Partie I : Préliminaires

1) Soit P = >_ X* un polynome et x € Ker P(f), on a
k=0

(Z f’“) (f@) = _frof(@)=> foffz)=¢ (Z f’“(w)> = f(0) =0,
k=0 k=0

k=0 k=0
donc f(z) € Ker(P(f)) et , Ker(P(f)) est stable par f.
2)a) - Si v est un vecteur propre de f associé & A. Pour w = pv € Vect(v), f(w) = f(uv) = pf(v) = pAv € Vect(v). Vect(v)
est stable par f.

- Si, pour un vecteur non nul, Vect(v) est stable par f, f(v) € Vect(v), il existe un A € R tel que f(v) = Av, puisque v est
une base de Vect(v), v est vecteur propre de f associé a .

b) On note B = (ey, ez, ¢€3) la base canonique de R3 et on considére 'endomorphisme g de R? dont la matrice dans la base

1 1 0
Best B = 0 1 0
0 0 2

Détermination, en en donnant une base, des droites de R? stables par ¢ :
Cela revient & donner toutes les droites propres. Les valeurs propres de la matrice triangulaire supérieure B sont sur la
diagonale : 1 et 2 sont les valeurs propres de B. On voit immédiatement que e; est vecteur propre associé a 1 et es est vecteur

010
propre associé a 2 . D’apreés le théoréme du rang, I’espace propre associé a 1 est de dimension 1 car B—Id=| 0 0 0
0 0 1
-1 1 0
est de rang 2 = 3 — 1. De méme, ’espace propre associé a 2 est de dimension 1 car B — 2Id = 0 —1 0 | estderang
0o 0 0
2 =3 — 1. B ne posséde donc que deux droites propres,
les droites stables sont donc Vect (e1) et Vect (es3).
3) Soit p un entier naturel non nul.
P
a) Si Fi,...,F, sont p sous-espaces vectoriels de E stables par f, montrer qu’alors la somme ) Fj est un sous-espace
k=1
) ) P 2 P ) P
vectoriel stable par f. Soit (z)epr ) € [T, F, f(k¥1 TE) = kz;l f(zx) € kz;l Fy, puisque f (vx) € Fy. 1221 Fj, est un
sous-espace vectoriel stable par f. l / l /
P
b) SiA1,..., A, sont p valeurs propres de f et sing,...,n, sont p entiers naturels, montrer qu’alors la somme > Ker (f — A\, Idg)"*
k=1

est stable par f. En utilisant la question 1) avec le polynome (X — A\, Idg)™, on voit que, pour tout A, Ker (f — A\, Idg)™*
P
est stable par f. Alors, d’aprés la question 2), Y Ker (f — \x Idg)"™* est stable par f. Le fait que les \j soient des valeurs
k=1

propres n’intervient pas, il nous garantit seulement que le sous-espace stable est consistant (i.e loin d’étre réduit a 0 ).

4)a) Soit F stable par f et x € F, (f — A1d)(z) = f(z) —x € F, comme somme de deux vecteurs de F', donc F est stable
par f — A1d. Réciproquement si F' est stable par f — Ald, d’aprés le premier sens, F' est stable par (f — Ald) — (=\)Id = f.

b) Si F est stable par f, alors f2(F) = f(f(F)) C f(F) C F, F est stable par f2. La réciproque est fausse comme le montre
0 -1
1 0
—i ( X2 + 1 est annulateur), R ne posséde donc aucune droite stable (question 1), pourtant toutes les droites (vectorielles)
sont stables par R = —Id.

la rotation de 7, de matrice R = , qui vérifie R? = —Id. Les valeurs propres de R sont parmi (en fait sont) i et

c) Puisque f~1 existe, f est bijective, donc injective. Soit F' un sous-espace stable par f, on a f(F) C F. L endomorphisme
de F, f| ., restriction a I de f reste injectif (son noyau est F'NKer f = {0} ), donc bijectif car F' C E est de dimension finie,
il est en particulier surjectif et f(F) = F, on a donc f~1(F) = f~1(f(F)) = F et F est stable par f~!, alors f et f~lont les
mémes sous-espaces stables.

