Proposition de corrigé pour le DL 5

Partie I
1. On donne trois méthodes, qui sont toutes valables :
p
eUne premiére méthode: Si A = (xjj)1<ij<p alors dy(A) = > (o) [T (Mg o) —
ce6, k=1

Tro(ky) 1l en découle que d4(A) est une fonction polynomiale des coordonnées x;
de A dans la base canonique (Ej;)1<; <, de M, (K), par suite d4 est continue.
eUne deuxiéme méthode: d)(A) = det((g + h)(A)) avec g(A) = A, et h(A) =
—A, pour tout A € M, (K). Les applications g et h sont continues car g est constante
et h linéaire entre espaces vectoriels de dimensions finies, donc g + h est continue et
par composition et la continuité de det, ’application d) est continue.

eUne troisiéme méthode: Posons f(A) = A, — A, pour toute A € M, (K), alors
pour toutes A, B € M,(K),ona || f(A)—f(B)| = |A—B||, donc f est lipschitzienne
donc continue et comme det est continue dy = det of est continue.

2. a) Par définition de L;, on a L;(\;) = 0, pour tout j € [0,p]\{¢}, donc L;
admet au moins p racines deux a deux distinctes et comme L; € K,[X], il existe une
constante C; tel que L; = C; 12[ (X —Xg);or Li(\) =1, donc C; ﬁ (Ni—Ak) =1et
(=3 (=%
C; = ﬁ —— et finalement, L; = ﬁ XN Soit (o) une famille de scalaires
7 — N—\g? y 41 — Nk k)O<k<p
J

i liti
p
tel que > ay Ly = 0. Pour tout i € [0, p], en appliquant a I’élément \; et en tenant
k=0

compte de Li(\i) = Ok, on obtient o; = 0. La famille (Lg, L1, ..., L,) est donc
libre. Comme dim(K,[X]) = p+ 1, c’est une base de K,[X].

b) Avant tout, remarquons que si P € K,[X] et (a4) la famille des coordonnées
p

de P relativement a la base (Lj) alors P = > ayLi(X), et en appliquant a A;

k=0
a X, on obtient a; = P(\;) et donc P = >  P(\¢)Lr(X), en particulier, on a :
k=0
P P
Xa =2, XaAe) L = > dy,(A) L.
k=0 k=0
c) Les fonctions composantes de x dans la base (Lo, Ly, - - - , L,) de K,[X] sont donc

p
les applications dg4,, elles sont continues donc xy = > d), Ly est continue.
k=0



3. a) la suite (A4,), converge vers 0 donc par continuité de l'application x, la suite
(x(Ay))n converge vers x(0) = xo = X?. Comme toute matrice A, est semblable a
A, alors pour tout n € N, y(A,) = x(A) = xa, donc x4 = XP. Par le théoréme de
Cayley-Hamilton, A? = 0. A est donc nilpotente.

b) Si A est nilpotente, alors le polynéme caractéristique de A est y4 = XP. Comme
X4 est scindé, la matrice A est trigonalisable. Si on note D, T'D,;' = (8;;(n))1<ij<p
alors pour tout (z,7) € [1,p]? on a B;;(n) =n'7Ja;;. On a B;;(n) =0sii > j car
a; j = 0 puisque 7" est triangulaire supérieure, par ailleurs comme A est nilpotente
T aussi est nilpotente donc «;; = 0 pour tout i € [1,p], donc f;j(n) = 0 pour

i > j, comme pour ¢ < j,ona lim n'/=0,ona lim f;(n)=0.Ainsion a :
n—+00 n—4oo

Vi, j € [1,p] 1—1>I—Poo Bii(n) =0, donc lim D,TDn~! = 0 et par suite si on pose

"n n—-+00
A, = D, TD,' la suite (A4,) est une suite de matrices nilpotentes semblables a A

de limite 0 quand n tend vers +oo.

c) Puisque p > 2, il existe une marice de M, (K) nilpotente et non nulle, par exemple

A = E;,. La question précédente assure 'existence d’une suite (A,), de matrices

semblables & A qui converge vers 0. On a Vn € N, ||A,| = ||A]| et lirf | ALl =0,
n—-+0oo

donc [|A]| = 0 soit A = 0, or A # 0, c’est absurde, donc une telle norme n’existe
pas.

