
Partie I : Préliminaires

1) Soit P =
n∑

k=0

Xk un polynôme et x ∈ KerP (f), on a

(
n∑

k=0

fk

)
(f(x)) =

n∑
k=0

fk ◦ f(x) =
n∑

k=0

f ◦ fk(x) = f

(
n∑

k=0

fk(x)

)
= f(0) = 0,

donc f(x) ∈ Ker(P (f)) et , Ker(P (f)) est stable par f .

2)a) - Si v est un vecteur propre de f associé à λ. Pour w = µv ∈ Vect(v), f(w) = f(µv) = µf(v) = µλv ∈ Vect(v). Vect(v)
est stable par f .
- Si, pour un vecteur non nul, Vect(v) est stable par f, f(v) ∈ Vect(v), il existe un λ ∈ R tel que f(v) = λv, puisque v est
une base de Vect(v), v est vecteur propre de f associé à λ.

b) On note B = (e1, e2, e3) la base canonique de R3 et on considère l’endomorphisme g de R3 dont la matrice dans la base

B est B =

 1 1 0
0 1 0
0 0 2


Détermination, en en donnant une base, des droites de R3 stables par g :
Cela revient à donner toutes les droites propres. Les valeurs propres de la matrice triangulaire supérieure B sont sur la
diagonale : 1 et 2 sont les valeurs propres de B. On voit immédiatement que e1 est vecteur propre associé à 1 et e3 est vecteur

propre associé à 2 . D’après le théorème du rang, l’espace propre associé à 1 est de dimension 1 car B − Id =

 0 1 0
0 0 0
0 0 1


est de rang 2 = 3− 1. De même, l’espace propre associé à 2 est de dimension 1 car B − 2Id =

 −1 1 0
0 −1 0
0 0 0

 est de rang

2 = 3− 1. B ne possède donc que deux droites propres,
les droites stables sont donc Vect (e1) et Vect (e3).

3) Soit p un entier naturel non nul.

a) Si F1, . . . , Fp sont p sous-espaces vectoriels de E stables par f , montrer qu’alors la somme
p∑

k=1

Fk est un sous-espace

vectoriel stable par f . Soit (xk)k∈[[1,p]] ∈
∏p

k=1 Fk, f(
p∑

k=1

xk) =
p∑

k=1

f (xk) ∈
p∑

k=1

Fk, puisque f (xk) ∈ Fk.
p∑

k=1

Fk est un

sous-espace vectoriel stable par f .

b) Si λ1, . . . , λp sont p valeurs propres de f et si n1, . . . , np sont p entiers naturels, montrer qu’alors la somme
p∑

k=1

Ker (f − λk IdE)
nk

est stable par f . En utilisant la question 1) avec le polynôme (X − λk IdE)
nk , on voit que, pour tout λk,Ker (f − λk IdE)

nk

est stable par f . Alors, d’après la question 2),
p∑

k=1

Ker (f − λk IdE)
nk est stable par f . Le fait que les λk soient des valeurs

propres n’intervient pas, il nous garantit seulement que le sous-espace stable est consistant (i.e loin d’être réduit à 0 ).

4)a) Soit F stable par f et x ∈ F , (f − λ Id)(x) = f(x) − x ∈ F , comme somme de deux vecteurs de F , donc F est stable
par f − λ Id. Réciproquement si F est stable par f − λId, d’après le premier sens, F est stable par (f − λId)− (−λ)Id = f .

b) Si F est stable par f , alors f2(F ) = f(f(F )) ⊂ f(F ) ⊂ F, F est stable par f2. La réciproque est fausse comme le montre

la rotation de π
2 , de matrice R =

(
0 −1
1 0

)
, qui vérifie R2 = −Id. Les valeurs propres de R sont parmi (en fait sont) i et

−i ( X2 + 1 est annulateur), R ne possède donc aucune droite stable (question 1), pourtant toutes les droites (vectorielles)
sont stables par R2 = −Id.

c) Puisque f−1 existe, f est bijective, donc injective. Soit F un sous-espace stable par f , on a f(F ) ⊂ F . L’endomorphisme
de F , f |F , restriction à F de f reste injectif (son noyau est F ∩Ker f = {0} ), donc bijectif car F ⊂ E est de dimension finie,
il est en particulier surjectif et f(F ) = F , on a donc f−1(F ) = f−1(f(F )) = F et F est stable par f−1, alors f et f−1ont les
mêmes sous-espaces stables.

