc la suite (dimNk+1 − dimNk )k∈N est décroissante.

Partie 2 : Les endomorphismes nilpotents de rang n− 1

Soit U une matrice deMn(C), de rang n−1. On note u l’endomorphisme de E canoniquement
associé a U .

1. Soient r et s deux entiers naturels et v la restriction de us à Im (ur).
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a) On a Im(v) = v(Im (ur)) = us(Im (ur)) = Im (us+r).
b) On a Ker(v) = Im (ur) ∩Ker (us) ⊂ Ker (us).
c) De la question a) on a dim(Im(v)) = dim Im(us+r) , le théorème du rang donne :

dim Im(us+r) + dimKer(us+r) = n et dim Im(v) + dimKer(v) = dim Im(ur)

donc
n− dimKer(us+r) = dim Im(ur)− dimKer(v)

comme dim Im(ur) = n− dim (Ker (ur)) alors

dimKer(us+r) = dim (Ker (ur)) + dimKer(v)

Ker(v) ⊂ Ker (us) donc dimKer(v) ≤ dimKer (us) ainsi dim (Ker (ur+s)) ≤ dim (Ker (ur)) + dim (Ker (us)) .
d) On prouve le résultat demandé par récurrence sur i.
• Initialisation : le résultat est vrai pour i = 1 car v est de rang n − 1 et donc
dim(Ker(u)) = 1 .
• Hérédité : soit i ∈ [[0;n− 1]] tel que le résultat soit vrai jusqu’au rang i.
La question précédente indique que

dim(Ker(ui+1)) ≤ dim(Ker(ui)) + dim(Ker(u))

Comme u est de rang n−1 alors Ker(u) est de dimension 1et l’hypothèse de récurrence
donne

dim(Ker(ui+1)) ≤ i+ 1

ce qui prouve le résultat au rang i+ 1.
Si i ≥ n+ 1 le résultat est évident . Ainsi pour tout i dans N , dim(Ker(ui)) ≤ i .

2. a) On a Un = 0 , donc un = 0 et ui = 0 ∀i ≥ n par suite dim(Ker(ui)) = n ∀i ≥ n.
On prouve le résultat demandé par récurrence sur i.
• Initialisation : le résultat est vrai pour i = 1 .
• Hérédité : soit i ∈ [[0;n− 1]] tel que le résultat soit vrai jusqu’au rang i.
D’après la partie 1 la suite (dim(Ker(ui)))i∈N est croissante , donc

i = dim(Ker(ui)) ≤ dim(Ker(ui+1)) ≤ i+ 1

Si dim(Ker(ui+1)) < i+ 1 alors forcement

dim(Ker(ui)) = dim(Ker(ui+1))

par suite Ker(ui) = Ker(ui+1) .
Remarquons que si x ∈ Ker(ui+2) alors u(x) ∈ Ker(ui+1) = Ker(ui) et ui+1(x) = 0
donc
x ∈ Ker(ui+1) , ainsi Ker(ui+2) ⊂ Ker(ui+1) d’où Ker(ui+2) = Ker(ui+1) .
Par récurrence on a donc Ker(ui) = Ker(ui+1) = ... = Ker(un) = E ce qui est absurde
.
Donc dim(Ker(ui+1)) = i+ 1 . D’où le résultat pour i+ 1.

Ainsi on a ∀i ∈ [[0;n]] , dim(Ker(ui)) = i .

b) Soit i dans [[0;n− 1]] , on a dim(Ker(ui)) = i , donc ui ̸= 0 .
Ainsi on a un = 0 et pour tout i ≤ n − 1 ui ̸= 0 donc l’indice de nilpotence de u est
égal à n.
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c) On a un−1 ̸= 0, il existe donc e ∈ E\ {0} tel que un−1(e) ̸= 0.
Montrons que (e, u(e), . . . , un−1(e)) est libre. Pour cela, on suppose que

α0e+ α1u(e) + · · ·+ αn−1u
n−1(e) = 0

En composant par un−1, on a alors

α0u
n−1(e) + α1u

n(e) + · · ·+ αn−1u
2n−2(e) = 0

Puisque uk = 0 pour tout k ≥ n alors α0u
n−1(e) = 0 ainsi α0 = 0.

