Une proposition de corrigé pour le devoir surveillé numéro 1

PARTIE I

I.1.a) Pour tout $k \in \{1, 2\}$, comme $(u(b_k), b_k)$ est liée et $b_k \neq 0$, il existe $\lambda_k \in \mathbb{K}$ tel que $u(b_k) = \lambda_k b_k$. Ainsi $u(b_1) = \lambda_1 b_1$ et $u(b_2) = \lambda_2 b_2$.

I.1.b) On a $b = b_1 + b_2 \neq 0$ et la famille (u(b), b) est liée, donc il existe $\lambda \in \mathbb{K}$ tel que $u(b) = \lambda b$, donc $\lambda b = \lambda b_1 + \lambda b_2 = u(b) = u(b_1) + u(b_2) = \lambda_1 b_1 + \lambda_2 b_2$, donc $\lambda_1 = \lambda_2 = \lambda$.

I.1.c) Soit $x \in E$ tel que $x = x_1b_1 + x_2b_2$, donc

$$u(x) = x_1 u(b_1) + x_2 u(b_2) = x_1 \lambda b_1 + x_2 \lambda b_2 = \lambda (x_1 b_1 + x_2 b_2) = \lambda x,$$

donc $\forall x \in E, u(x) = \lambda x$, donc $u = \lambda \operatorname{Id}$ est l'homothétie de rapport λ .

I.2.a Posons $e_1 = e$ et $e_2 = u(e)$, alors $\mathscr{E} = (e_1, e_2)$ est une base de E et comme $u(e_1) = e_2$ alors si on pose $u(e_2) = ae_1 + be_2$, on a $A = \max_{\mathscr{E}}(u) = \begin{pmatrix} 0 & a \\ 1 & b \end{pmatrix}$. Par ailleurs, on a $\begin{cases} \tau = \operatorname{tr}(u) = \operatorname{tr}(A) = b \\ \delta = \det(u) = \det(A) = -a \end{cases}$, donc $A = \begin{pmatrix} 0 & -\delta \\ 1 & \tau \end{pmatrix}$.

[I.2.b) Soit $M \in \mathcal{M}_2(\mathbb{K})$ et u l'endomorphisme canoniquement associé à M, alors

$$t = \operatorname{tr}(M) = \operatorname{tr}(u)$$
 et $d = \det(M) = \det(u)$.

- Si M n'est pas scalaire alors u n'est pas une homothétie, donc d'après la question $\mathbf{I.1}$), il existe au moins un vecteur $e \in E$ tel que la famille $\mathscr{E} = (e, u(e))$ est libre, donc \mathscr{E} est une base de E. En vertu de la question $\mathbf{I.2.a}$), on a la matrice de u relativement à \mathscr{E} est $M' = \begin{pmatrix} 0 & -d \\ 1 & t \end{pmatrix}$, donc $M \sim M'$.
- Conclusion : Si M est une matrice non scalaire de $\mathcal{M}_2(\mathbb{K})$ alors M est semblables à la matrice $M' = \begin{pmatrix} 0 & -d \\ 1 & t \end{pmatrix}$ où $d = \det(M)$ et $t = \operatorname{tr}(M)$.
- **I.2.c)** M_1 et M_2 sont non scalaires, donc d'après la question **I.2.b)** ci-dessus on a $M_1 \sim M_1'$ et $M_2 \sim M_2'$ avec $M_k' = \begin{pmatrix} 0 & -d_k \\ 1 & t_k \end{pmatrix}$ et $d_k = \det(M_k)$ et $t_k = \operatorname{tr}(M_k)$, pour tout $k \in \{1, 2\}$.
- Si $M_1 \sim M_2$ alors $\operatorname{tr}(M_1) = \operatorname{tr}(M_2)$ et $\det(M_1) = \det(M_2)$.
- Si $\operatorname{tr}(M_1) = \operatorname{tr}(M_2)$ et $\det(M_1) = \det(M_2)$ alors $M_1' = M_2'$ donc M_1 et M_2 sont semblables.

- Conclusion : Deux matrices non scalaires M_1 et M_2 de $\mathcal{M}_2(\mathbb{K})$ sont semblables si et seulement si elles ont même trace et même déterminant.
- Soit $M_1 = \lambda_1 I_2$ et $M_2 = \lambda_2 I_2$ deux matrices scalaires semblables alors il existe $P \in \mathbf{GL}_2(\mathbb{K})$ tel que $M_2 = P^{-1}M_1P$, donc $\lambda_2 I_2 = M_2 = P^{-1}(\lambda_1 I_2)P_{=}\lambda_1 I_2$, par suite $\lambda_1 = \lambda_2$ donc $M_1 = M_2$. Ainsi on a la conclusion suivante :
- Deux matrices scalaires sont semblables si et seulement si elles sont égales.