d) Soit f un endomorphisme de E laissant stable tout sous-espace vectoriel de E et B = (ei)i∈[[1,n]] une base de E. f laisse
stable toutes les droites vectorielles Vect (ei), c’est à dire que ∀i ∈ [[1, n]], ei est vecteur propre associé à f (question 2)a) et
à une valeur propre µi. Soit (i, j) ∈ [[1, n]]2, tels que i ̸= j, la droite Vect (ei + ej) est stable, donc, ei + ej est propre et pour
un certain réel µ, f (ei + ej) = µ (ei + ej). On a donc, µ(ei + ej) = f(ei + ej) = f(ei) + f(ej) = µiei + µjej . Puisque (ei, ej)
est libre, µ = µi = µj dès que i ̸= j, nécessairement les µi sont égaux, donc f = µId. Réciproquement, il est évident que si
f = µ Id, elle laisse tous les sous-espaces stables. f ∈ L(E) laissant stable tout sous-espace de E est de la forme f = λ IdE .
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e) La rotation R d’angle π
2 , décrite plus haut convient : elle n’a pas de sous-espaces stables de dimension 1 , donc les seuls

espaces {0} et E de dimension 0 et 2 sont stables. 5◦ ) a) On rappelle qu’une forme linéaire sur E est une application linéaire
de E dans R et qu’un hyperplan de E est un sous-espace vectoriel de E de dimension n− 1. Montrer que les hyperplans de
E sont exactement les noyaux de formes linéaires non nulles sur E. On pourra compléter une base d’un hyperplan en une
base de E. - Soit f forme linéaire non nulle sur E, f(E) = R,dim Im f = 1 et d’après la théorème du rang, dimKer f = n−1,
Ker f est donc un hyperplan. Soit H est un hyperplan, de base (fi)i∈[[1,n−1]] que l’on complète en une base (fi)i∈[[1,n]] de

E. Soit pn :
n∑

i=1

xifi 7→ xn, la nième application coordonnée, c’est une forme linéaire et son noyau est H =

{
n−1∑
i=1

xifi

}
. Les

hyperplans de E sont exactement les noyaux de formes linéaires non nulles sur E.

b)i) Supposons que φ ◦ f = λφ. Soit x ∈ H,φ(f(x)) = λφ(x) = 0 donc f(x) ∈ H et H est stable par f . Réciproquement,
supposons que f(H) ⊂ H, deux cas :
- la forme linéaire φ ◦ f est nulle, alors φ ◦ f = 0 = 0φ, c’est gagné.
- la forme linéaire φ ◦ f n’est pas nulle, alors il existe x0 tel que φ ◦ f (x0) ̸= 0.x0 /∈ H (sinon f (x0) ∈ H et φ (f (x0) = 0),
les formes linéaires φ ◦ f et φ(f(x0))

φ(x0)
φ coïncident sur H et sur x0 /∈ H (qui engendrent E ), donc sur E, elles sont égales,

φ ◦ f = φ(f(x0))
φ(x0)

φ.

ii) La traduction en termes de matrices dans les bases canoniques de la condition nécessaire et suffisante ∃λ ∈ R, φ ◦ f = λφ
est ∃λ ∈ R, LA = λL, ce qui donne, en transposant les deux membres, on a ∃λ ∈ R, tAtL = λtL.

c) D’après la question précédente, H, d’équation φ(x) = 0(φ ̸= 0), est un plan stable de f si et seulement si la matrice L de
φ dans les bases canoniques vérifie ∃λ ∈ R, tAtL = λtL. Autrement dit, H, d’équation φ(x) = 0, est un plan stable de f
si et seulement si la transposée de la matrice L de φ est vecteur propre de tA.

- Recherchons les vecteurs propres de tB =

 1 0 0
1 1 0
0 0 2

. Les valeurs propres de la matrice triangulaire inférieure tB sont

sur la diagonale : 1 et 2 sont les valeurs propres de tB. On voit immédiatement que

 0
1
0

 est vecteur propre associé à

1 et que

 0
0
1

 est vecteur propre associé à 2. D’après le théorème du rang, l’espace propre associé à 1 est de dimension

1 car tB − Id =

 0 0 0
1 0 0
0 0 1

 est de rang 2 = 3 − 1. De même, l’espace propre associé à 2 est de dimension 1 car

tB − 2Id =

 −1 0 0
1 −1 0
0 0 0

 est de rang 2 = 3 − 1. tB admet deux valeurs propres 1 et 2 associée aux vecteurs propres 0
1
0

 et

 0
0
2

.