d) Soit f un endomorphisme de E laissant stable tout sous-espace vectoriel de E' et B = (e;);c[; ,j une base de E. f laisse
stable toutes les droites vectorielles Vect (e;), c’est a dire que Vi € [[1,n]], e; est vecteur propre associé & f (question 2)a) et
& une valeur propre j;. Soit (i,7) € [[1,n]]?, tels que i # j, la droite Vect (e; + €;) est stable, donc, e; + €; est propre et pour
un certain réel u, f(e; +e;) = p(e; +e;). On a donc, p(e; +e;) = fe; +e;) = f(ei) + f(e;) = piei + pje;. Puisque (e;, €;)
est libre, p = p; = p; dés que i # j, nécessairement les p; sont égaux, donc f = uld. Réciproquement, il est évident que si
f = p1d, elle laisse tous les sous-espaces stables. f € L(E) laissant stable tout sous-espace de E est de la forme f = A1dg.



e) La rotation R d’angle 7, décrite plus haut convient : elle n’a pas de sous-espaces stables de dimension 1, donc les seuls
espaces {0} et E de dimension 0 et 2 sont stables. 5° ) a) On rappelle qu’une forme linéaire sur F est une application linéaire
de F dans R et qu’un hyperplan de E est un sous-espace vectoriel de E de dimension n — 1. Montrer que les hyperplans de
E sont exactement les noyaux de formes linéaires non nulles sur £. On pourra compléter une base d’un hyperplan en une
base de E. - Soit f forme linéaire non nulle sur E, f(E) = R,dimIm f = 1 et d’aprés la théoréme du rang, dimKer f = n —1,

Ker f est donc un hyperplan. Soit H est un hyperplan, de base (fi);cp; ,—1) que 'on compléte en une base (f;);cy,,,p de

n N n—1
E. Soit p,, : > x;fi & @y, la n'*™° application coordonnée, c’est une forme linéaire et son noyau est H = { > a;fip. Les
i=1 =1
hyperplans de E sont exactement les noyaux de formes linéaires non nulles sur E.
b)i) Supposons que g o f = Ap. Soit € H,¢(f(x)) = Ap(z) = 0 donc f(x) € H et H est stable par f. Réciproquement,
supposons que f(H) C H, deux cas :
- la forme linéaire p o f est nulle, alors ¢ o f =0 = Oy, c’est gagné.
- la forme linéaire ¢ o f n’est pas nulle, alors il existe z¢ tel que @ o f (xg) # 0.x0 ¢ H (sinon f (x9) € H et ¢ (f (o) =0),
les formes linéaires ¢ o f et %gp coincident sur H et sur 29 ¢ H (qui engendrent E ), donc sur E, elles sont égales,
eof ==
ii) La traduction en termes de matrices dans les bases canoniques de la condition nécessaire et suffisante IA € R, po f = Ap
est I\ € R, LA = AL, ce qui donne, en transposant les deux membres, on a IN € R, ‘AL = N L.

c) D’apres la question précédente, H, d’équation ¢(x) = 0(¢ # 0), est un plan stable de f si et seulement si la matrice L de
¢ dans les bases canoniques vérifie IN € R, *A'L = X!'L. Autrement dit, H, d’équation ¢(x) = 0, est un plan stable de f
si et seulement si la transposée de la matrice L de ¢ est vecteur propre de 'A.