I.2.d)

(i) On a A et B sont des matrices triangulaires supérieures donc pour chacune d'elles la trace est la somme des coefficients diagonaux, et le determinant est le produit des coefficients diagonaux, donc :

$$\operatorname{tr}(A) = \operatorname{tr}(B) = 0$$
 et $\det(A) = \det(B) = 0$.

Les matrices A et B ne sont pas scalaires car, pour chacune d'elles, le coefficient non diagonal de la ligne 1 et la colonne 3 vaut 1 donc il est non nul.

(ii) On a rg (A) = 1 et rg (B) = 2, donc A et B ne sont pas semblables car rg $(A) \neq \operatorname{rg}(B)$.

I.2.e) On considère les matrices par bloc :

On a $\operatorname{tr}(A') = \operatorname{tr}(B') = 0$ et $\det(A') = \det(B') = 0$ mais A' et B' ne sont pas semblables car $\operatorname{rg}(A') = 1$ et $\operatorname{rg}(B') = 2$ donc $\operatorname{rg}(A') \neq \operatorname{rg}(B')$.

I.3.a) Le système $\begin{cases} z_1 + z_2 = s \\ z_1 z_2 = p \end{cases}$ admet a toujours des solutions et qui sont les couples (z_1, z_2) de nombres complexes tel que z_1 et z_2 sont les racines du

les couples (z_1, z_2) de nombres complexes tel que z_1 et z_2 sont les racines du trinôme $X^2 - sX + p$, lequel en admet deux distinctes si $s^2 - 4p \neq 0$ et une double si $s^2 - 4p = 0$, ainsi :

 \Rightarrow Si $s^2-4p \neq 0$ alors l'ensemble des solutions du système (1) est $\{(\lambda_1, \lambda_2), (\lambda_2, \lambda_1)\}$ où λ_1 et λ_2 sont les racines de $X^2 - sX + p$, plus explicitement $\lambda_1 = \frac{s-d}{2}$ et $\lambda_2 = \frac{s+d}{2}$ où $d^2 = s^2 - 4p$.

 \Rightarrow Si $s^2 - 4p = 0$ alors l'ensemble des solutions du système (1) est $S = \{(z, z)\}$ où $z = \frac{s}{2}$ est la racine double du trinôme $X^2 - sX + p$.

- ➤Conclusion : Il découle que ce qui précède que :
- Le système (1) admet toujours des solutions, au maximum deux.
- Le système (1) admet une solution unique si et seulement si $s^2 = 4p$.

 $| \mathbf{I.3.b}) |$ On va discuter les cas :

ightharpoonupPremier cas : Si A est scalaire alors $A=\left(egin{array}{cc} \lambda & 0 \\ 0 & \lambda \end{array}\right)$ pour un $\lambda\in\mathbb{C}$, donc de

la forme (1) avec $\lambda_1 = \lambda_2 = \lambda$.

Deuxième cas: Si A n'est pas scalaires alors, posons $s = \operatorname{tr}(A)$ et $p = \det(A)$. On sait que le système $\begin{cases} z_1 + z_2 = s \\ z_1 z_2 = p \end{cases}$ admet des solutions et que : Si $s^2 \neq 4p$ il admet une solution (λ_1, λ_2) tel que $\lambda_1 \neq \lambda_2$. Il en découle

Si $s^2 \neq 4p$ il admet une solution (λ_1, λ_2) tel que $\lambda_1 \neq \lambda_2$. Il en découle que la matrice $A' = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ est non scalaire, et comme $\operatorname{tr}(A) = \operatorname{tr}(A')$ et $\det(A) = \det(A')$, on a $A \sim A'$ c'est le type (1) ci-dessus.

Si $s^2 = 4p$ alors la seule solution du système est (λ, λ) avec $\lambda = \frac{s}{2}$. La matrice $A'' = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ est non scalaire et réalise $\operatorname{tr}(A) = \operatorname{tr}(A'')$ et $\det(A) = \det(A'')$, donc A et A'' sont semblables et on voit que A'' est du type (2) ci-dessus.

I.3.c) On a vu dans la question **I.3.b)** que pour que A soit semblable à une matrice de la forme $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$, $\lambda \in \mathbb{C}$, il faut et il suffit que $t^2 = 4d$. C'est donc la condition demandée. Si cette condition est réalisée alors

$$A \sim \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$
 avec $\lambda = \frac{t}{2} = \frac{\operatorname{tr}(A)}{2}$.