A chaque fois on compose par un−2, un−3, ..., u , on obtient par un processus récurrent
α1 = α21 = ... = αn−1 = 0.
La famille Be est donc libre et possède n = dim(E) éléments donc c’est une base de E.

d) La matrice de u dans la base Be est donnée par


0 0 . . . . . . 0

1
. . . . . . ...

0
. . . . . . . . . ...

... . . . . . . . . . 0
0 . . . 0 1 0


3. Soit A et B deux matrices nilpotentes de Mn(C) de rang n − 1 , posons fA et fB les

endomorphismes de E canoniquement associé à A et B , il existe donc deux bases Be et
Be′ de E dans lesquelles les matrices de fA et defB sont identiques à la matrice de la
question d) , ce qui prouve que A et B sont semblables .

Partie 3 : Réduction d’un endomorphisme particulier

1. Soit 1 ≤ k ≤ p , on sait que f ◦ (f − λk)
mk = (f − λk)

mk ◦ f donc Ker ((f − λkidE)
mk)

est stable par f .
2. Les p polynômes (λk − X)mk sont deux à deux premiers entre eux, on déduit par le

théorème de décomposition des noyaux, que

Ker

p∏
k=1

(λkidE − f)mk = Ker ((λ1idE − f)m1 )⊕ · · · ⊕Ker ((λpidE − f)mp )

et d’après le théorème de Cayley Hamilton on a Ker
p∏

k=1

(λkidE − f)mk = Ker(χf (f)) = E
.
Ainsi on a E = F1 ⊕ . . .⊕ Fp .

3. Pour tout entier k ∈ [[0, p]], posons φk = f|Fk
− λkidFk

∈ L (Fk) , on a pour tout x ∈
Fk, φk(x) = f(x)− λkx.

a) Soit k ∈ [[0, p]] , pour tout x dans Fk on a φmk
k (x) = (f−λkidE)

mk(x) = 0 donc φmk
k = 0

et φk est un endomorphisme nilpotent de Fk .
b) Remarquons que φk = f|Fk

−λkidFk
et (X − λk)

mk est un polynôme annulateur de f|Fk

donc
Sp(f|Fk

) = {λk} ,on en déduit que χf|Fk
(X) = (X − λk)

dimFk .
Fk est un sous espace stable par f donc χf|Fk

|χf , ce qui donne dimFk ≤ mk.
Le degré du polynôme caractéristique χf est égale à m1 +m2 + · · · +mp = n et on a
aussi
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dimF1 + dimF2 + . . . + dimFp = n , si on suppose qu’il existe i ∈ [[1, p]] tel que
dimFi < mi alors
dimF1+ . . .+dimFp < m1+ · · ·+mp ce qui est absurde , ainsi pour tout k dans [[1, p]]
on a dimFk = mk .

c) Montrons que φmk−1
k ̸= 0 . Supposons par l’absurde que que φmk−1

k = 0 et considérons
le polynôme

Q(X) = (X − λk)
mk−1

p∏
i=1
i̸=k

(X − λi)
mi =

χf (X)

λk −X

On a

Q(f) = (f − λkidE)
mk−1 ◦

 p∏
i=1
i̸=k

(f − λiidE)
mi


Les polynômes d’un même endomorphisme commutent , donc pour tout x ∈ Fk on a

Q(f)(x) =


 p∏

i=1
i̸=k

(f − λiidE)
mi


(

φmk−1
k (x)

)
= 0

et pour tout x ∈ Fj avec j ̸= k on a

Q(f)(x) =

(f − λkidE)
mk−1 ◦

 p∏
i=1

i̸=k, i̸=j

(f − λiidE)
mi


(

φ
mj

j (x)
)
= 0

Comme E = F1 ⊕ · · · ⊕ Fp, on a alors pour tout x ∈ E il existe (x1, ..., xp) ∈
F1 × · · · × Fp tels que
x = x1 + ...+ xp , donc Q(f)(x) = Q(f)(x1) + ...+Q(f)(xp) = 0.
Ainsi Q(f) = 0 avec Q de degré n−1, Q(f) est donc une combinaison linéaire non nulle
de (idE, f, · · · , fn−1) ce qui est contraire à l’hypotèse stipulant que (idE, f, · · · , fn−1)
est une partie libre. Donc φmk−1

k ̸= 0 .
On en déduit que pour tout entier k dans [[1, p]], l’indice de nilpotence de φk est mk.

