
Proposition de corrigé pour le DL 5

Partie I

1. On donne trois méthodes, qui sont toutes valables :

• Une première méthode: Si A = (xij)1≤i,j≤p alors dλ(A) =
∑

σ∈Sn

ε(σ)
p∏

k=1

(λδk,σ(k)−

xk,σ(k)). Il en découle que dA(A) est une fonction polynomiale des coordonnées xi,j
de A dans la base canonique (Eij)1≤i,j≤p de Mp(K), par suite dA est continue.
• Une deuxième méthode: dλ(A) = det((g + h)(A)) avec g(A) = λIp et h(A) =
−A, pour tout A ∈ Mp(K). Les applications g et h sont continues car g est constante
et h linéaire entre espaces vectoriels de dimensions finies, donc g+ h est continue et
par composition et la continuité de det, l’application dλ est continue.
• Une troisième méthode: Posons f(A) = λIp−A, pour toute A ∈ Mp(K), alors
pour toutes A,B ∈ Mp(K), on a ∥f(A)−f(B)∥ = ∥A−B∥, donc f est lipschitzienne
donc continue et comme det est continue dλ = det ◦f est continue.
2. a) Par définition de Li, on a Li(λj) = 0, pour tout j ∈ [[0, p]]\{i}, donc Li

admet au moins p racines deux à deux distinctes et comme Li ∈ Kp[X], il existe une

constante Ci tel que Li = Ci

p∏
k=0
k ̸=i

(X−λk) ; or Li(λi) = 1, donc Ci

p∏
k=0
k ̸=i

(λi−λk) = 1 et

Ci =
p∏

k=0
k ̸=i

1
λi−λk

, et finalement, Li =
p∏

k=0
k ̸=i

X−λk

λi−λk
. Soit (αk)0≤k≤p une famille de scalaires

tel que
p∑

k=0

αkLk = 0. Pour tout i ∈ [[0, p]], en appliquant à l’élément λi et en tenant

compte de Lk(λi) = δk,i, on obtient αi = 0. La famille (L0, L1, . . . , Lp) est donc
libre. Comme dim(Kp[X]) = p+ 1, c’est une base de Kp[X].
b) Avant tout, remarquons que si P ∈ Kp[X] et (αk) la famille des coordonnées

de P relativement à la base (Lk) alors P =
p∑

k=0

αkLk(X), et en appliquant à λi

à X, on obtient αi = P (λi) et donc P =
p∑

k=0

P (λk)Lk(X), en particulier, on a :

χA =
p∑

k=0

χA (λk)Lk =
p∑

k=0

dλk
(A)Lk.

c) Les fonctions composantes de χ dans la base (L0, L1, · · · , Lp) de Kp[X] sont donc

les applications dAk
, elles sont continues donc χ =

p∑
k=0

dλk
Lk est continue.
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3. a) la suite (An)n converge vers 0 donc par continuité de l’application χ, la suite
(χ(An))n converge vers χ(0) = χ0 = Xp. Comme toute matrice An est semblable à
A, alors pour tout n ∈ N, χ(An) = χ(A) = χA, donc χA = Xp. Par le théorème de
Cayley-Hamilton, Ap = 0. A est donc nilpotente.

b) Si A est nilpotente, alors le polynôme caractéristique de A est χA = Xp. Comme
χA est scindé, la matrice A est trigonalisable. Si on note DnTD

−1
n = (βi,j(n))1≤i,j≤p

alors pour tout (i, j) ∈ [[1, p]]2, on a βi,j(n) = ni−jαi,j. On a βi,j(n) = 0 si i > j car
αi,j = 0 puisque T est triangulaire supérieure, par ailleurs comme A est nilpotente
T aussi est nilpotente donc αi,i = 0 pour tout i ∈ [[1, p]], donc βi,j(n) = 0 pour
i ≥ j, comme pour i < j, on a lim

n→+∞
ni−j = 0, on a lim

n→+∞
βi,j(n) = 0. Ainsi on a :

∀i, j ∈ [[1, p]], lim
n→+∞

βi,j(n) = 0, donc lim
n→+∞

DnTDn−1 = 0 et par suite si on pose

An = DnTD
−1
n , la suite (An) est une suite de matrices nilpotentes semblables à A

de limite 0 quand n tend vers +∞.

c) Puisque p ≥ 2, il existe une marice de Mp(K) nilpotente et non nulle, par exemple
A = E1,p. La question précédente assure l’existence d’une suite (An)n de matrices
semblables à A qui converge vers 0. On a ∀n ∈ N, ∥An∥ = ∥A∥ et lim

n→+∞
∥An∥ = 0,

donc ∥A∥ = 0 soit A = 0, or A ̸= 0, c’est absurde, donc une telle norme n’existe
pas.