Partie 11

Rappelons que si (B,),, est une suite de polynomes de K,[X], et si pour tout n € N,

p

on pose P, = > a, ;X" alors la suite (ay,) est la k éme composante de (P,)
k=0

relativement a la base canonique (1, X, X2, ..., X?) de K,[X], on sait alors que

la suite (P,), converge si et seulement si pour chaque k € [0,p], la suite (agn)n
converge et que si c’est le cas, on a :
P
: _ : k
Jim P= 3 (o) X
k=0
1. Soit une suite (P,), d’éléments de U,(C) qui converge dans K,[X] vers un poly-
nome P. Alors pour tout k € [0, p] la suite formée des coéflicients des polynomes
P, selon X*, converge vers le coéfficient du méme terme de P. Les polynémes P,
étant tous unitaires de degré p, on voit en particulier que P est unitaire de degré p.

Comme tout polynome de C[X] est scindé, P est scindé. Alors P € U,(C). U,(C)
est ainsi un fermé.



2. P un polynoéme unitaire de K,[X] et a une racine de P. Posons P = X% +
k-1

a1 X 4o+ o X +ag. ott k < p Notons que : ||P|| =1+ |l
i=0

e Si |a| <1 alors |a] < ||PH
- ‘ k-1
oSila| >1 a* = — Z a;a’ donne : |alf < 3 |aillal’ < lal*t Y |y et comme
1—0 =0 =0

a # 0 alors : |a| < Z || < || Pl
i=0

3. a) Il suffit de prendre une suite (X,,),, telle que Xy, = (1, —1) et X941 = (—1,1).
On aura pour tout n € N, P, = X2—1, la suite (P,),, est constante donc convergente,
mais (X)), est clairement divergente.

b) Pour n € N, posons P, = (X—TH)(X—m) donc P, = X? — (—+—)X+

n+l n—+2

m. Les polyndmes P, sont tous scindés a racines simples, mais la suite (P,),,

converge vers P = X? scindé sans qu'il soit & racines simples.

c¢) D’apres la question II-2), pour tout n € Net tout k € [1,p], on a |zi,| < || Pl et
par suite || X, |[occ < [|Py]]. Comme la suite (F,),, est convergente, alors elle est bornée
et donc la suite (X,,), est bornée. D’aprés le théoréme de Bolzano- Weierstrass, la
suite (X,,),, admet au moins une valeurs d’adhérence qu’ on note Y = (y1, 42, -+ , Yp)-

d) Comme Y est une valeur d’adhérence de (X,,),, il existe une sous-suite (Xy))n
de (X,), qui converge vers Y. Pour tout k € [1,p], (74 pm))n converge vers yj.
Posons

P p—1
II ——xzn )(p%—zijakm)(k
=1 k=0
et
p p—1
Q=]](X—w)=X"+) bXx"
i=1 k=0

On a les relations suivantes entre coefficients et racines d'un polynéme scindé : Pour
tout k € [1, pl]

( k
a/pfkvn - (_1) Z xil»nIiQan e xzkan
1<iy << <p

bp—k — (_1)k Z YiiYiy * = Yiy,

1< < —<ip<p

On déduit que pour tout k € [1,p], la suite (ap_k,@(n))n converge vers b,_i. Alors

p
(Pga(n))n converge vers @, et par unicité de la limite, on a: P =Q =[] (X — ;)

1=1



e) On a considéré une suite convergente quelconque d’éléments de U,(R) et on a
montré que sa limite est dans U,(R). Alors U,(R) est un fermé.

