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Dans tout le problème K = R ou C, on désigne par E un espace vectoriel sur K de
dimension n, n ≥ 1 et par L(E) le K-espace vectoriel des endomorphismes de E.
On note Mn(K) l’espace vectoriel des matrices carrées d’ordre n à coefficients dans
K, GLn(K) le groupe des matrices inversibles de Mn(K) et In la matrice unité de
Mn(K). Pour f ∈ L(E), on note f 0 = IdE et pour tout k ∈ N, fk+1 = fk ◦f où IdE
désigne l’application identité de E. On note χf(X) = det(X IdE −f) le polynôme
caractéristique de f et on rappelle que d’après la théorème de Cayley-Hamilton,
χf(f) = 0 où 0 désigne l’application nulle de E.
Pour une matrice M ∈ Mn(K), on pourra introduire le polynôme caractéristique de
M défini par χM(X) = det (XIn −M).
On dit que f est un endomorphisme nilpotent s’il existe un entier naturel non nul
p tel que f p = 0, le plus petit entier naturel non nul p vérifiant cette propriété est
appelé indice de nilpotence de f .

Partie 1 : Noyaux itérés

Soit f ∈ L(E), on note pour tout entier naturel k,Nk = Ker
(
fk

)
et Ik = Im

(
fk

)
.

1. Montrer que la suite (Nk)k∈N est croissante et que la suite (Ik)k∈N est décrois-
sante pour l’inclusion.

2. En déduire que (dimNk)k∈N est une suite croissante d’entiers naturels.

3. Pour tout k ∈ N on note dk = dim(Nk).

a) Montrer que pour tout k ∈ N, on a f(Nk+1) ⊂ Nk ⊂ Nk+1

b) En déduire que ∀k ∈ N, dk ≤ dk+1 ≤ dk + d1.

4. Justifier l’existence d’un plus petit entier naturel q tel que Nq = Nq+1. Prouver
alors qu’on a aussi Iq = Iq+1.

5. Montrer que l’on a :

a) ∀k ∈ N, k ≥ q ⇒ Nk = Nq.
b) Nq ⊕ Iq = E,

6. On considère pour tout entier naturel k, φk la restriction de f a Ik.

a) Montrer que dim Ik − dim Ik+1 = dim (Ker(f ) ∩ Ik).
b) En déduire que la suite (dimNk+1 − dimNk )k∈N est décroissante.
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Partie 2 : Les endomorphismes nilpotents de rang n− 1

Soit U une matrice de Mn(C), de rang n − 1. On note u l’endomorphisme de E
canoniquement associé a U .

1. Soient r et s deux entiers naturels et v la restriction de us à Im (ur).

a) Vérifier que Im(v) = Im (us+r).
b) Montrer que Ker(v) ⊂ Ker (us).
c) Montrer que dim (Ker (ur+s)) ≤ dim (Ker (ur)) + dim (Ker (us)).
d) En déduire que pour tout entier naturel i, dim

(
Ker

(
ui
))

≤ i.

2. On suppose de plus que Un = 0.

a) Montrer que pour tout entier i tel que 1 ≤ i ≤ n, dim
(
Ker

(
ui
))

= i.
b) Montrer que l’indice de nilpotence de u est égal à n.
c) En déduire qu’il existe un vecteur e de E tel que Be =

(
e, u(e), . . . , un−1(e)

)
soit une base de E.

d) Ecrire la matrice de u dans la base Be.

3. Montrer que deux matrices nilpotentes de Mn(C) de rang n−1 sont semblables.

Partie 3 : Réduction d’un endomorphisme particulier

Dans cette partie K = C. Soit f un élément de L(E) vérifiant
(
IdE, f, . . . , f

n−1
)

est
libre.
On considère χf(X) =

p∏
k=1

(X − λk)
mk le polynôme caractéristique χf de f , où

λ1, . . . , λp sont les valeurs propres distinctes de f de multiplicités respectives m1, . . . ,mp.
Pour tout entier k tel que 1 ≤ k ≤ p, on pose Fk = Ker ((f − λk IdE)

mk)

1. Montrer que, pour tout entier k tel que 1 ≤ k ≤ p, le sous-espace vectoriel Fk

est stable par f .

2. Montrer que E = F1 ⊕ . . .⊕ Fp.

3. Pour tout entier k tel que 1 ≤ k ≤ p, on considère l’endomorphisme φk de Fk

tel que, pour tout x ∈ Fk,
φk(x) = f(x)− λkx.

a) Montrer que pour tout entier k tel que 1 ≤ k ≤ p, φk est un endomorphisme
nilpotent de Fk.

b) Déterminer, pour tout entier k tel que 1 ≤ k ≤ p, la dimension de Fk.
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c) Montrer que, pour tout entier k tel que 1 ≤ k ≤ p, l’indice de nilpotence
de φk est mk.

4. Montrer qu’il existe une base B de E dans laquelle la matrice de f est diagonale
par blocs, tel que chaque bloc est une matrice de Mmk

(C) de la forme

Ak =


λk 0 . . . . . . 0

1 . . . . . . ...
0 . . . . . . . . . ...
... . . . . . . . . . 0
0 . . . 0 1 λk

 .

Partie 4 : Cycles

Dans cette partie, on prend K = C. On dit qu’un endomorphisme f de E est cyclique
d’ordre un entier naturel non nul p s’il existe x0 de E vérifiant les conditions :

— f p (x0) = x0.