Partie II

Rappelons que si (Pn)n est une suite de polynômes de Kp[X], et si pour tout n ∈ N,

on pose Pn =
p∑

k=0

ap,kX
k alors la suite (ak,n) est la k ème composante de (Pn)

relativement à la base canonique (1, X,X2, . . . , Xp) de Kp[X], on sait alors que
la suite (Pn)n converge si et seulement si pour chaque k ∈ [[0, p]], la suite (ak,n)n
converge et que si c’est le cas, on a :

lim
n→+∞

Pn =

p∑
k=0

(
lim

n→+∞
ak,n

)
Xk

1. Soit une suite (Pn)n d’éléments de Up(C) qui converge dans Kp[X] vers un poly-
nôme P . Alors pour tout k ∈ [[0, p]] la suite formée des coéfficients des polynômes
Pn selon Xk, converge vers le coéfficient du même terme de P . Les polynômes Pn

étant tous unitaires de degré p, on voit en particulier que P est unitaire de degré p.
Comme tout polynôme de C[X] est scindé, P est scindé. Alors P ∈ Up(C). Up(C)
est ainsi un fermé.
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2. P un polynôme unitaire de Kp[X] et a une racine de P . Posons P = Xk +

αk−1X
k−1 + · · ·+ α1X + α0. où k ⩽ p Notons que : ∥P∥ = 1 +

k−1∑
i=0

|αi|.

• Si |a| ⩽ 1 alors |a| ⩽ ∥P∥.

• Si |a| > 1 ak = −
k−1∑
i=0

αia
i donne : |a|k ⩽

k−1∑
i=0

|αi| |a|i ⩽ |a|k−1
k−1∑
i=0

|αi| et comme

a ̸= 0 alors : |a| ⩽
k−1∑
i=0

|αi| ⩽ ∥P∥

3. a) Il suffit de prendre une suite (Xn)n telle que X2n = (1,−1) et X2n+1 = (−1, 1).
On aura pour tout n ∈ N, Pn = X2−1, la suite (Pn)n est constante donc convergente,
mais (Xn)n est clairement divergente.

b) Pour n ∈ N, posons Pn = (X− 1
n+1)(X− 1

n+2), donc Pn = X2−
(

1
n+1 +

1
n+2

)
X+

1
(n+1)(n+2) . Les polynômes Pn sont tous scindés à racines simples, mais la suite (Pn)n
converge vers P = X2 scindé sans qu’il soit à racines simples.

c) D’après la question II-2), pour tout n ∈ N et tout k ∈ [[1, p]], on a |xk,n| ≤ ∥Pn∥, et
par suite ∥Xn∥∞ ≤ ∥Pn∥. Comme la suite (Pn)n est convergente, alors elle est bornée
et donc la suite (Xn)n est bornée. D’après le théorème de Bolzano-Weierstrass, la
suite (Xn)n admet au moins une valeurs d’adhérence qu’ on note Y = (y1, y2, · · · , yp).
d) Comme Y est une valeur d’adhérence de (Xn)n, il existe une sous-suite (Xφ(n))n
de (Xn)n qui converge vers Y . Pour tout k ∈ [[1, p]], (xk,φ(n))n converge vers yk.
Posons

Pn =

p∏
i=1

(X − xi,n) = Xp +

p−1∑
k=0

ak,nX
k

et

Q =

p∏
i=1

(X − yi) = Xp +

p−1∑
k=0

bkX
k.

On a les relations suivantes entre coefficients et racines d’un polynôme scindé : Pour
tout k ∈ [[1, p]] 

ap−k,n = (−1)k
∑

1≤i1<···<ik≤p

xi1,nxi2,n · · · xik,n

bp−k = (−1)k
∑

1⩽i1<···<ik⩽p

yi1yi2 · · · yik

On déduit que pour tout k ∈ [[1, p]], la suite
(
ap−k,φ(n)

)
n

converge vers bp−k. Alors(
Pφ(n)

)
n

converge vers Q, et par unicité de la limite, on a : P = Q =
p∏

i=1

(X − yi)
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e) On a considéré une suite convergente quelconque d’éléments de Up(R) et on a
montré que sa limite est dans Up(R). Alors Up(R) est un fermé.