4. Par continuité de l'application x, la suite (x(A,)), converge vers y(A). Les po-
lynomes x4, sont dans U,(K). U,(K) étant fermé, la limite x4 est dans U,(K). En
particulier y 4 est scindé et donc A est trigonalisable.

5. Soit A une matrice diagonalisable. Soit 7' une matrice triangulaire supérieure
d’éléments diagonaux A1, Ag - - - A, non forcément deux a deux distincts, semblable a
A. Et soit P inversible telle que A = PTP~!. On définit la constante k comme suit :

. %g? AN s card(Sp(4)) > 1
1 si card(Sp(4)) =1

et pour tout n € N*, on note :

On voit que k£ > 0 et T}, est une matrice triangulaire supérieure dont les coéfficients
diagonaux sont les scalaires p; = \; + % Soit alors (4, j) € [1,p]? tel que i # j.

e Si N\, = A; alors p; # 1 puisque 7 # j.

e Si\; # A\ alors p;—pj = )\i—)\j+§(z’—j). comme k|i—j| < |A; — A;| par définition
de k alors £|i — j| < |\; — Aj| et donc g; — pi; # 0. Ainsi la matrice T, admet p
valeurs propres deux & deux distinctes, elle est donc diagonalisable. La suite (77,),,
converge en outre vers 1. Par continuité de l'application linéaire M — PM P!,
la suite (PT,P~') converge vers PTP~! = A, les matrices PT,P~! étant toutes
diagonalisables.

6. Toute matrice de M,(C) est trigonalisable, et d’aprés la question précédente
toute matrice trigonalisable est la limite d’une suite de matrices diagonalisables.
Alors D,(C) est dense dans M,,(C).

D’aprés la question II-4., la limite d’une suite de matrices diagonalisables est une
matrice trigonalisable. Donc D,(R) C 7,(R), ot 7,(R) est 'ensemble des matrices
trigonalisables de M, (R). Réciproquement, d’aprés la question II-5, tout élément
de 7,(R) est la limite d’une suite d’éléments de D,(R). Donc T,(R) C D,(R). Ainsi

Dp(R) = Tp(R).

7. a. Supposons que A est diagonalisable et soient puq, po, - - - , f, ses valeurs propres
deux a deux distinctes de multiplicités respectives aq, o, -+ , ;. En considérant
m

une matrice diagonale semblable & A on voit que x4 = [] (X — ug)™. Comme A
k=1



m
est diagonalisable, on a K = @ ker(A — uxl,) et par le lemme de décomposition
k=1

des noyauz, P = [] (X — u) est un polynome annulateur de A, et comme P divise
k=1
X4, il existe un polynome @ tel que x4 = QP, donc xa(A) = Q(A)P(A) =0, donc

finalement y 4(A) = 0, ce qui établit le théoréme de Cayley-Hamilton.
b. Soit A une matrice trigonalisable. D’aprés la question II-5. il existe une suite de
matrices diagonalisables (A,), qui converge vers A. Posons pour tout n € N :
XA, = XP + ap—l,n)(pi1 + - al,nX + ag.n
et
X4 =X+ b1 XV 4+ b1 X + by

Par continuité de I'application x, (x4, ),, converge vers x 4 donc pour tout k& € [0,p—

1], la suite (ay), converge vers by. Puisque (A,), converge vers A alors pour tout

k € [0,p], (Aﬁ)n converge vers A¥ (continuité de lapplication M s M* M € MP(K))
A, est diagonalisable donc x 4, (A,) = 0 d’aprés la question précédente. Par passage

a la limite quand n tend vers l'infini il vient :

Aﬁ + ap—l,nAﬁ_l + e+ al,nAn + aO,nIp =0

Donc :
Xa(A) = AP + b, (AP o A+ b, =0

Partie II1
1. Sir = palors £, (K) = M, (K) et c’est donc un fermé de M, (K).