4. Pour tout entier k dans [[1, p]] , φk ∈ L(Fk) est nilpotente d’ordre mk = dimFk , d’après
la partie 2 la matrice de
φk dans une base Bek de Fk est de la forme

MatBek
(φk) =


0 0 . . . . . . 0

1
. . . . . . ...

0
. . . . . . . . . ...

... . . . . . . . . . 0
0 . . . 0 1 0

 ∈Mmk
(C)

comme f|Fk
= φk − λkidFk

alors sa matrice dans la base Bek est de la forme

Ak =


λk 0 . . . . . . 0

1
. . . . . . ...

0
. . . . . . . . . ...

... . . . . . . . . . 0
0 . . . 0 1 λk


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Soit B = Be1 ∪Be2 ∪ ...∪Bep la base de E adaptée à la somme directe E = F1⊕ · · · ⊕Fp ,
la matrice de f dans B est diagonale par blocs de la forme MatB(f) = diag( A1, A2, ...Ap) .

Partie 4 : Cycles

1. Soit (x0, f (x0) , . . . ., f
p−1 (x0)) un p− cycle de f .

a) Pour tout entier k dans [[1, p− 1]] on a f p(fk(x0)) = fk(fp(x0)) = fk(x0) , comme
(x0, f (x0) , . . . , f

p−1 (x0)) est une famille génératrice de E alors fp(x) = x pour tout
x ∈ E , ainsi fp = idE .

b) E est de dimension n, par conséquent, une partie libre de E a au plus n éléments. De
plus x0 ̸= 0 donc 1 ∈ Fx0 .
Ainsi Fx0 est une partie non vide et majorée de N donc elle admet un maximum noté
γ.

c) i) Montrons par récurrence que ∀k ≥ γ fk(x0) ∈ Vect(x0, f(x0), · · · , fγ−1(x0)).
• γ+1 /∈ Fx0 donc (x0, f(x0), · · · , fγ−1(x0), f

γ(x0)) est liée, comme (x0, f(x0), · · · , fγ−1(x0))
est libre alors fγ(x0) ∈ Vect(x0, f(x0), · · · , fγ−1(x0)) .
• Supposons que fk(x0) ∈ Vect(x0, f(x0), · · · , fγ−1(x0)), alors fk+1(x0) ∈ Vect(f(x0), f

2(x0), · · · , fγ(x0))
et comme fγ(x0) ∈ Vect(x0, f(x0), · · · , fγ−1(x0)) on a bien fk+1(x0) ∈ Vect(x0, f(x0), · · · , fγ−1(x0)).

Finalement pour tout entier k ≥ γ , ,f
k (x0) ∈ Vect (x0, f (x0) , . . . , f

γ−1 (x0)) .

ii) (x0, f (x0) , . . . , f
p−1 (x0)) est une famille génératrice de E et ∀k ≥ γ, fk (x0) ∈

Vect (x0, f (x0) , . . . , f
γ−1 (x0)), donc

E = Vect(x0, f(x0), · · · , fp−1(x0)) = Vect(x0, f(x0), · · · , fγ−1(x0))

comme (x0, f(x0), · · · , fγ−1(x0)) est libre alors c’est une base de E et dimE = n =
γ.

iii) D’après la question a) fp = idE avec p = n = γ , donc Xn − 1 est un polynôme
annulateur de f , par suite le polynôme minimal πf divise Xn − 1 .
Posons πf (X) = Xd+ad−1X

d−1+...+a0 avec d ≤ n, on a alors fd(x0)+ad−1f
d−1(x0)+

...+a0x0 = 0 donc la famille (x0, f(x0), · · · , fd(x0)) est liée, par suite d+1 /∈ Fx0 et
forcement d+ 1 > n , ainsi d = n .
On sait que les valeurs propre de f sont exactement les racines de πf , donc
Sp(f) =

{
e2ikπ, k ∈ [[1, n]]

}
et f admet n valeurs propres distinctes .

a) Soit Bx0 = (x0, f (x0) . . . . . . , f
n−1 (x0)) un n-cycle de f , ce qui signifie Bx0 est une

famille génératrice de E de cardinal n = dimE donc elle constitue une base de E.

b) On a f(f j−1(x0)) =

{
f j(x0) si 1 ≤ j ≤ n− 2

x0 si j = n− 1
, ce qui donne

G = MatBx0
(f) =


0 0 . . . . . . 1

1
. . . . . . ...