- Revenons à notre recherche des plans stables : Pour tL =

 0
1
0

 , L = (0, 1, 0) et φ : (x, y, z) 7→ y, pour tL =

 0
0
1

 , L =

(0, 0, 1) et φ : (x, y, z) 7→ z. On a donc deux plans stables d’équation y = 0 et z = 0, les plans Vect (e1, e3) et Vect (e1, e2).

Partie II : Le cas où l’endomorphisme est diagonalisable

1) Si p = 1, f , diagonalisable et n’ayant qu’une seule valeur propre, est une homothétie (i.e = λ Id) : tous les sous-espaces
de E sont stables. 2◦ ) On suppose l’entier p au moins égal à 2 . On considère un sous-espace vectoriel F de E stable par f
et un élément x de F .

a) On sait, puisque f est diagonalisable, que E est somme directe des sous espaces propres : E =
⊕p

k=1 Ek. Tout x de F ⊂ E

se décompose donc de manière unique x =
p∑

k=1

xk avec ∀k ∈ [[1, p]], xk ∈ Ek.

b) Pour x =
p∑

k=1

xk ∈ F , f(x) = f

(
p∑

k=1

xk

)
=

p∑
k=1

f (xk) =
p∑

k=1

λkxk est dans F qui est stable, le vecteur f(x) − λ1x =

p∑
k=1

λkxk − λ1

p∑
k=1

xk =
p∑

k=1

(λk − λ1)xk =
p∑

k=2

(λk − λ1)xk, appartient donc à F (sous-espace vectoriel).

c) En recommençant la même manœuvre que dans la question précédente
p∑

k=3

(λk − λ2) (λk − λ1)xk ∈ F et en itérant on

arrive à
∏p−2

i=1 (λp−1 − λi)xp−1 +
∏p−2

i=1 (λp − λi)xp ∈ F , et enfin
∏p−1

i=1 (λp − λi)xp ∈ F.
Puisque les λi sont distincts, xp ∈ F , en reprenant l’avant dernière égalité, on tire xp−1 ∈ F et en remontant encore, on voit
que tous les xi, (i ∈ [[1, p]]) sont dans F .
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3) Montrons que si F est stable par f, F =
⊕p

k=1 (F ∩ Ek). L’inclusion
⊕p

k=1 (F ∩ Ek) ⊂ F est évidente (somme de

sous-espaces vectoriels de F ). L’inclusion F ⊂
p∑

k=1

(F ∩ Ek) résulte de la question précédente.

- Il reste à constater que, pour tout i ∈ [[1, p]],

Fi ∩

 ∑
i=j∈[[1,p]]

j ̸=i

Fj

 ⊂ Ei ∩

 ∑
i=j∈[[1,p]]

j ̸=i

Ej

 = {0}

pour conclure que la somme est directe, ce que l’on ne demandait pas.

4) Les Fk = F ∩Ek sont des sous-espaces propres de la restriction de f à F , puisque F =
p⊕

k=1

(F ∩ Ek), la restriction de f à

F est diagonalisable.

5) Dès que f possède un sous-espace propre de dimension supérieure ou égale à deux, il possède déjà une infinité de sous-
espaces stables, les droites vectorielles de ce sous-espace. Une condition nécessaire pour que E possède un nombre fini de
sous-espaces vectoriels stables par f est que f ne possède que des sous-espaces propres de dimension 1 , c’est à dire que f

doit avoir n valeurs propres distinctes. C’est suffisant, les sous-espaces stables sont les
n∑

i=1

Fk avec ∀k ∈ [[1, n]], Fk ⊂ Ek, ce

qui entraîne puisque Ek est de dimension 1, Fk = {0} ou Fk = Ek. Les sous-espaces stables sont les
n∑

i∈P([[1,n]])

Fk, où P([[1, n]])

est l’ensemble des parties de [[1, n]], et sont donc au nombre de 2n.

Partie III : Le cas où l’endomorphisme est nilpotent d’ordre n

1) On note D l’endomorphisme de Rn−1[X] qui à tout polynôme P associe son polynôme dérivé P ′.

a)On a, pour k ≤ l, Dk
(
X l
)
= l!