2. = On suppose que rg(v) < r, alors toute famille de vecteurs (v (1) ,v (x2),- -+, v (z,))

de Im(v) est liée.

e <= Par contrapposée, supposons que rg(v) > r, il existe donc une famille (v(z1), v(z2), -, v(
de vecteurs de Im v qui est libre. Forcément (x1,xs,- -+, x,) est libre.

3. Commencons par la remarque suivante Si b = (b;) est une base de K? et si pour
tout endomorphisme u, on pose ||ul|y = Z |u(bg)|| alors ||.]|p est une norme sur K?
et pour tout k € [1,p], on a ||u(eg)|| < Hqu

a) On adopte la norme ||.||. associée a la base e = (e;) de I'énoncé. Soit k € [1,p],
alors : |lup(er) — uler)| = |[(un — w)(er)|| < ||un — u|le. Puisque [ju, — ul|, — 0
alors u, (er) — u (eg).



b) La famille (u, (e1) ,u, (€2) -+ ,uy, (e,41) est liée puisque rg u,, < r. Donc il existe
r+1
des scalaires non tous nuls i1, fto.n, - - -, frt1.n tels que > pg nuy (ex) = 0. On pose

=1
r+1 r+1
alors oo = Y |pugn| €t pour tout k € [1,7 4 1], App = 22, done Y- Ay pup (ex) =0
=1 =1
r+1

et Z ‘)\k,n‘ =1.

k=1
c) La suite (A1, A2, -+, Argin),, st bornée puisque la norme ( ||.|[; ) de chacun
des ses termes vaut 1 . D’aprés le théoreme de Bolzano- Weierstrass, elle admet donc
au moins une valeur d’adhérence, qu’on note (fi1, o, =« , flrs1)-

d) Soit ()\1780(”), A2, o(n)s " " ,)\Hl’@(n))n une suite extraite de (A, Aoy, 5 Argim),,
qui converge vers (pi1, {2, - - - , f4r+1). Pour chaque k la suite (/\km(n))n CONVerge Vvers

pur.. La suite extraite (uy(m (er)), converge vers u (e;) d’apres la question III-3-a).
r+1 r+1
Quand n tends vers I'infini dans les égalités kzl N ep(n)Uo(n) (€) = 0 et kz:l ‘)\k’sp(n)| =
r+1 r+1

1, on obtient > pru(ex) =0et Y |ug] =1

k=1 k=1
Déduction : On a montré que pour toute famille (eq, e, -+, e,.41) de vecteurs KP,
(u(er),u(es), - ,u(e41)) est lite. Donc rg (u) < r.

e) C’est une conséquence immédiate de la caractérisation séquentielle de la fermeture
d’une partie d’un espace vectoriel normé.

4. Sir > 0, alors rg(A) < r si et seulement sirg(A) < r — 1, U'ensemble des
matrices de rang inférieur strictement a r est donc I,_1, c’est un fermé. S,(K) =
M,(K)\Z,(K), c’est donc un ouvert.

Partie IV

1. a) Soit k € [1,m], alors A\ est une valeur propre de A, et puisque A est diago-
nalisable, 'ordre de multiplicité «; de A, vaut la dimension du sous-espace propre
associé a A, donc par le théoréme du rang, on a rg (A — A\,l,) = p— . Soit n € N,
les matrices A et A,, sont semblables donc il existe une matrice inversible @), tel que
A, = Q,AQ, 1, par suite A, — I, = Q,(A — 1,)Q,}, donc A, — I, et A — I, sont
semblables et compte tenu de la relation ci-dessus, on a rg (A, — Axlp) =D — .

b) D’aprés la partie ITI, la partie .#,_,, (C) est un fermé et comme (A, — Ai1p), est
une suite d’élément de .#,_,, (C) qui converge vers B — A1, cette derniére matrice
est un élément de .#,_, (C), donc rg (B — \¢l,) < p — ay.

c) On a pour tout k € [1,m],dimker(B — A\I,) > a; > 0 donc A, est une



m
valeur propre de B. De plus A est diagonalisable donc Y o = p et on a donc
k=1

> dim(ker(B — A\z1p,)) > p, alors ) dim(ker(B — A1) = p. Ce qui signifie que B
k=1 k=1
est diagonalisable et elle a les mémes valeurs propres que A, avec les mémes multi-

plicités. A et B sont donc semblables & une méme matrice diagonale, elles sont donc
semblables.

d) Ce qui précéde démontre que A est un fermé.