4. Par continuité de l’application χ, la suite (χ(An))n converge vers χ(A). Les po-
lynômes χAn

sont dans Up(K). Up(K) étant fermé, la limite χA est dans Up(K). En
particulier χA est scindé et donc A est trigonalisable.

5. Soit A une matrice diagonalisable. Soit T une matrice triangulaire supérieure
d’éléments diagonaux λ1, λ2 · · ·λp non forcément deux à deux distincts, semblable à
A. Et soit P inversible telle que A = PTP−1. On définit la constante k comme suit :

k =

 1
2 min
λi ̸=λj

∣∣∣λi−λj

i−j

∣∣∣ si card(Sp(A)) > 1

1 si card(Sp(A)) = 1

et pour tout n ∈ N∗, on note :

Tn = T + diag

(
k

n
,
2k

n
, · · · , pk

n

)
On voit que k > 0 et Tn est une matrice triangulaire supérieure dont les coéfficients
diagonaux sont les scalaires µi = λi +

ik
n . Soit alors (i, j) ∈ [[1, p]]2 tel que i ̸= j.

• Si λi = λj alors µi ̸= µj puisque i ̸= j.
• Si λi ̸= λj alors µi−µj = λi−λj+

k
n(i−j). comme k|i−j| < |λi − λj| par définition

de k alors k
n|i − j| < |λi − λj| et donc µi − µj ̸= 0. Ainsi la matrice Tn admet p

valeurs propres deux à deux distinctes, elle est donc diagonalisable. La suite (Tn)n
converge en outre vers T . Par continuité de l’application linéaire M 7−→ PMP−1,
la suite

(
PTnP

−1
)
n

converge vers PTP−1 = A, les matrices PTnP
−1 étant toutes

diagonalisables.

6. Toute matrice de Mp(C) est trigonalisable, et d’après la question précédente
toute matrice trigonalisable est la limite d’une suite de matrices diagonalisables.
Alors Dp(C) est dense dans Mp(C).
D’après la question II-4., la limite d’une suite de matrices diagonalisables est une
matrice trigonalisable. Donc Dp(R) ⊂ Tp(R), où Tp(R) est l’ensemble des matrices
trigonalisables de Mp(R). Réciproquement, d’après la question II-5, tout élément
de Tp(R) est la limite d’une suite d’éléments de Dp(R). Donc Tp(R) ⊂ Dp(R). Ainsi
Dp(R) = Tp(R).
7. a. Supposons que A est diagonalisable et soient µ1, µ2, · · · , µm ses valeurs propres
deux à deux distinctes de multiplicités respectives α1, α2, · · · , αm. En considérant

une matrice diagonale semblable à A on voit que χA =
m∏
k=1

(X − µk)
αk . Comme A
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est diagonalisable, on a Kp =
m⊕
k=1

ker(A − µkIp) et par le lemme de décomposition

des noyaux, P =
m∏
k=1

(X − µk) est un polynôme annulateur de A, et comme P divise

χA, il existe un polynôme Q tel que χA = QP , donc χA(A) = Q(A)P (A) = 0, donc
finalement χA(A) = 0, ce qui établit le théorème de Cayley-Hamilton.

b. Soit A une matrice trigonalisable. D’aprés la question II-5. il existe une suite de
matrices diagonalisables (An)n qui converge vers A. Posons pour tout n ∈ N :

χAn
= Xp + ap−1,nX

p−1 + · · · a1,nX + a0,n

et
χA = Xp + bp−1X

p−1 + · · ·+ b1X + b0.

Par continuité de l’application χ, (χAn
)n converge vers χA donc pour tout k ∈ [[0, p−

1]], la suite (ak,n)n converge vers bk. Puisque (An)n converge vers A alors pour tout
k ∈ [[0, p]],

(
Ak

n

)
n

converge vers Ak (continuité de l’application M 7−→ Mk,M ∈ Mp(K)
)

An est diagonalisable donc χAn
(An) = 0 d’après la question précédente. Par passage

à la limite quand n tend vers l’infini il vient :

Ap
n + ap−1,nA

p−1
n + · · ·+ a1,nAn + a0,nIp = 0

Donc :
χA(A) = Ap + bp−1A

p−1 + · · ·+ b1A+ b0Ip = 0

Partie III

1. Si r = p alors Ir(K) = Mp(K) et c’est donc un fermé de Mp(K).

2. ⇒ On suppose que rg(v) < r, alors toute famille de vecteurs (v (x1) , v (x2) , · · · , v (xr))
de Im(v) est liée.
•⇐ Par contrapposée, supposons que rg(v) ≥ r, il existe donc une famille (v(x1), v(x2), · · · , v(xr))
de vecteurs de Im v qui est libre. Forcément (x1, x2, · · · , xr) est libre.