(l−k)!X
l−k et, pour k > l, Dk

(
X l
)
= 0. Par linéarité, pour un polynôme de degré

inférieur à n− 1, Dn(P ) = 0 et puisque Dn−1
(
Xn−1

)
= (n− 1) !, Dn−1 n’est pas nulle sur Rn−1[X].

b) Il est évident que les sous-espaces précédents sont stables par D, montrons que ce sont les seuls. Soit F un sous-espace
stable par D, soit P un polynôme de plus haut degré, k, de F . On a F ⊂ Rk[X].F étant stable, D(P ) = P ′, D2(P ) =
P ′′, . . . , Dk(P ) = P (k) sont dans F , de degré distincts, donc libres dans F ⊂ Rk[X], ils forment une base de Rk[X]. On a
donc Rk[X] ⊂ F ⊂ Rk[X], F = Rk[X].

2)a) On a A =



0 1 0 . . . 0

0 0 1
. . .

...
...

. . . . . . . . . 0
...

. . . 0 1
0 . . . . . . 0 0


, A est donc la matrice dont le coefficient de la ligne i et de la colonne j(1 ≤

i ≤ n, 1 ≤ j ≤ n) vaut 1 si j = i + 1 et 0 sinon. Puisque fn−1 ̸= 0, il existe x0 tel que fn−1 (x0) ̸= 0. Considérons

la famille
(
fk (x0)

)
k∈[[0,n−1]]

et montrons qu’elle est libre. Supposons que
n−1∑
k=0

µkf
k(x0) = 0. Soit l le plus petit entier

tel que µl ̸= 0, on a donc
n−1∑
k=l

µkf
k (x0) = 0, en composant par fn−l−1, on obtient fn−l−1(

n−1∑
k=l

µkf
k(x0)) = f(0), donc

n−1∑
k=l

µkf
k+(n−l−1)(x0) = 0, donc µlf

n−1(x0) = 0, d’où µl = 0, ce qui est absurde : tous les coefficient µi sont nuls, la

famille est bien libre. (fk(x0))k∈[[0,n−1]] est une famille libre de n vecteurs dans E de dimension n, c’est une base de E.
Puisque f(fn−1(x0)) = fn(x0) = 0 et que, pour k ∈ [[2, n]], f(fn−k(x0)) = fn−(k−1)(x0)), la matrice de f dans la base
(fn−k(x0))k∈[[1,n]] (c’est la même que ci-dessus à l’ordre près) est A.

b) B est donc la matrice dont le coefficient de la ligne i et de la colonne j(1 ≤ i ≤ n, 1 ≤ j ≤ n) vaut i si j = i + 1 et 0
sinon. Puisque f

(
fn−1 (x0)

)
= fn (x0) = 0 et que, pour k ∈ [[2, n]], f

(
(k − 1)!fn−k (x0)

)
= (k − 1)

(
(k − 2)!fn−(k−1) (x0)

)
,

la matrice de f dans la base ((k − 1)!fn−k(x0))k∈[[1,n]] est B, donc A est semblable à B.

c) On remarque immédiatement que la matrice de D, dans la base canonique de Rn−1[X], est B, les sous-espaces stables de
B sont les mêmes, à un isomorphismes près, que ceux de D. Ce sont donc

Vect
(
fn−1 (x0)

)
,

Vect
(
fn−1 (x0) , f

n−2 (x0)
)
,

Vect
(
fn−1 (x0) , f

n−2 (x0) , 2f
n−3 (x0)

)
,

...
Vect

(
fn−1 (x0) , f

n−2 (x0) , 2f
n−3 (x0) , . . . , (n− k)!fk−1 (x0) , . . . , (n− 1)!x0

)
.
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Partie IV : Le cas où l’endomorphisme est nilpotent d’ordre 2

1)a) f (f (F2)) = {0} puisque f2 = 0, donc f (F2) ⊂ Ker f .
b) Soit F2 ∩ F1 ⊂ F2 ∩ Ker f = {0}, F2 ∩ F1 = {0}, la somme F1 + F2 est directe. Soit x = x1 + x2 où x1 ∈ F1 et
x2 ∈ F2, f(x) = f (x1) + f (x2) = 0 + f (x2) ∈ F1 car f (F2) ⊂ F1, F1 + F2 est stable.
c) Étant donné A,B,C trois sous-espaces vectoriels de E, établir l’inclusion (A ∩ C) + (B ∩ C) ⊂ (A+B) ∩ C.
A -t-on nécessairement l’égalité ? Soit a ∈ A ∩ C et b ∈ B ∩ C, alors a+ b ∈ A+B et a+ b ∈ C donc a+ b ∈ (A+ B) ∩ C.
L’inclusion en sens inverse est fausse comme le montre l’exemple de trois droites distinctes.