2. a) (A,), converge vers B, donc (x4, ), converge vers xp. Comme les matrices 4,
sont semblables & A alors x4, = x4 pour tout n € N. Ainsi x5 = xa.

b) Soit k € [1,p]. Pour une matrice quelconque M € M,(C), les coéfficients de
MP¥ sont des fonctions polynomiales des coéfficients de M, ce qui signifie que les
applications composantes de I'application W) : M —— MP* dans la base canonique
de M, (C) sont des fonctions polynomiales des coordonnées de M, elles sont donc
continues et par suite Wy est elle méme continue. L’application 7 : M —— m4(M)
est une combinaison linéaire des applications Wi, elle est donc continue.

c) 7 est continue et (A,), converge vers B donc (m4 (Ay)), converge vers ma(B).
Pour tout n € N, A,, est semblable & A, soit P, une matrice inversible telle que A,, =
P,AP; 1. On a alors ma (A,) = Poma(A)P; 1 = 0. On en déduit que ma(B) = 0.
A est diagonalisable donc son polynome minimal 74 est scindé a racines simples.
Comme 74 est un polyndéme annulateur de B alors B est diagonalisable.

d) x4 = xp donc A et B ont les mémes valeurs propres avec les mémes multiplicités.
A et B sont en plus diagonalisables donc elles vont étre semblables & une méme
matrice diagonale. Elles sont donc semblables ie B € A.

3. a) A € M,(C), donc elle est trigonalisable, d’ott I'existence de la matrice 7. En
outre T' ne peut étre diagonalisable, sinon A serait diagonalisable.

b) Posons T' = (o ), ; et D, TD; ! = (ﬁ(n))_ . On a alors

i )

(n) A . o(n) S m 1 o '
B —ozi7j—0s1z>],5? =q;jsii=jet BZZL = 5%y sli <.

1, 2

On voit ainsi que la suite (DnT D 1)n converge vers la matrice diagonale D =
diag (C“Lh 2,2, 70‘1%10)'

c) (DnTDgl)n est une suite d’éléments de A, mais sa limite D n’est pas dans A car
sinon A serait diagonalisable. Donc A n’est pas un fermé.

Partie V

7



1. On a I, € €(A) en méme temps cela donne €(A) # (. Si My, My € €(A) et
A€ Kona M +AMs; € €(A) et MiMs € €(A) (facile & démontrer pour M +AMo.
Pour MlMg, on a (MlMg)A = Ml(MQA) = Ml(AMQ) = (MlA)Mg = (AMl)MQ =
A(M;Ms,).) 11 en résulte que € (A) est une sous-algebre de M, (K).

2. a) Posons D = diag(A1, A, -+, A\y) et soit M = (a;;)i<ij<p € Mp(K) une
matrice qui commute avec D, donc DM — MD = 0, oo DM — MD = ((\; —
Aj)ai j)i<ij<p, donc pour tout 4,5 € [1,p], on a (A\; — Aj)a;; = 0. Si i # j alors
Ai # Aj et donc a; ; = 0. Alors M est une matrice diagonale.

b) On suppose que A est diagonalisable & valeurs propres deux a deux distinctes.