0
. . . . . . . . . ...

... . . . . . . . . . 0
0 . . . 0 1 0


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c) Soit k ∈ [[1, n]] . On a GUk =


ω nk

ω k

...
ω (n−1)k

 = ω kUk . Donc Uk est un vecteur propre

de G associé à la valeur propre ω k.

2. Soit M = (mk,ℓ)1≤k,ℓ≤n deMn(C), telle que mk,ℓ = ω kℓ. On note M = ( m k,ℓ)1≤k,ℓ≤n,
où m k,ℓ est le conjugué de mk,ℓ.

a) Posons M M = (ak,ℓ)1≤k,ℓ≤n. Pour tout (k, ℓ) ∈ [[1, n]]2 on a

ak,ℓ =
n∑

j=1

mk,jm j,ℓ

=
n∑

j=1

ω kjωjℓ

=
n∑

j=1

(
ωℓ−k

)j
Si ℓ = k alors ak,ℓ = n et si ℓ ̸= k alors ak,ℓ = ωℓ−k

1−
(
ωℓ−k

)n
1− ωℓ−k

= 0 ( car
(
ωℓ−k

)n
=

(ωn)ℓ−k = 1) .

On conclus que M M = nIn .

b) Ainsi M ∈ GLn(C) et M−1 =
1

n
M .

3. Soit (b0, b1, . . . , bn−1) ∈ Cn et H =


b0 bn−1 . . . b2 b1

b1
. . . . . . b2

... . . . . . . . . . ...

bn−2
. . . . . . bn−1

bn−1 bn−2 . . . b1 b0


a) Remarquons que G2 = MatBx0

(f 2) et

MatBx0
(f 2) =


0 0 . . . 1 0

0
. . . . . . 1

1
. . . . . . . . . ...

... . . . . . . . . . 0
0 . . . 1 0 0


de même pour tout k ∈ [[3, n− 1]]

Gk = MatBx0
(fk) =



0 . . . 0 1 . . . 0
... . . . . . . . . . ...

0
. . . . . . 1

1
. . . . . . 0

... . . . . . . . . . ...
0 . . . 1 0 . . . 0



← 1
...

← k
...
...

← n
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Nous avons alors H = b0I0 + b1G+ ...+ bn−1G
n−1.

Comme G admet n valeurs propres distinctes alors elle est diagonalisable, elle s’écrit
de la forme H = PDP−1 avec D matrice diagonale et P matrice inversible, par suite
Gk = PDkP−1 pour tout k ∈ [[1, n]] , ainsi H est semblable à la matrice diagonale :
b0I0 + b1D + ...+ bn−1D

n−1 . H est donc diagonalisable .
b) D’après la question 1) on a D = diag(ω , ω 2, ..., ω n) , si on pose Q(X) = b0+b1X+...+

bn−1X
n−1alors H est semblable à la matrice Q(D) = diag (Q (ω ) , Q (ω 2) , ..., Q (ω n))

, ce qui donne Sp(H) = {Q (ω ) , Q (ω 2) , ..., Q (ω n)} et on a (U1, ..., Un) est une base
de Cn formée de vecteurs propres de H.

Partie 5 : La dimension maximale d’un sous-espace
vectoriel des matrices nilpotentes

1. Une base de T est la famille (Eij)i>j qui est est de cardinal n(n−1)
2

donc dim T =n(n−1)
2

.

2. Soit M une matrice nilpotente, donc πM(X) = Xp avec p ∈ N∗ , ce qui donne Sp(M) =
{0} et χM(X) = Xn qui est scindé , donc M est trigonalisable et elle est semblable à une
matrice triangulaire de diagonale nulle .

3. On a Sn(R) ∩ T = {0} donc la somme Sn(R) + T est directe et on a dim(Sn(R)) =
n(n+1)

2
alors dimSn(R) + dim T = n2 ce qui prouve que Mn(R) = Sn(R)⊕ T .