1 00
- Recherchons les vecteurs propres de ‘B = 1 1 0 |.Les valeurs propres de la matrice triangulaire inférieure !B sont
0 0 2
0
sur la diagonale : 1 et 2 sont les valeurs propres de *B. On voit immédiatement que 1 est vecteur propre associé a
0
0
1 et que 0 est vecteur propre associé & 2. D’aprés le théoréme du rang, ’espace propre associé a 1 est de dimension
1
0 0 0
1car ‘B—1d = 1 0 0 est de rang 2 = 3 — 1. De méme, l'espace propre associé & 2 est de dimension 1 car
0 0 1
-1 0 0
tB—2Id = 1 -1 0 est de rang 2 = 3 — 1. !B admet deux valeurs propres 1 et 2 associée aux vecteurs propres
0o 0 0

0 0

1 et 0

0 2

0
- Revenons & notre recherche des plans stables : Pour 'L = | 1 | ,L=(0,1,0)et ¢: (z,y,2) = y,pour’L=| 0 |,L=
0 1

(0,0,1) et ¢ : (x,y,2) — z. On a donc deux plans stables d’équation y = 0 et z = 0, les plans Vect (e1, e3) et Vect (e1, e2).

Partie II : Le cas ou ’endomorphisme est diagonalisable

1) Si p =1, f, diagonalisable et n’ayant qu’une seule valeur propre, est une homothétie (i.e = A Id) : tous les sous-espaces
de E sont stables. 2° ) On suppose l'entier p au moins égal & 2 . On considére un sous-espace vectoriel F' de E stable par f
et un élément = de F'.

a) On sait, puisque f est diagonalisable, que E est somme directe des sous espaces propres : E = @}_, Ej. Tout x de F C E

P
se décompose donc de maniére unique x = > xy, avec Vk € [1,p], xx € Ej.

k=1
P P P
b) Pour z = Yz, € F, f(x) = f (Z xk) = flzg) = Ay est dans F' qui est stable, le vecteur f(z) — Mz =
k=1 k=1 k=1 k=1
P P P P
SMxer— A Y. xp= Y. (Mg — M)z = > (Ax — A1) zk, appartient donc & F' (sous-espace vectoriel).
k=1 k=1 k=1 k=2
P
¢) En recommencant la méme manceuvre que dans la question précédente Y. (A — A2) (Ax — A1)z € F et en itérant on
k=3

arrive & [[727 (A\p—1 — M) 2p_1 + [T°22 (A\p — Ai) 2 € F, et enfin [T72) (A, — \i) z, € F.
Puisque les A; sont distincts, x;,, € F', en reprenant I’avant derniére égalité, on tire ,_; € F' et en remontant encore, on voit
que tous les x;, (i € [1,p]) sont dans F.



3) Montrons que si F est stable par f,F = @}_, (F N E}y). L'inclusion @F_, (FNEy) C F est évidente (somme de

P
sous-espaces vectoriels de F' ). L’inclusion F' C ) (F N E}) résulte de la question précédente.
k=1
- Il reste & constater que, pour tout i € [1, p],

F;n Z Fj C E; N Z Ej = {0}
i=j€[1,p] i=j€[L,p]
J#i J#i

pour conclure que la somme est directe, ce que ’on ne demandait pas.

P

4) Les Fj, = F N Ej, sont des sous-espaces propres de la restriction de f a F, puisque F = @ (F N Ey), la restriction de f a
k=1

F' est diagonalisable.

5) Dés que f posséde un sous-espace propre de dimension supérieure ou égale a deux, il posséde déja une infinité de sous-
espaces stables, les droites vectorielles de ce sous-espace. Une condition nécessaire pour que E posséde un nombre fini de
sous-espaces vectoriels stables par f est que f ne posséde que des sous-espaces propres de dimension 1 , c’est & dire que f

n
doit avoir n valeurs propres distinctes. C’est suffisant, les sous-espaces stables sont les > Fj avec Vk € [1,n], Fx C Ex, ce
i=1

n
qui entraine puisque Ej, est de dimension 1, F, = {0} ou F), = Ej. Les sous-espaces stables sont les > Fy, ou P([1,n])
1€P([1,n])
est 'ensemble des parties de [1,n], et sont donc au nombre de 2.