—
(
x0, f (x0) , . . . , f

p−1 (x0)
)

est une famille génératrice de E dont les éléments
sont distincts deux a deux.

On dit alors que la famille
(
x0, f (x0) . . . , f

p−1 (x0)
)

est un p− cycle de f .

1. Soit
(
x0, f (x0) , . . . ., f

p−1 (x0)
)

un p− cycle de f .

a) Montrer que f p = IdE.
b) Montrer que l’ensemble

Fx0
=

{
k ∈ N∗ |

(
x0, f (x0) , . . . , f

k−1 (x0)
)

est une famille libre
}

admet un maximum noté γ.
c) i) Montrer que pour tout entier k tel que k ≥ γ, on a :

fk (x0) ∈ Vect
(
x0, f (x0) , . . . , f

γ−1 (x0)
)
.

ii) Montrer que γ = n.
iii) Déterminer le nombre des valeurs propres distinctes de f .

2. Soit Bx0
=

(
x0, f (x0) . . . . . . , f

n−1 (x0)
)

un n-cycle de f .

a) Justifier que Bx0
est une base de E.

b) Déterminer la matrice G de l’endomorphisme f dans la base Bx0
.
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c) On pose ω = ei
2π
n et pour tout k ∈ Z, Uk =


ω k

ω 2k

...
ω nk

, où ω désigne le

conjugué de ω.
Pour tout entier k tel que 1 ≤ k ≤ n, vérifier que Uk est un vecteur propre
de G associé à une valeur propre αk à déterminer.

3. Soit M = (mk,l)1≤k,l≤n de Mn(C), telle que, pour tout couple (k, l) ∈ [[1, n]]2,
mk,l = ω kl. On note M = ( m k,l)1≤k,l≤n, où m k,l est le conjugué de mk,l.

a) Calculer M M .
b) En déduire que M ∈ GLn(C) et calculer M−1

4. Soit (b0, b1, . . . , bn−1) ∈ Cn et H =


b0 bn−1 . . . b2 b1

b1
. . . . . . b2

... . . . . . . . . . ...
bn−2

. . . . . . bn−1

bn−1 bn−2 . . . b1 b0

.

a) Montrer que H est diagonalisable.
b) Déterminer les valeurs propres de H et une base de Cn formée de vecteurs

propres de H.

Partie 5 : La dimension maximale d’un sous-espace vectoriel
des matrices nilpotentes

On note T le sous-espace vectoriel de Mn(R) des matrices triangulaires supérieures
dont la diagonale est composée seulement par des 0 . On désigne par Sn(R) l’en-
semble des matrices symétriques de Mn(R) et par N l’ensemble des matrices
nilpotentes de Mn(R).

1. Déterminer la dimension de T .

2. Montrer que toute matrice nilpotente est semblable à une matrice de T .

3. Montrer que Mn(R) = Sn(R)⊕ T .

4. Soit F un sous-espace vectoriel de Mn(R) contenu dans N tel que l’on aie :
dim(F ) > n(n−1)

2 . Montrer que dim ( Sn(R) ∩ F ) > 0.

5. En déduire la dimension maximale d’un sous-espace vectoriel de Mn(R) contenu
dans N .
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Partie 6 : L’équations X2 = X3 dans M3(R)

Dans toute cette partie, M est une matrice carrée de M3(R) tel que M 2 = M 3 et
on considère les matrices suivantes :

M1 =

 0 0 0
0 0 0
1 0 0

 ,M2 =

 0 0 0
0 0 0
0 0 1

 ,M3 =

 0 0 0
0 1 0
0 0 1

 ,M4 =

 0 1 0
0 0 0
0 0 1

 ,

On note u l’endomorphisme canoniquement associé à M .

1. Montrer que u admet un polynôme annulateur P scindé unitaire de degré 3 à
préciser.

2. En déduire que le polynôme minimal πu de u réalise :

(⋆) πu ∈ {X,X − 1, X2, X2 −X,X3 −X2}

3. Que devient (⋆) si on suppose que M ̸= 0 et M ̸∈ GL3(R) ?

On suppose désormais que M ̸= 0 et M non inversible

4. Dans cette question, on suppose que πu = X2−X. Démontrer alors que M est
semblable à l’une des matrices M2 ou M3.

5. Dans cette question on suppose que πu = X2.

a) Vérifier que Im(u) ⊂ Ker(u) et en déduire la valeur de rg (u).
b) Montrer que l’on a les inclusions strictes {0} ⊊ Ker(u) ⊊ Ker(u2).
c) Démontrer qu’il existe aux moins un vecteurs V1 ∈ R3 tel que u(V1) ̸= 0.

On pose alors V3 = u(V1). Prouver alors que (V1, V3) est une famille libre.
d) En déduire l’existence d’un vecteur V2 ∈ R3 tel que V = (V1, V2, V3) est

une base de R3 et u(V2) = 0.
e) Montrer que M est semblable à M1.

6. On suppose dans cette question que πu = X3 −X2.

a) Justifier que u est trigonalisable. Est ce que u est diagonalisable ?
b) Justifier que R3 = Ker(u2) ⊕ Ker(u − IdR3) et en déduire que l’on a :

{0} ⊊ Ker(u) ⊊ Ker(u2) ⊊ R3

c) Montrer qu’il existe une base V = (V1, V2, V3) de R3 tel que u(V1) = 0 et
u(V2) = V1 et u(V3) = V3.

d) En déduire que M est semblable à M4.

7. Quelles sont les matrices X de M3(R) qui réalisent X2 = X3 ?
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