I.3.d) Comme $\mu \neq 0$ les deux matrices $\begin{pmatrix} \lambda & \mu \\ 0 & \lambda \end{pmatrix}$ et $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ sont non scalaires et ont même trace 2λ et même determinant λ^2 , donc, en vertu de la question **I.2.c**), elles sont semblables.

 $\overline{[\mathbf{I.4.a})}$ Soit A un commutateur de $\mathbf{GL}_2(\mathbb{C})$, donc

$$A = UVU^{-1}V^{-1}$$
, avec $U, V \in \mathbf{GL}_2(\mathbb{C})$.

Soit $U' = PUP^{-1}$ et $V' = PVP^{-1}$, alors

$$U'V'U'^{-1}V'^{-1} = PUP^{-1}PVP^{-1}PU^{-1}P^{-1}PV^{-1}P^{-1}$$

= $PUVU^{-1}V^{-1}P^{-1}$
= PAP^{-1} .

Il en découle que PAP^{-1} est un commutateur de $\mathbf{GL}_2(\mathbb{C})$.

En conclusion, pour $U = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $V = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, on a $UVU^{-1}V^{-1} = -I_2$. Cela montre en particulier que $-I_2$ est un commutateur.

 $\boxed{\textbf{I.4.c)}} \text{ On a } X(b) = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} 1 & b \\ 1 & b+1 \end{pmatrix} \begin{pmatrix} a^{-1} & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} b+1 & -b \\ -1 & 1 \end{pmatrix}. \text{ Il en découle que}$

$$X(b) = \begin{pmatrix} a & ab \\ a^{-1} & a^{-1}b + a^{-1} \end{pmatrix} \begin{pmatrix} a^{-1}b + a^{-1} & -ba^{-1} \\ -a & a \end{pmatrix}$$
$$= \begin{pmatrix} b+1-a^2b & a^2b-b \\ (b+1)(a^2-1) & b+1-a^{-2}b \end{pmatrix}$$

Il en découle que

$$tr(X(b)) = 2b + 2 - b(a^2 + a^{-2}),$$

et sous une autre forme

$$\operatorname{tr}(X(b)) = 2 - b \left(\frac{a^2 - 1}{a}\right)^2.$$

ightharpoonupLa matrice X(b) est non scalaire car si $b \neq 0$ alors le coefficient non diagonal $a^2b - b = b(a^2 - 1)$ est non nul, et si b = 0, alors

$$X(b) = X(0) = \begin{pmatrix} 1 & 0 \\ a^2 - 1 & 1 \end{pmatrix},$$

et $a^2 - 1 \neq 0$. On remarque d'après sa forme initiale que X(b) est un commutateur, donc $\det(X(b)) = 1$ en particulier on a $\det(X(b)) = \det(A)$. Comme A est aussi non scalaire, on a A et X(b) sont semblables si et seulement si $\operatorname{tr}(X(b)) = \operatorname{tr}(A)$ si et seulement si

$$b = (2 - \operatorname{tr}(A)) \left(\frac{a}{a^2 - 1}\right)^2.$$

En choisissant cette valeur pour b on a bien $A \sim X(b)$ car les deux sont non scalaires et ont même trace et même determinant.

I.4.d) Soit $A \in \mathcal{M}_2(\mathbb{C})$.

 $\overline{>}$ Supposons que (i) $\det(A) = 1$.

- Premier cas : Si $A = I_2$ alors A est un commutateur car $A = UVU^{-1}V^{-1}$ pour $U = V = I_2$,
- Deuxième cas : Si $A = -I_2$, la question **I.4.b**) montre que $A = UVU^{-1}V^{-1}$ pour les matrices U et V proposées dans cette question.
- Troisième cas : $A \neq I_2$ et $A \neq -I_2$, alors A n'est pas scalaire car si A était

scalaire de la forme λI_2 , on aurait $1 = \det(A) = \lambda^2$, donc $\lambda = \pm 1$ et on aurait $A = \pm I_2$, ce qui n'est pas le cas. D'après **I.4.c**) on a $A \sim X(b)$ pour $b = (2 - \operatorname{tr}(A)) \left(\frac{a}{a^2 - 1}\right)^2$ et on a déjà remarqué que X(b) est un commutateur et comme il existe $P \in \operatorname{GL}_2(\mathbb{C})$ tel que $A = PX(b)P^{-1}$, on a en vertu de la question **I.4.a**), A est aussi un commutateur. On a ainsi prouvé que (i) \Rightarrow (ii). \Rightarrow Supposons réciproquement qu'on a (ii) : $A = UVU^{-1}V^{-1}$ avec $U, V \in \operatorname{GL}_2(\mathbb{C})$, alors

$$\det(A) = \det(U) \det(V) \det(U^{-1}) \det(V^{-1}) = 1.$$

On a ainsi prouvé que $(i) \Leftrightarrow (ii)$.