Partie III : Le cas ou ’endomorphisme est nilpotent d’ordre n

1) On note D I'endomorphisme de R,,_1[X] qui & tout polynéme P associe son polyndme dérivé P’.

a)On a, pour k < I, DF (Xl) = (l_“k)IXl*’C et, pour k > [, D¥ (Xl) = (. Par linéarité, pour un polyndéme de degré

inférieur & n — 1, D"(P) = 0 et puisque D" (X"') = (n —1)!, D"~ n’est pas nulle sur R,_;[X].

b) Il est évident que les sous-espaces précédents sont stables par D, montrons que ce sont les seuls. Soit F' un sous-espace
stable par D, soit P un polynéme de plus haut degré, k, de F. On a F C Ry[X].F étant stable, D(P) = P',D*(P) =
P" ...,D*(P) = P® sont dans F, de degré distincts, donc libres dans F' C Ry[X], ils forment une base de R[X]. On a
donc Ri[X] C F C Ri[X], F = Ri[X].

0 1 0 0
0 0 1
2)a) On a A = S .. .. - o | A est donc la matrice dont le coefficient de la ligne i et de la colonne j(1 <
: w0 1
0 ... ... 0 0
i <n1<j<n)vaut 1sij=i+1et0 sinon. Puisque f*~! # 0, il existe 2o tel que f"~!(xy) # 0. Considérons
n—1
la famille (f/C (xo))ke[[o n—1] et montrons qu'elle est libre. Supposons que Y. prf*(zo) = 0. Soit I le plus petit entier
’ k=0

n—1 n—1
tel que p; # 0, on a donc > i f¥ (v9) = 0, en composant par f*~'=1 on obtient f"~'='( Y pxf*(x0)) = f(0), donc
k=l k=l

n—1
S e fFr=0 (26) = 0, done py f*H(xg) = 0, d'ott gy = 0, ce qui est absurde : tous les coefficient p; sont nuls, la
k=l

famille est bien libre. (fk(xo))ke[[o,n—l]] est une famille libre de n vecteurs dans E de dimension n, c¢’est une base de E.
Puisque f(f" *(z0)) = f™(z0) = 0 et que, pour k € [2,n], f(f**(x0)) = f*~*~Y(zy)), la matrice de f dans la base
(f"™(0))kef1,n] (c’est la méme que ci-dessus a I'ordre prés) est A.

b) B est donc la matrice dont le coefficient de la ligne 7 et de la colonne j(1 < i < mn,1
sinon. Puisque f (f"~! (z0)) = f™ (z0) = 0 et que, pour k € [2,n], f ((k—1)1f"* (20))
la matrice de f dans la base ((k — 1)!f" % (x0))refi,n] est B, donc A est semblable a B.

<n)vautisij=i+1et0
= 1) ((k =215 (),

¢) On remarque immeédiatement que la matrice de D, dans la base canonique de R,,_1[X], est B, les sous-espaces stables de
B sont les mémes, a un isomorphismes prés, que ceux de D. Ce sont donc

Vect (f*~! (20)) ,
Vect (f771 (zo) , f"2 (w0))
Vect (f"~1 (z0) , f"2 (w0), 23 (w0))

Veet (71 (20) , 172 (20) 275 (0) ., (n — W)L (o) ..., (n — 1)lzg)



Partie IV : Le cas ou ’endomorphisme est nilpotent d’ordre 2

1)a) f (f (F2)) = {0} puisque f? =0, donc f (Fy) C Ker f.

b) Soit Fo N Fy C Fx NnKerf = {0}, Fo N Fy = {0}, la somme F; + F5 est directe. Soit z = 21 + 29 o 21 € F) et
292 € Fo, f(z) = f(x1) + f (22) =0+ f (z2) € Fy car f(Fy) C Fy, Fy + F; est stable.

c) Etant donné A, B, C trois sous-espaces vectoriels de E, établir I'inclusion (ANC)+ (BNC) C (A+ B)NC.