d) D’après l’inclusion précédente, (F1 ∩Ker f)+(F2 ∩Ker f) ⊂ (F1 + F2)∩Ker fF1+{0} ⊂ (F1 + F2)∩Ker fF1 ⊂ (F1 + F2)∩
Ker f . Soit x1 ∈ F1 et x2 ∈ F2 tels que x1+x2 ∈ (F1 + F2)∩Ker f , puisque x1 ∈ F1 ∈ (F1 + F2)∩Ker f , x2 = (x1 + x2)−x1 ∈
(F1 + F2) ∩Ker f ⊂ Ker f , ce qui entraîne x2 = 0, car F2 ∩Ker f = {0E}. Donc F1 = (F1 + F2) ∩Ker f .
2) Réciproquement on considère un sous-espace vectoriel F de E stable par f . On pose F1 = F ∩ Ker f et on considère
un sous-espace vectoriel F2 supplémentaire de F1 dans F . Vérifier l’inclusion f(F ) ⊂ Ker f et prouver que l’intersection
F2 ∩ Ker f est réduite au vecteur nul. On a encore f(f(F )) = {0} puisque f2 = 0, donc f(F ) ⊂ Ker f . Soit F2 ∩ Ker f =
(F2 ∩ F )∩Ker f = F2 ∩ (F ∩Ker f) = F2 ∩F1 = {0}, la somme F2 +Ker f est directe. 3◦ ) Dans cette question, on suppose
que l’entier n est égal à 4 (i.e. E = R4 ) et on considère l’endomorphisme h de E dont la matrice dans la base canonique

B = (e1, e2, e3, e4) de R4 est la matrice M =


1 1 0 0
0 1 0 0
0 0 2 1
0 0 0 2

 .

a) On a immédiatement M − Id =


0 1 0 0
0 0 0 0
0 0 1 1
0 0 0 1

 , (M − Id)2 =


0 0 0 0
0 0 0 0
0 0 1 2
0 0 0 1

 .

M − 2Id =


−1 1 0 0
0 −1 0 0
0 0 0 1
0 0 0 0

 , (M − 2Id)2 =


1 −2 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 .

(h− Id)2 (e1) = 0, (h− Id)2 (e2) = 0, (h− 2Id)2 (e3) = 0, (h− 2Id)2 (e4) = 0.

donc, puisqu’à voir leurs matrices, (h − Id)2 et (h − 2Id)2 sont de rang 2 , en utilisant le théorème du rang, G1 et G2 sont
de dimension 2,

G1 = Ker(h− Id)2 = Vect (e1, e2) , et G2 = Ker(h− Id)2 = Vect (e3, e4)

sont supplémentaires car {e1, e2} et {e3, e4} forment une partition de la base canonique. b) Montrer que les sous-espaces
vectoriels stables par h sont exactement les sommes H1 + H2 où H1 (resp. H2 ) est un sous-espace vectoriel de G1 (resp.
G2.) stable par h. Remarquons que G1 et G2 sont stables d’après I)3)b). Soit F stable, H1 = G1 ∩ F et H2 = G2 ∩ F sont
stables (comme intersection de sous-espaces stables). Puisque G1 ⊕G2 = E,H1 ⊕H2 = F .

c) Les droites stables de G1 sont les espaces propres de la restriction de f à G1, une seule droite stable Vect (e1). De
même, il n’y a qu’une droite stable dans G2,Vect (e3). Les sous-espaces stables de f sont obtenus en sommant ceux de
G1 : {0},Vect (e1) ,Vect (e1, e2), et ceux de G2 : {0},Vect (e3) ,Vect (e3, e4). En voici la liste classée par dimension :

— dimension 0 : {0} = Vect(∅),
— dimension 1 : Vect (e1) ,Vect (e2),
— dimension 2 : G1 = Vect (e1, e2) , G2 = Vect (e3, e4) ,Vect (e1, e3),
— dimension 3 : Vect (e1, e2, e3) ,Vect (e1, e3, e4),
— dimension 4 : Vect (e1, e2, e3, e4).