 $\overline{\mathbf{I.5.a)}}$ Soit $A \in \mathcal{M}_2(\mathbb{C})$, on va prouver que

$$A = PSP^{-1}$$
 avec $P \in \mathbf{GL}_2(\mathbb{C})$ et $S \in \mathcal{S}_2(\mathbb{C})$.

- Premier cas : Si A est scalaire, $A = \lambda I_2$ avec $\lambda \in \mathbb{C}$, alors $S = \lambda I_2$ et $P = I_2$ conviennent.
- Deuxième cas : A n'est pas scalaire, d'après **I.3.b**) on a A est semblable à une des deux matrices soit $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ avec $\lambda_1, \lambda_2 \in \mathbb{C}$ et $\lambda_1 \neq \lambda_2$, soit $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ avec $\lambda \in \mathbb{C}$. On va examiner chacun des cas cités :
- avec $\lambda \in \mathbb{C}$. On va examiner chacun des cas cités : • Si $A \sim S$ avec $S = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ avec $\lambda_1, \lambda_2 \in \mathbb{C}$ et $\lambda_1 \neq \lambda_2$, alors il existe $P \in \mathbf{GL}_n(\mathbb{C})$ tel que $A = PSP^{-1}$, il est clair que S est symétrique, ce qui termine l'étude de ce cas.
- Si $A \sim T = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ avec $\lambda \in \mathbb{C}$, comme T et non scalaire et que

$$S = \left(\begin{array}{cc} \lambda + i & 1\\ 1 & \lambda - i \end{array}\right),\,$$

sont des matrices non scalaires et que

$$\operatorname{tr}(T) = \operatorname{tr}(S) = 2\lambda$$
 et $\det(T) = \det(S) = \lambda^2$,

on a $T \sim S$, donc $A \sim S$, donc il existe $P \in \mathbf{GL}_n(\mathbb{C})$ tel que $A = PSP^{-1}$ et comme S est symétrique, on a bien la conclusion désirée.

I.5.b) On a vu dans la question I.5.b) que

$$A = PSP^{-1}$$
, avec $S \in \mathcal{S}_2(\mathbb{C})$ et $P \in \mathbf{GL}_2(\mathbb{C})$.

Alors, on peut écrire :

$$A = PSP^{\top}(P^{\top})^{-1}P^{-1} = S_1S_2$$

avec

$$S_1 = PSP^{\top}$$
 et $S_2 = (P^{\top})^{-1}P^{-1}$.

On a S_1 et S_2 symétriques et S_2 est inversible, qu'on confirme par les vérifications suivantes :

- S_1 est symétrique car : $S_1^{\top} = (PSP^{\top})^{\top} = (P^{\top})^{\top}S^{\top}P^{\top} = PSP^{\top} = S_1$,
- S_2 est symétrique car

$$S_2^{\top} = ((P^{\top})^{-1}P^{-1})^{\top}$$

= $(P^{-1})^{\top}((P^{\top})^{-1})^{\top} = (P^{\top})^{-1}((P^{\top})^{\top})^{-1}$
= $(P^{\top})^{-1}P^{-1} = S_2$.

 $\bullet \, S_2$ est inversible car P est inversible, donc P^\top aussi.

I.6.a) H un sous-groupe normal de $\mathbf{SL}(2,\mathbb{C})$ tel que $A \in H$ et $A \neq \pm I_2$. Il en découle que A n'est pas scalaire car si elle était scalaire elle serait confondue avec I_2 ou $-I_2$, ce qui n'est pas le cas. D'après la question $\mathbf{I.3.b}$), on peut dire que A est semblable à l'un des matrices $A' = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ avec $\lambda_1, \lambda_2 \in \mathbb{C}$ et

 $\lambda_1 \neq \lambda_2$ ou $A'' = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ avec $\lambda \in \mathbb{C}$.

• Si $A \sim A'$ alors $\lambda_1 \lambda_2 = 1$ et $\lambda_1 \neq \lambda_2$, donc en notant $\alpha = \lambda_1$, on a

$$A \sim X_0 = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$$
 et $\lambda^2 \neq 1$,

donc il existe $P \in \mathbf{GL}_2(\mathbb{C})$ tel que $X_0 = PAP^{-1}$. Comme $\det(P) \in \mathbb{C}^*$, il existe $\delta \in \mathbb{C}^*$ tel que $\delta^2 = \det(P)$, soit alors $\widetilde{P} = \frac{1}{\delta}P$, alors $\det(\widetilde{P}) = 1$ et on a $X_0 = \widetilde{P}A\widetilde{P}^{-1}$ et comme H est normal dans $\mathbf{SL}(2,\mathbb{C})$ et $A \in H$ et $\widetilde{P} \in \mathbf{SL}(2,\mathbb{C})$, on a $X_0 \in H$.