A -t-on nécessairement I’égalité ? Soit a € ANCetbe BNC,alorsa+be A+ Beta+beCdonca+be (A+B)NC.
L’inclusion en sens inverse est fausse comme le montre I’exemple de trois droites distinctes.

d) D’apreés I'inclusion précédente, (Fy NKer f)+(Fe N Ker f) C (Fy + Fy)NKer fF1+{0} C (F1 + Fo)NKer fF, C (Fy + F»)N
Ker f. Soit x1 € F) et x5 € Fy tels que &1+ € (Fy + Fo)NKer f, puisque x1 € Fy € (Fy + Fo)NKer f, zo = (1 + 22)—x1 €
(Fy + Fy) nKer f C Ker f, ce qui entraine x9 = 0, car Fo NKer f = {0g}. Donc Fy = (F; + F») NKer f.

2) Réciproquement on considére un sous-espace vectoriel F' de E stable par f. On pose F; = F NKer f et on considére
un sous-espace vectoriel Fy supplémentaire de Fy dans F. Vérifier 'inclusion f(F) C Ker f et prouver que 'intersection
Fy NKer f est réduite au vecteur nul. On a encore f(f(F)) = {0} puisque f? = 0, donc f(F) C Ker f. Soit F» N Ker f =
(FenNF)NKer f =N (FNKer f) = FoNFy = {0}, la somme F, + Ker f est directe. 3° ) Dans cette question, on suppose
que lentier n est égal a4 4 (i.e. E = R* ) et on considére I’endomorphisme h de E dont la matrice dans la base canonique

1 1 0 0
. 01 00
B = (e1,e2,€3,e4) de R* est la matrice M = 00 2 1 |-
0 0 0 2
0 100 0000
immédi _| o000 > | 0 0 0 O
a) On a immédiatement M — Id = 00 1 1 | (M —1Id)* = 00 1 9
0 0 01 00 0 1
-1 1 00 L 2 0 0
= 0 -1.0°0 2 | 0O 1 00
M-20d=| o o o |s M=2wd=| 0 o 4
0 0 00 0 0 00

donc, puisqu’a voir leurs matrices, (h —Id)? et (h — 2Id)? sont de rang 2 , en utilisant le théoréme du rang, G et Go sont
de dimension 2,
G1 = Ker(h —1d)? = Vect (e1,e2), et Ga = Ker(h —1d)? = Vect (e3,e4)

sont supplémentaires car {ej, ez} et {es, eq} forment une partition de la base canonique. b) Montrer que les sous-espaces
vectoriels stables par h sont exactement les sommes Hy + Ho ot Hy (resp. Ha ) est un sous-espace vectoriel de G (resp.
G5.) stable par h. Remarquons que G et G sont stables d’aprés I)3)b). Soit F' stable, H; = Gy N F et Hy = G2 N F sont
stables (comme intersection de sous-espaces stables). Puisque G & Go = E, H; & Hy = F.

c) Les droites stables de G sont les espaces propres de la restriction de f a G7, une seule droite stable Vect (e1). De
méme, il n'y a qu’une droite stable dans Gs, Vect (e3). Les sous-espaces stables de f sont obtenus en sommant ceux de
G1: {0}, Vect (e1), Vect (e1,e2), et ceux de Gy : {0}, Vect (e3) , Vect (es, e4). En voici la liste classée par dimension :

— dimension 0 : {0} = Vect(0),

— dimension 1 : Vect (e1), Vect (e2),

— dimension 2 : G; = Vect (e1,e2), G2 = Vect (e3,e4) , Vect (e1, e3),

— dimension 3 : Vect (e1, e2, e3) , Vect (e1, €3, e4),

— dimension 4 : Vect (eq, ez, €3, €4).
Partie V : Existence d’un plan stable par un endomorphisme