3. Commençons par la remarque suivante : Si b = (bi) est une base de Kp et si pour

tout endomorphisme u, on pose ∥u∥b =
p∑
k=

∥u(bk)∥ alors ∥.∥b est une norme sur Kp

et pour tout k ∈ [[1, p]], on a ∥u(ek)∥ ≤ ∥u∥b.
a) On adopte la norme ∥.∥e associée à la base e = (ei) de l’énoncé. Soit k ∈ [[1, p]],
alors : ∥un(ek) − u(ek)∥ = ∥(un − u)(ek)∥ ≤ ∥un − u∥e. Puisque ∥un − u∥e −→ 0
alors un (ek) −→ u (ek).
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b) La famille (un (e1) , un (e2) , · · · , un (er+1) est liée puisque rg un ⩽ r. Donc il existe

des scalaires non tous nuls µ1,n, µ2,n, · · · , µr+1,n tels que
r+1∑
k=1

µk,nun (ek) = 0. On pose

alors α =
r+1∑
k=1

|µk,n| et pour tout k ∈ [[1, r + 1]], λk,n =
µk,n

α , donc
r+1∑
k=1

λk,nun (ek) = 0

et
r+1∑
k=1

|λk,n| = 1.

c) La suite (λ1,n, λ2,n, · · · , λr+1,n)n est bornée puisque la norme ( ∥.∥1 ) de chacun
des ses termes vaut 1 . D’après le théorème de Bolzano-Weierstrass, elle admet donc
au moins une valeur d’adhérence, qu’on note (µ1, µ2, · · · , µr+1).

d) Soit
(
λ1,φ(n), λ2,φ(n), · · · , λr+1,φ(n)

)
n

une suite extraite de (λ1,n, λ2,n, · · · , λr+1,n)n
qui converge vers (µ1, µ2, · · · , µr+1). Pour chaque k la suite

(
λk,φ(n)

)
n

converge vers
µk. La suite extraite

(
uφ(n) (ek)

)
n

converge vers u (ek) d’après la question III-3-a).

Quand n tends vers l’infini dans les égalités
r+1∑
k=1

λk,φ(n)uφ(n) (ek) = 0 et
r+1∑
k=1

∣∣λk,φ(n)

∣∣ =
1, on obtient

r+1∑
k=1

µku (ek) = 0 et
r+1∑
k=1

|µk| = 1

Déduction : On a montré que pour toute famille (e1, e2, · · · , er+1) de vecteurs Kp,
(u (e1) , u (e2) , · · · , u (er+1)) est liée. Donc rg (u) ⩽ r.

e) C’est une conséquence immédiate de la caractérisation séquentielle de la fermeture
d’une partie d’un espace vectoriel normé.

4. Si r > 0, alors rg(A) < r si et seulement si rg(A) ⩽ r − 1, l’ensemble des
matrices de rang inférieur strictement à r est donc Ir−1, c’est un fermé. Sr(K) =
Mp(K)\Ir(K), c’est donc un ouvert.

Partie IV

1. a) Soit k ∈ [[1,m]], alors λk est une valeur propre de A, et puisque A est diago-
nalisable, l’ordre de multiplicité αk de λk vaut la dimension du sous-espace propre
associé à λk, donc par le théorème du rang, on a rg (A−λkIp) = p−αk. Soit n ∈ N,
les matrices A et An sont semblables donc il existe une matrice inversible Qn tel que
An = QnAQ

−1
n , par suite An − Ip = Qn(A − Ip)Q

−1
n , donc An − Ip et A − Ip sont

semblables et compte tenu de la relation ci-dessus, on a rg (An − λkIp) = p− αp.

b) D’après la partie III, la partie Ip−αk
(C) est un fermé et comme (An−λkIp)n est

une suite d’élément de Ip−αk
(C) qui converge vers B − λkIp, cette dernière matrice

est un élément de Ip−αk
(C), donc rg (B − λkIp) ≤ p− αk.

c) On a pour tout k ∈ [[1,m]], dimker(B − λkIp) ≥ αk > 0 donc λk est une
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valeur propre de B. De plus A est diagonalisable donc
m∑
k=1

αk = p et on a donc
m∑
k=1

dim(ker(B − λkIp)) ≥ p, alors
m∑
k=1

dim(ker(B − λkIp) = p. Ce qui signifie que B

est diagonalisable et elle a les mêmes valeurs propres que A, avec les mêmes multi-
plicités. A et B sont donc semblables à une même matrice diagonale, elles sont donc
semblables.

d) Ce qui précède démontre que A est un fermé.