- Si $A \sim A''$, comme $\det(A) = 1$, on a $\lambda^2 = 1$, donc $\lambda = 1$ ou $\lambda = -1$.
- Si $\lambda = 1$, alors $A \sim X_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, donc $X_1 = PAP^{-1}$ avec $P \in \mathbf{GL}(2, \mathbb{C})$,

on construit \widetilde{P} comme ci-dessus, donc $X_1 = \widetilde{P}A\widetilde{P}^{-1}$ et comme $A \in H$ et H est un sous-groupe normal de $\mathbf{SL}(2,\mathbb{C})$ et $\widetilde{P} \in \mathbf{SL}(2,\mathbb{C})$, on a $X_1 \in H$.

Si $\lambda = -1$ alors $A \sim X_2 = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$. On a $X_2^2 = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$. D'après la question **I.3.d**), on a $X_1 \sim X_2^2$, donc $A^2 \sim X_1$, donc il existe $P \in \mathbf{GL}(2, \mathbb{C})$ tel que $X_1 = PA^2P^{-1}$, on construit \widetilde{P} comme ci-dessus, donc $X_1 = \widetilde{P}A^2\widetilde{P}^{-1}$ et comme $A \in H$ et H un sous-groupe de $\mathbf{SL}(2, \mathbb{C})$, on a $A^2 \in H$ et comme H est un sous-groupe normal de $\mathbf{SL}(2, \mathbb{C})$ et $\widetilde{P} \in \mathbf{SL}(2, \mathbb{C})$, on a $X_1 \in H$.

ightharpoonup Conclusion : on a démontré que H contient l'une des matrices

$$X_0 = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$$
 avec $\lambda \in \mathbb{C}^*$ et $\lambda^2 \neq 1$ ou $X_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

I.6.b) On a
$$Z(c) = \begin{pmatrix} a & -c \\ c & a \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & c \\ -c & a \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$
, donc
$$Z(c) = \begin{pmatrix} a & a-c \\ c & a+c \end{pmatrix} \begin{pmatrix} a & c-a \\ -c & c+a \end{pmatrix}$$

et finalement $Z(c)=\begin{pmatrix} 1-ac & ac-c^2\\ -c^2 & c^2+1+ac \end{pmatrix}$. La matrice Z(c) n'est pas scalaire car le coefficient $-c^2$ est non nul puisque $c\neq 0$. On a $t=\operatorname{tr}(Z(c))=c^2+2$ et $d=\det(Z(c))=1$ car Z(c) est un commutateur. Il en découle que

$$t^2 - 4d = (c^2 + 2)^2 - 4 = c^2(c^2 + 4) \neq 0$$

(donné par l'énoncé). Il en découle en utilisant la question I.3.b) et I.3.c) que

$$Z(c) \sim \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$
 avec $\lambda_1, \lambda_2 \in \mathbb{C}$ et $\lambda_1 \neq \lambda_2$.

▶ **Déduction :** On a vu dans la question **I.6.a**) que $X_0 \in H$ ou $X_1 \in H$. Pour démontrer que $X_0 \in H$ a toujours lieu, il suffit de prouver que

$$X_1 \in H \Rightarrow X_0 \in H$$
.

On n a $Z(c) = QX_1Q^{-1}X_2$ avec

$$Q = \begin{pmatrix} a & -c \\ c & a \end{pmatrix}$$
 et $X_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et $X_2 = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$.

On a $X_1 \in H$ et $Q \in \mathbf{SL}(2,\mathbb{C})$ car $\det(Q) = a^2 + c^2 = 1$ et on a aussi $X_2 \in H$ car $X_2 = X_1^{-1}$, donc au final $Z(c) \in H$. Si on choisit a et c tel que $a^2 + c^2 = 1$ et $c^2(c^2 + 4) \neq 0$, chose possible en prenant par exemple $a = \sqrt{2}$ et c = i, on vient de voir alors que $Z(c) \sim X_0$

Comme en haut on écrit $X_0 = PZ(c)P^{-1}$ avec $P \in \mathbf{GL}(2,\mathbb{C})$ et on considère $\delta \in \mathbb{C}$ tel que $\delta^2 = \det(P)$ en suite $\widetilde{P} = \frac{1}{\delta}P$ alors $X_0 = \widetilde{P}Z(c)\widetilde{P}^{-1}$ et comme $Z(c) \in H$ on déduit que $X_0 \in H$.