1) On note M un polyndéme non nul & coefficients réels de plus bas degré annulant f. On observera que M n’est pas constant.
E étant de dimension n, £(E) est de dimension n?, la famille de n? + 1 vecteurs (fk)ke[[o n2] de L(E) est donc liée : il existe
2 2

n n
une famille de réels, non tous nuls, (Uk)ke[[o n?] telle que Y. urf*® = 0, donc le polynéme, non nul, > upX* annule f.
' k=0 k=0
L’ensemble {d°P ou P # 0 et P(f) =0} est une partie non vide de N, qui posséde un plus petit élément d, il existe donc

M, non nul, annulateur de f et de degré minimum d.

d d
2)a) M = Y apX* est a coefficient réels, donc égal a son conjugué > ap X%,
k=0 k=0

d

d d
Mz) = Za;ﬁk = Za;Tzk = Zakzk =0=0,
k=0 k=0

k=0



donc Z est aussi racine de M.
Puisque z # Z, le polynome M est divisible par(X — 2)(X — %) = X2 — 2Re(2)X + |2 = X% + bX + c € R[X].

b)On peut écrire la division euclidienne M = (X2 +bX + c) Q avec Q € R[X] et de degré d — 2. Si f2 + bf + cldg était

injectif, puisque FE est de dimension finie, il serait bijectif et, de M (f) = 0, par composition par 'inverse (f2 +bf + cIdE)fl,
on aurait Q(f) = 0, ce qui contredit la définition de d minimum : f2 + bf + cIdg n’est donc pas injectif.

¢) Soit z € Ker (f2 +0f + cIdE), non nul, on a f2(x) = —bf(z) — ax. D’autre part, z n’est pas vecteur propre de f (sinon
le polynome annulateur M aurait au moins sa valeur propre associée comme racine réelle), donc z et f(x) ne sont pas liés
et forment donc une base de F' = Vect(z, f(x)). Pour y = Az + uf(x) € F, f(y) = f(Azx + uf(x)) = M (z) + puf?(x) =
Af(z) + u(=bf(x) —ax) € F, F est un plan stable de f.

3)a) Puisque M est de degré minimum, (X — A\)P~! n’annule pas f, ou, en se ramenant & g,g? = 0 et g?~! # 0, g est
nilpotent d’ordre p, en modifiant 1légérement la solution de la question II1)2)a) (ici on n’a pas p = n ), on prouve qu'’il existe
un vecteur = de E tel que la famille (m,g(x), ... ,gp_l(x)) est libre.

b) En déduire qu'il existe un plan de FE stable par f. Dans la question précédente, p > 2, donc on peut considérer le plan
F = Vect (gP~2(z), g (z)), manifestement stable par g (¢?(z) = 0), donc stable par f( question I )4) a) ).

4) Pour cette question il fallait supposer que dim(FE) > 1.

Supposons donc dim(E) > 1. Montrons que si A est racine de M, elle est valeur propre de f. Dans ce cas, M = (X —\)Q avec
Q € R[X] de degré d — 1, f — AIdg ne peut étre injectif, puisque E est de dimension finie, il serait bijectif et, de M(f) =0,
par composition par inverse (f — Adg) ™", on aurait Q(f) = 0, ce qui contredit la définition de d minimum. f — Aldg n’est
pas injectif et A\ est valeur propre de f.

e Quatre cas :

e M posséde au moins une racine complexe non réelle. D’aprés 2 ), f admet un plan stable (le fait que M n’ait pas de racines
réelles ne sert a rien dans la démonstration de 2 )).

e M posséde au moins deux racines réelles, A\; et Ay. Ce sont des valeurs propres de f et si 'on considére e; et ey vecteurs
propres associés, Vect (e1, e2) est un plan stable par f.

e M ne posséde qu’une seule racine réelle et pas de racine complexe non réelle, A. Puisque M n’est pas constant il est de la
forme

esoit M = a(X — A), alors a(f — AId) = 0, f est ’'homothétie A\Id et puisque F est de dimension supérieure ou égale a 2 ,
tous les plans de F sont stables.

esoit M = a(X — AP, avec p > 2, d’aprés la question précédente, il existe un plan stable par f.