2. a) (An)n converge vers B, donc (χAn
)n converge vers χB. Comme les matrices An

sont semblables à A alors χAn
= χA pour tout n ∈ N. Ainsi χB = χA.

b) Soit k ∈ [[1, p]]. Pour une matrice quelconque M ∈ Mp(C), les coéfficients de
Mk sont des fonctions polynomiales des coéfficients de M , ce qui signifie que les
applications composantes de l’application Ψk : M 7−→ Mk dans la base canonique
de Mp(C) sont des fonctions polynomiales des coordonnées de M , elles sont donc
continues et par suite Ψk est elle même continue. L’application π : M 7−→ πA(M)
est une combinaison linéaire des applications Ψk, elle est donc continue.

c) π est continue et (An)n converge vers B donc (πA (An))n converge vers πA(B).
Pour tout n ∈ N, An est semblable à A, soit Pn une matrice inversible telle que An =
PnAP

−1
n . On a alors πA (An) = PnπA(A)P

−1
n = 0. On en déduit que πA(B) = 0.

A est diagonalisable donc son polynôme minimal πA est scindé à racines simples.
Comme πA est un polynôme annulateur de B alors B est diagonalisable.

d) χA = χB donc A et B ont les mêmes valeurs propres avec les mêmes multiplicités.
A et B sont en plus diagonalisables donc elles vont être semblables à une même
matrice diagonale. Elles sont donc semblables ie B ∈ A.

3. a) A ∈ Mp(C), donc elle est trigonalisable, d’où l’existence de la matrice T . En
outre T ne peut être diagonalisable, sinonA serait diagonalisable.

b) Posons T = (αi,j)i,j et DnTD
−1
n =

(
β
(n)
i,j

)
i,j

. On a alors

β
(n)
i,j = αi,j = 0 si i > j, β

(n)
i,j = αi,j si i = j et β(n)

i,j =
1

nj−i
αi,j si i < j.

On voit ainsi que la suite
(
DnTD

−1
n

)
n

converge vers la matrice diagonale D =
diag (α1,1, α2,2, · · · , αp,p).

c)
(
DnTD

−1
n

)
n

est une suite d’éléments de A, mais sa limite D n’est pas dans A car
sinon A serait diagonalisable. Donc A n’est pas un fermé.

Partie V
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1. On a Ip ∈ C (A) en même temps cela donne C (A) ̸= ∅. Si M1,M2 ∈ C (A) et
λ ∈ K on a M1+λM2 ∈ C (A) et M1M2 ∈ C (A) (facile à démontrer pour M1+λM2.
Pour M1M2, on a (M1M2)A = M1(M2A) = M1(AM2) = (M1A)M2 = (AM1)M2 =
A(M1M2).) Il en résulte que C (A) est une sous-algèbre de Mp(K).

2. a) Posons D = diag(λ1, λ2, · · · , λp) et soit M = (ai,j)1≤i,j≤p ∈ Mp(K) une
matrice qui commute avec D, donc DM − MD = 0, or DM − MD = ((λi −
λj)ai,j)1≤i,j≤p, donc pour tout i, j ∈ [[1, p]], on a (λi − λj)ai,j = 0. Si i ̸= j alors
λi ̸= λj et donc ai,j = 0. Alors M est une matrice diagonale.

b) On suppose que A est diagonalisable à valeurs propres deux à deux distinctes.
Soit une matrice diagonale D = diag(λ1, λ2, · · · , λp) et une matrice inversible P
telle que A = PDP−1. Soit M ∈ Mp(K). On a :

M ∈ C (A) ⇔ AM = MA

⇔ D
(
P−1MP

)
=

(
P−1MP

)
D

⇔ P−1MP ∈ C (D)

Donc C (A) = PC (D)P−1. L’application M 7→ PMP−1 étant un automorphisme
de Mp(K), on a donc dim(C (A)) = dim(C (D)) = p

3. a) Remarquons que l’application

Φ : Mp(K) −→ L (Mp(K)) ,M 7−→ ΦM

est linéaire. Mp(K) étant de dimension finie, Φ est donc continue. Alors (ΦAn
)n

converge vers ΦA.