On a donc prouvé que $X_1 \in H \Rightarrow X_0 \in H$, donc on a toujours

$$X_0 = \left(\begin{array}{cc} \lambda & 0\\ 0 & \lambda^{-1} \end{array}\right) \in H,$$

pour un certain $\lambda \in \mathbb{C}^*$ tel que $\lambda^2 \neq 1$.

I.6.c) Si H est un sous-groupe normal de $\mathbf{SL}(2,\mathbb{C})$ tel qu'il existe $A \in \mathbf{SL}(2,\mathbb{C})$ tel que $A \in H$ et $A \neq \pm I_2$. On vient de prouver qu'il existe $a \in \mathbb{C}^*$ tel que $a^2 \neq 1$ et $X_0 = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \in H$. Il en découle que pour tout nombre complexe b on a $X(b) \in H$ où

$$X(b) = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} 1 & b \\ 1 & b+1 \end{pmatrix} \begin{pmatrix} a^{-1} & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} b+1 & -b \\ -1 & 1 \end{pmatrix}$$

car H est normal dans $\mathbf{SL}(2,\mathbb{C})$ et la matrice $Q = \begin{pmatrix} 1 & b \\ 1 & b+1 \end{pmatrix} \in \mathbf{SL}(2,\mathbb{C})$

et on a la relation $\begin{pmatrix} b+1 & -b \\ -1 & 1 \end{pmatrix} = Q^{-1}$, or si M est une matrice de $\mathbf{SL}(2,\mathbb{C})$ tel que $M \neq \pm I_2$ alors il existe $b \in \mathbb{C}$ tel que $M \sim X(b)$, donc il existe $P \in \mathbf{GL}(2,\mathbb{C})$ tel que $M = PX(b)P^{-1}$, en utilisant $\widetilde{P} = \frac{1}{\delta}P$ avec $\delta^2 = \det(P)$, on a $M = \widetilde{P}X(b)\widetilde{P}^{-1}$, avec $\widetilde{P} \in \mathbf{SL}(2,\mathbb{C})$ et comme H est normal dans $\mathbf{SL}(2,\mathbb{C})$ on a $M \in H$ et on vient de prouver que $\mathbf{SL}(2,\mathbb{C}) \setminus \{\pm I_2\} \subset H$, or $I_2 \in H$ car c'est l'élément neutre et on a aussi $-I_2 \in H$ car comme $A \neq \pm I_2$ on a aussi

$$-A \in \mathbf{SL}(2,\mathbb{C})$$
 et $-A \neq \pm I_2$,

donc $-A \in H$, donc le produit $A \times (-A) \in H$ et alors $-I_2 \in H$ et conclusion $H = \mathbf{SL}(2, \mathbb{C})$.

On résume par la synthèse ci-dessous :

➤SYNTHÈSE:

Soit H un sous-groupe de $\mathbf{SL}(2,\mathbb{C})$ normal dans $\mathbf{SL}(2,\mathbb{C})$.

- Si H comprend un élément A différent de $\pm I_2$, on a prouvé que $H = \mathbf{SL}(2, \mathbb{C})$.
- Sinon alors $H \subset \{-I_2, I_2\}$ donc $\{I_2\} \subset H \subset \{-I_2, I_2\}$ donc $H = \{I_2\}$ ou $H = \{-I_2, I_2\}$ or ces derniers sont des sous-groupes normaux de $\mathbf{SL}(2, \mathbb{C})$.
- \triangleright Conclusion : Les seuls sous-groupes normaux de $\mathbf{SL}(2,\mathbb{C})$ sont :

$$\mathbf{SL}(2,\mathbb{C}), \{I_2\}$$
 et $\{-I_2, I_2\}.$

I.7.a) On a
$$P = P_1 + iP_2$$
 et $M' = P^{-1}MP$ donc $PM' = MP$, donc

$$(P_1M') + i(P_2M') = (MP_1) + i(MP_2)$$

et comme il s'agit de matrices réelles on a $\left\{ \begin{array}{l} P_1M'=MP_1 \\ P_2M'=MP_2 \end{array} \right.$

I.7.b) Notons C_1, C_2 les colonnes de P_1 et D_1, D_2 celles de P_2 , alors :

$$f(t) = \det(C_1 + tD_1, C_2 + tD_2)$$

= \det(C_1, C_2) + t(\det(C_1, D_2) + \det(D_1, C_2)) + t^2 \det(D_1, D_2)
= \det(P_1) + \lambda t + t^2 \det(P_2)

avec $\lambda = \det(C_1, D_2) + \det(D_1, C_2)$.