4. Soit F un sous-espace vectoriel de Mn(R) contenu dans N tel que dim(F ) > n(n−1)
2

,
si on suppose que dim ( Sn(R) ∩ F ) = 0 alors Sn(R) et F sont en somme directe et
dim(Sn(R) ⊕ F ) = dim(Sn(R)) + dim(F ), on a dim(Sn(R)) = n(n+1)

2
et dim(F ) > n(n−1)

2

donc dim(Sn(R)⊕ F ) > n2, ce qui est absurde . Ainsi dim ( Sn(R) ∩ F ) > 0 .

5. Soit F un sous-espace vectoriel de Mn(R) contenu dans N tel que dim(F ) > n(n−1)
2

,
d’après la question 4) on a dim ( Sn(R) ∩ F ) > 0.
Soit M ∈ Sn(R)∩F , M est symétrique et réelle donc diagonalisable et elle est nilpotente
donc Sp(M) = {0} ,on en déduit que M = 0 et Sn(R) ∩ F = {0} ce qui est absurde.
Ainsi tout sous-espace vectoriel F de Mn(R) contenu dans N vérifie dim(F ) ≤ n(n−1)

2

. Or T est un sous-espace vectoriel de Mn(R) contenu dans N et dim(T ) = n(n−1)
2

,
donc la dimension maximale d’un sous-espace vectoriel de Mn(R) contenu dans N est
n(n−1)

2
.

Partie 6 : L’équation X3 = X2 dans M3(R)

Dans toute cette partie on note E = R3.
1. Comme M3 = M2, on a aussi u3 = u = 2, donc le polynôme P = X3 −X2 = X2(X − 1)

est un polynôme scindé unitaire de degré 3 annulateur de u.
2. Le polynôme minimal πu de u est un polynôme unitaire diviseur de P et comme deg(πu) ≥

1 les seules possibilité pour πu sont les éléments de l’ensemble : {X,X2, X − 1, X(X −
1), P}. Il en découle que πu ∈ {X,X − 1, X2, X2 −X,X3 −X2}.
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3. Si on suppose M ̸= 0 alors πu ̸= X et si l’on suppose M non inversible, on exclu la
polynôme X − 1, donc si on ajoute M non nulle et non inversible on a πu ∈ {X2, X2 −
X,X3 −X2}.

4. Si πu = X2 − X alors πu est scindé à racines simples 0 et 1, donc u est diagonalisable
représenté par une matrice diagonale ∆ à coefficients diagonaux des 0 et des 1 tous
présents dans la diagonale. Les cas possibles dépendent de la multiplicité de 0 par exemple,
soit m(0) = 1, alors ∆ = diag(0, 1, 1) = M3 ou m(0) = 2, alors ∆ = (0, 0, 1) = M2 donc
M est semblable à l’une des matrices M2 ou M3.

5. a) Comme πu = X2, on a u2 = θ, donc Im(u) ⊂ Ker(u) car pour tout x ∈ Im(u) il existe
y ∈ E tel que u(y) = x, donc u(x) = u2(y) = θ(y) = 0.
Il en découle que rg(u) ≤ dim(Ker(u)), et comme, par le théorème du rang on a rg(u)+
dim(Ker(u)) = 3, on a les possibilités (0, 3), (1, 2) pour le couple (rg (u), dim(Ker(u)),
le cas (0, 3) est à exclure car u ̸= θ, il s’en suit que rg (u) = 1 et dim(Ker(u)) = 2.

b) On a u ̸∈ GL(E) donc Ker(u) ̸= {0} donc {0} ⊊ Ker(u). On a Ker(u) ⊂ Ker(u2) = E.
Si on suppose que Ker(u) = Ker(u2), on aurait Ker(u) = E, donc u = θ, ce qui n’est
pas le cas car πu = X2. Il en découle que {0} ⊊ Ker(u) ⊊ Ker(u2) = E.

c) Comme u ̸= θ, il existe au moins V3 ∈ E tel que u(V3) ̸= 0. On pose V1 = u(V3)
comme V3 ̸= 0, on a si (V1, V3) est liée, il existe α ∈ R tel que V1 = αV3, donc on
aurait αV3 = u(V3) donc αu(V3) = u2(V3) = 0 et αV1 = 0, donc α = 0 et cela conduit
à V1 = 0, absurde, donc la famille (V1, V3) est libre.