Partie V : Existence d’un plan stable par un endomorphisme

1) On note M un polynôme non nul à coefficients réels de plus bas degré annulant f . On observera que M n’est pas constant.
E étant de dimension n,L(E) est de dimension n2, la famille de n2 +1 vecteurs

(
fk
)
k∈[[0,n2]]

de L(E) est donc liée : il existe

une famille de réels, non tous nuls, (µk)k∈[[0,n2]] telle que
n2∑
k=0

µkf
k = 0, donc le polynôme, non nul,

n2∑
k=0

µkX
k annule f .

L’ensemble {d◦P où P ̸= 0 et P (f) = 0} est une partie non vide de N, qui possède un plus petit élément d, il existe donc
M , non nul, annulateur de f et de degré minimum d.

2)a) M =
d∑

k=0

akX
k est à coefficient réels, donc égal à son conjugué

d∑
k=0

akX
k,

M(z) =

d∑
k=0

akz
k =

d∑
k=0

akz
k =

d∑
k=0

akz
k = 0 = 0,
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donc z est aussi racine de M .
Puisque z ̸= z, le polynôme M est divisible par(X − z)(X − z) = X2 − 2Re(z)X + |z|2 = X2 + bX + c ∈ R[X].

b)On peut écrire la division euclidienne M =
(
X2 + bX + c

)
Q avec Q ∈ R[X] et de degré d − 2. Si f2 + bf + c IdE était

injectif, puisque E est de dimension finie, il serait bijectif et, de M(f) = 0, par composition par l’inverse
(
f2 + bf + c IdE

)−1,
on aurait Q(f) = 0, ce qui contredit la définition de d minimum : f2 + bf + c IdE n’est donc pas injectif.

c) Soit x ∈ Ker
(
f2 + bf + c IdE

)
, non nul, on a f2(x) = −bf(x)− ax. D’autre part, x n’est pas vecteur propre de f (sinon

le polynôme annulateur M aurait au moins sa valeur propre associée comme racine réelle), donc x et f(x) ne sont pas liés
et forment donc une base de F = Vect(x, f(x)). Pour y = λx + µf(x) ∈ F , f(y) = f(λx + µf(x)) = λf(x) + µf2(x) =
λf(x) + µ(−bf(x)− ax) ∈ F , F est un plan stable de f .

3)a) Puisque M est de degré minimum, (X − λ)p−1 n’annule pas f , ou, en se ramenant à g, gp = 0 et gp−1 ̸= 0, g est
nilpotent d’ordre p, en modifiant légèrement la solution de la question III)2)a) (ici on n’a pas p = n ), on prouve qu’il existe
un vecteur x de E tel que la famille

(
x, g(x), . . . , gp−1(x)

)
est libre.

b) En déduire qu’il existe un plan de E stable par f . Dans la question précédente, p ≥ 2, donc on peut considérer le plan
F = Vect

(
gp−2(x), gp−1(x)

)
, manifestement stable par g (gp(x) = 0), donc stable par f( question I )4) a) ).

4) Pour cette question il fallait supposer que dim(E) > 1.
Supposons donc dim(E) > 1. Montrons que si λ est racine de M , elle est valeur propre de f . Dans ce cas, M = (X−λ)Q avec
Q ∈ R[X] de degré d− 1, f − λIdE ne peut être injectif, puisque E est de dimension finie, il serait bijectif et, de M(f) = 0,
par composition par l’inverse (f − λ IdE)

−1, on aurait Q(f) = 0, ce qui contredit la définition de d minimum. f −λIdE n’est
pas injectif et λ est valeur propre de f .
•Quatre cas :
•M possède au moins une racine complexe non réelle. D’après 2 ), f admet un plan stable (le fait que M n’ait pas de racines
réelles ne sert à rien dans la démonstration de 2 )).
•M possède au moins deux racines réelles, λ1 et λ2. Ce sont des valeurs propres de f et si l’on considère e1 et e2 vecteurs
propres associés, Vect (e1, e2) est un plan stable par f .
•M ne possède qu’une seule racine réelle et pas de racine complexe non réelle, λ. Puisque M n’est pas constant il est de la
forme
• soit M = a(X − λ), alors a(f − λId) = 0, f est l’homothétie λId et puisque E est de dimension supérieure ou égale à 2 ,
tous les plans de E sont stables.
• soit M = a(X − λ)p, avec p ≥ 2, d’après la question précédente, il existe un plan stable par f .
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