 $\overline{\mathbf{I.7.c}}$ Le polynôme $L = \det(P_2)X^2 + \lambda X + \det(P_1)$ est non nul car

$$L(i) = f(i) = \det(P) \neq 0.$$

I.7.d) Comme $L \in \mathbb{C}[X]$ est un polynôme non nul, l'ensemble des racines de L est fini(et peut être vide), donc $\{t \in \mathbb{R}/P(t) \neq 0\}$ est non vide car \mathbb{R} est infini, donc il existe $t_0 \in \mathbb{R}$ tel que $f(t_0) \neq 0$. On pose $Q = P_1 + t_0 P_2$.

I.7.e) De $\begin{cases} P_1M' = MP_1 \\ P_2M' = MP_2 \end{cases}$ on déduit $\begin{cases} P_1M' = MP_1 \\ t_0P_2M' = t_0MP_2 \end{cases}$ et par sommation membre à membre, on déduit $(P_1 + t_0P_2)M' = M(P_1 + t_0P_2)$, donc QM' = MQ et finalement $M' = Q^{-1}MQ$.

I.7.f) On vient de prouver que si deux matrices M et M' de $\mathcal{M}_2(\mathbb{R})$ sont semblables dans $\mathcal{M}_2(\mathbb{C})$ alors elles sont semblables dans $\mathcal{M}_2(\mathbb{R})$.

 $\overline{[\mathbf{I.8})}$ Si $A \in \mathcal{M}_2(\mathbb{R})$ alors $A \in \mathcal{M}_2(\mathbb{C})$, donc d'après la question $\mathbf{I.3.b}$) on a :

$$\begin{cases} A \sim \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} & \text{ou} & \begin{cases} A \sim \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \\ \lambda \in \mathbb{C} \end{cases}.$$

 \Rightarrow Si $A \sim \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ avec $\lambda \in \mathbb{C}$, alors $2\lambda = \operatorname{tr}(A)$ donc $\lambda \in \mathbb{R}$ et les matrices sont réelles semblables dans $\mathcal{M}_2(\mathbb{C})$ donc elles sont semblables dans $\mathcal{M}_2(\mathbb{R})$.

$$\Rightarrow$$
Si $A \sim \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ avec $\lambda_1, \lambda_2 \in \mathbb{C}$ alors:

- $\operatorname{Si} \lambda_1, \lambda_2 \in \mathbb{R}$ c'est terminé car les matrices sont aussi semblables dans $\mathcal{M}_2(\mathbb{R})$.
- Sinon comme $\lambda_1\lambda_2 = \det(A)$ et $\lambda_1 + \lambda_2 = \operatorname{tr}(A)$ alors λ_1 et λ_2 sont les racines du polynôme $X^2 \operatorname{tr}(A)X + \det(A) = 0$ donc elles sont conjuguées donc il existe $\omega \in \mathbb{C} \setminus \mathbb{R}$ tel que $\lambda_1 = \omega$ et $\lambda_2 = \overline{\omega}$. Si on pose $\omega = a + bi$ avec $a, b \in \mathbb{R}$ alors la matrice $M = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ est dans $\mathcal{M}_2(\mathbb{C})$ non scalaire et

$$\begin{cases} \operatorname{tr}(M) = 2a = \lambda_1 + \lambda_2 = \operatorname{tr}(A) \\ \det(M) = a^2 + b^2 = \lambda_1 \lambda_2 = \det(A) \end{cases},$$

et comme A n'est pas scalaire et M non plus on a $A \sim M$ dans $\mathcal{M}_2(\mathbb{C})$ et comme elles sont réelles elles sont semblables aussi dans $\mathcal{M}_2(\mathbb{R})$.

➤Conclusion : Toute matrice $A \in \mathcal{M}_2(\mathbb{R})$ est semblable à une matrice ayant l'une des formes suivantes :

$$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}, \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \text{ avec } \lambda_1, \lambda_2, \lambda, a, b \in \mathbb{R}, \text{ et } b \neq 0.$$

I.9.a) On a $A \neq \pm I_2$. En reprenant le même raisonnement que dans la question **I.4.c)** on trouve que $A \sim X(b)$ pour un certain couple $b \in \mathbb{R}$ tel que :

$$b = (2 - \operatorname{tr}(A)) \left(\frac{a}{a^2 - 1}\right)^2.$$

Or X(b) est un commutateur dans en vertu du résultat de la question **I.4.a**), valable aussi dans les cas $\mathbb{K} = \mathbb{R}$, la matrice A est un commutateur de $\mathbf{SL}(2,\mathbb{R})$, donc il existe $U, V \in \mathbf{SL}(2,\mathbb{R})$ tel que $A = UVU^{-1}V^{-1}$.