d) La famille (V1, V3) est libre et V3 ∈ Ker(u) car u(V3) = u2(V1) = 0, et comme
dim(Ker(u)) = 2, le théorème de la base incomplète garantie l’existence d’un vec-
teur V2 ∈ E tel que (V2, V3) est une base de Ker(u) et comme V1 ̸∈ Ker(u), la fa-
mille (V1, V2, V3) est libre donc une base de E puisqu’elle possède trois vecteurs. On a
u(V2) = 0 par définition de V2.

e) Si on note V = (V1, V2, V3) la matrice de u relativement à V est matV (u) =

 0 0 0
0 0 0
1 0 0

 =

M1, il en découle que M est semblable à M1.
6. On suppose πu = X3 −X2.

a) On a πu est scindé, donc u est trigonalisable et comme πu n’est pas à racines simples
alors u n’est pas diagonalisable.

b) Comme X3−X2 = πu = X2(X−1) et que X2∧(X−1) = 1, le lemme de décomposition
des noyaux permet de dire que E = Ker(u2)⊕Ker(u− IdE). Comme 0 ∈ Sp(u) on a u
non injectif, donc {0} ⊊ Ker(u). Si on suppose que Ker(u) = Ker(u2), la somme directe
ci-dessus devient E = Ker(u) ⊕ Ker(u − IdE) et u serait diagonalisable car E serait
somme directe des sous-espaces propres de u. Il en découle que Ker(u) ⊊ Ker(u2). On
a πu = X2(X − 1) donc u2 ̸= 0 car sinon on aurait πu|X2, ce qui n’est pas le cas, donc
on a aussi Ker(u2) ⊊ E. Finalement on a {0} ⊊ Ker(u) ⊊ Ker(u2) ⊊ E.

c) Si on note dk = dim(Ker(uk)) pour tout k ∈ N, on a en vertu de la question ci-dessus :
0 = d0 < d1 < d2 < 3, par suite 1 ≤ d1 < d2 ≤ 2, la seule possibilité est d1 = 1 et
d2 = 2.
Si on suppose que Ker(u) ∩ Im(u) = {0}, alors par le théorème du rang, on aurait
Im(u)⊕Ker(u) = E, soit alors x ∈ Ker(u2) alors u(x) ∈ Ker(u)∩ Im(u) donc u(x) = 0
et x ∈ Ker(u), donc Ker(u) ∩ Im(u) = {0} ⇒ ker(u) = Ker(u2) et comme Ker(u) ⊊
Ker(u2), on a Im(u) ∩ Ker(u) ̸= {0}, soit alors V1 ∈ Im(u) ∩ Ker(u), donc u(V1) = 0
et il existe V2 ∈ E tel que u(V2) = V1. Finalement comme πu(1) = 0, on a 1 ∈ spec(u),
soit V3 un vecteur propre associé à 1 alors u(V3) = V3 . Montrons que la famille
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V = (V1, V2, V3) est libre. Soit α1, α2, α3 ∈ R tel que α1V1 + α2V2 + 3V3 = 0, comme
u(V1) = 0 et u(V2) = V1, on a en appliquant u à la relation (1) : α2V1 + α3V3 = 0,
encore une fois α3V3 = 0, donc α1 = α2 = α3 = 0 et V est une base de E.

d) On a matV (u) =

 0 1 0
0 0 0
0 0 1

 = M4, par suite M est semblable à M4.

7. L’équation X3 = X2 admet une solution triviale qui est 0, et si X est une solution
inversible forcément X = I3. Finalement si X ̸= 0 et X non inversible l’étude ci-dessus
montre que X est semblable à l’une des matrices M1,M2,M3,M4. Notons que les quatre
matrices sont deux à deux non semblables(facile en utilisant le rang et la trace) donc elle
représentent des classes de similitude différente. L’ensemble des solutions de l’équation en
question est

C = {0, I3, PM1P
−1, PM2P

−1, PM3P
−1, PM4P

−1/P ∈ GL3(R)}
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