b) D’après la question V-2), on peut dire que pour tout n ∈ N, on a dim(ker(ΦAn
)) =

dim(C (An)) = p, donc rg (ΦAn
) = p2 − p. D’après la question III-3). l’ensemble

des endomorphismes de Mp(K) de rang ⩽ p2 − p est un fermé. Puisque (ΦAn
)n

converge vers ΦA et rg ΦAn
= p2 − p pour tout n, alors rg ΦA ⩽ p2 − p. Ainsi

dim(C (A)) = dim(ker(ΦA)) ≥ p.

Partie VI

Dans cette partie on va confondre entre vecteurs de Mp,1(K) et ceux Kp

1. Supposons que
p∑

k=1

YkV
⊤
k = 0 et posons pour tout k ∈ [[1, p]], Yk = (y1,k, y2,k, · · · , yp,k).

Y1
tV1 + Y2

tV2 + · · · + Yp
tVp est une matrice carrée d’ordre p dont la i eme ligne est

le vecteur
p∑

k=1

yi,kV
⊤
k . On a donc pour tout i ∈ [[1, p]],

p∑
k=1

yi,kV
⊤
k = 0. La famille
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(V1, V2, · · · , Vp) est libre donc pour tout i ∈ [[1, p]], yi,1 = yi,2 = · · · = yi,p = 0. Ainsi
Y1 = Y2 = · · · = Yp = 0.

2. Soit (αi,j)1≤i,j≤p une famille de scalaires tel que :
∑

1≤i,j≤p

αi,jUiV
⊤
j = 0. On alors

p∑
j=1

(
p∑

i=1

αi,jUi)V
⊤
j = 0. et d’après la question précédente, la famille (V1, V2, · · · , Vp)

étant libre, il en est de même de la famille (V ⊤
1 , V ⊤

2 , · · · , V ⊤
p ), par suite, pour tout

j ∈ [[1, p]], on a
p∑

i=1

αi,jUi = 0, et comme la famille (U1, U2, · · · , Up) est libre alors

α1,j = α2j = · · · = αp,j = 0, et ceci pour tout j ∈ [[1, p]]. Alors la famille (UiV
⊤
j )i,j

est libre, et puisque dim(Mp(K)) = p2, c’est une base de Mp(K)).

3. χA = χA⊤ donc A et A⊤ ont les mes valeurs propres et avec les mêmes multiplicités.
A est diagonalisable, soit donc P , un polynôme annulateur de A scindé à racines
simples. En explicitant P (A) on voit que P (A⊤) = (P (A))⊤ = 0. Donc A⊤ est
diagonalisable.

4. a) ΦA(UiV j⊤) = AUiV
⊤
j − UiV

⊤
j A. Puisque A⊤Vj = λjVj alors V ⊤

j A = λjV
⊤
j et

donc ΦA(UiV
⊤
j ) = (λi − λj)UiV

⊤
j .

b) D’après la question VI-2), (UiV
⊤
j )ij est une base de Mp(K), la question précé-

dente indique qu’elle est formée de vecteurs propres de ΦA. Alors ΦA est diagonali-
sable et ses valeurs propres sont les scalaires λi − λj où (i, j) ∈ [[1, p]]2.

5. dim(ker(Φλ)) est le nombre de vecteurs de la base de diagonalisation (Ui
tVj)ij tels

que ΦA (Ui
tVj) = 0, c’est donc le cardinal de l’ensemble :

C =
{
(i, j) ∈ [[1, p]]2/λi = λj

}
Soit λ une valeur propre de A et soit α sa multiplicité. Il y’a α2 couple (i, j) ∈ [[1, p]]2

tels que λi = λj = λ. On peut dire que α = dim(Eλ(A)), donc, si α1, α2, · · · , αm

désignent les dimensions des sous espaces propres de A, alors :

dim(C (A)) = dim(ker(ΦA)) = card(C) =
m∑
i=1

α2
i

6. A est diagonalisable donc
m∑
i=1

αi = p, puisque α2
i ≥ αi pour tout i alors dim(C (A) ≥

p). Remarquons que
m∑
i=1

α2
i =

m∑
i=1

αi si et seulement si αi = 1 pour tout i. Ceci signifie

que dans le cas où A est diagonalisable, dim(C (A)) = p si et seulement si A admet
p valeurs propres deux à deux distinctes.
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