Soit une matrice diagonale D = diag(A1, A2, -+, Ap) et une matrice inversible P
telle que A = PDP~1. Soit M € M,(K). On a :

Me€(A) & AM=MA

& D(P'MP)=(P'MP)D

& P 'MPc¥(D)
Donc €(A) = P€(D)P~t. L’application M +~ PMP~! étant un automorphisme
de M, (K), on a donc dim(%(A)) = dim(€¢' (D)) = p
3. a) Remarquons que I'application

¢ M,(K) — L(M,(K)), M — Oy

est linéaire. M, (K) étant de dimension finie, ® est donc continue. Alors (®y, ),

converge vers P 4.

b) D’apres la question V-2), on peut dire que pour tout n € N, on a dim(ker(®4,)) =
dim(%(A,)) = p, donc rg (P4,) = p? — p. D’apres la question ITI-3). Pensemble
des endomorphismes de M,(K) de rang < p? — p est un fermé. Puisque ($4,),

converge vers ®4 et rg &4 = p? — p pour tout n, alors rg &4 < p? — p. Ainsi
dim(%'(A)) = dim(ker(®4)) > p.

Partie VI

Dans cette partie on va confondre entre vecteurs de M, ;(K) et ceux K?

p
1. Supposons que > Y;V," = 0 et posons pour tout & € [1,p], Vi = (Y16, Y25 -+ > Ypik)-
k=1

ViV + Y5lV, + - -7-—|— Y,'V}, est une matrice carrée d’ordre p dont la i “° ligne est
p p

le vecteur > y;xV,'. On a donc pour tout i € [1,p], > v:xV,' = 0. La famille
k=1 k=1



(V1, Va,---,V,) est libre donc pour tout i € [1,p],yi1 = vi2 = --- = yip = 0. Alnsi
K:-YQZ.-.:-YPZO'

2. Soit (aiy)1<i,j<p une famille de scalaires tel que : 7 a;;U;V;" = 0. On alors
1<ij<p

PP
2:1(221 ocZ-J-UZ-)VjT = 0. et d’aprés la question précédente, la famille (Vi, Vs, .-+, V})
j=1 i=

étant libre, il en est de méme de la famille (V,", V', - ,V;)T), par suite, pour tout

P
Jj € [1,p], ona > a;;U; =0, et comme la famille (U, Uy, --- ,U,) est libre alors
i=1

a1 = Qo = --- =, = 0, et ceci pour tout j € [1,p]. Alors la famille (Ui‘/}T)iJ
est libre, et puisque dim(M,(K)) = p?, c’est une base de M, (K)).

3. x4 = xa7 donc A et AT ont les mes valeurs propres et avec les mémes multiplicités.
A est diagonalisable, soit donc P, un polynome annulateur de A scindé a racines
simples. En explicitant P(A) on voit que P(AT) = (P(A))T = 0. Donc A" est
diagonalisable.

4. ) PA(U;V5T) = AUiV}T — UiVjTA. Puisque ATV; = \;V; alors V}TA = )\jVjT et
donc (I)A(UZV?T) = ()\z - )\j)UZ‘/]T

b) D’aprés la question VI-2), (U;V;'); est une base de M, (K), la question préce-
dente indique qu’elle est formée de vecteurs propres de ® 4. Alors ® 4 est diagonali-
sable et ses valeurs propres sont les scalaires \; — \; ou (i, j) € [1,p]*

5. dim(ker(®,)) est le nombre de vecteurs de la base de diagonalisation (Uit‘/})ij tels
que 4 (U;'V;) = 0, c’est donc le cardinal de I'ensemble :

C = {(i,7) € [L,p]*/ X = A;}

Soit A une valeur propre de A et soit a sa multiplicité. Il y’a o couple (i, 5) € [1, p]*
tels que A; = A; = A. On peut dire que a = dim(E)(A)), donc, si ag, g, -, auy
désignent les dimensions des sous espaces propres de A, alors :

2

dim(€(A)) = dim(ker(®4)) = card(C) = Z o?

m
6. A est diagonalisable donc Y a; = p, puisque a? > a; pour tout 7 alors dim(%€'(A) >
i=1

m m

p). Remarquons que > a? = Y q; si et seulement si a;; = 1 pour tout i. Ceci signifie
i=1 i=1

que dans le cas ot A est diagonalisable, dim(%’(A)) = p si et seulement si A admet

p valeurs propres deux a deux distinctes.