Par ailleurs si $A = I_2$ alors $A = UVU^{-1}V^{-1}$ pour $U = V = I_2$.

Il en découle que $\forall A \in \mathbf{SL}(2,\mathbb{R}) \setminus \{-I_2\}, \exists U, V \in \mathbf{SL}(2,\mathbb{R}) \text{ tel que } A = UVU^{-1}V^{-1}.$

1.9.b) On a
$$UV = -VU$$
, donc $U = -VUV^{-1}$, donc

$$\operatorname{tr}(U) = -\operatorname{tr}(VUV^{-1}) = -\operatorname{tr}(U),$$

donc $2\operatorname{tr}(U) = 0$ et finalement $\operatorname{tr}(U) = 0$. La matrice U ne peut être scalaire car sinon elle serai nulle donc elle est non scalaire et $\det(U) = 1$ et $\operatorname{tr}(U) = 0$, tout comme $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ car $\operatorname{tr}(J) = 0$ et $\det(J) = 1$, donc $U \sim J$.

• Il existe donc $P \in \mathbf{GL}(2,\mathbb{R})$ tel que $U = P^{-1}JP$. Comme UV = -VU, on peut dire que si on pose $V' = PVP^{-1}$, on a JV' = -V'J. Posons $V' = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ avec $a, b, c, d \in \mathbb{R}$, de JV' = -V'J on déduit que

$$\left(\begin{array}{cc} -b & -d \\ a & c \end{array}\right) = -\left(\begin{array}{cc} c & -a \\ d & -b \end{array}\right),$$

donc -a = d et b = c donc $V' = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}$, donc

$$\det(V) = \det(V') = -(a^2 + b^2) \le 0,$$

donc $V \notin \mathbf{SL}(2, \mathbb{R})$.

- On vient de prouver que $-I_2$ n'est pas un commutateur car sinon on aurait la relation $-I_2 = UVU^{-1}V^{-1}$ avec $U, V \in \mathbf{SL}_2(\mathbb{R})$, ce qui fait VU = -UV, chose impossible d'après ce qui précède.
- En terme de synthèse on a prouvé que l'ensemble des commutateurs de $\mathbf{SL}(2,\mathbb{R})$ c'est $\mathbf{SL}(2,\mathbb{R})\setminus\{-I_2\}$. Donc :

$$\{ABA^{-1}B^{-1}/A, B \in \mathbf{SL}(2, \mathbb{R})\} = \mathbf{SL}(2, \mathbb{R}) \setminus \{-I_2\}.$$

I.10.a) On a $A = S_1S_2 \Leftrightarrow AS_2^{-1} = S_1 \Leftrightarrow A(T_1 + iT_2) = T_1' + iT_2' \Leftrightarrow$ $\begin{cases} AT_1 = T_1' \\ AT_2 = T_2' \end{cases}$. Il en découle que pour tout nombre complexe λ , on a $\begin{cases} AT_1 = T_1' \\ \lambda AT_2 = \lambda T_2' \end{cases}$ et par sommation terme à terme $A(T_1 + \lambda T_2) = T_1' + \lambda T_2'$. L'application

$$g: \lambda \mapsto \det(T_1 + \lambda T_2)$$

est polynômiale non nulle car $g(i) = \det(S_2) \neq 0$, donc l'ensemble des racines de l'équation $g(t) = 0, t \in \mathbb{R}$ est fini, donc il existe au moins un réel λ tel que $g(\lambda) \neq 0$, c'est-à-dire la matrice $T_1 + \lambda T_2$ est inversible.

I.10.b) Pour le réel λ trouvé ci-dessus, on a $A(T_1 + \lambda T_2) = T'_1 + \lambda T'_2$, donc en posant $S'_1 = T'_1 + \lambda T'_2$ et $S'_2 = (T_1 + \lambda T_2)^{-1}$ on a $A = S'_1 S'_2$ et comme T_1, T_2, T'_1, T'_2 sont symétriques on a S'_1 et S'_2 sont symétriques réelle et bien entendu la matrice S'_2 est inversible car c'est l'inverse d'une matrice inversible.

I.11.a) H est un sous-groupe normal de $SL(2,\mathbb{R})$ tel que'il existe $A \in H$ avec $A \neq \pm I_2$. D'après la question **I.8)** la matrice A satisfait l'une des conditions de similitude suivantes dans $GL(2,\mathbb{R})$:

 \Rightarrow Soit A est semblable à une matrice de la forme : $X_0 = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ dans notre cas $\lambda_1 \lambda_2 = 1$ et comme $A \neq \pm I_2$, on a $\lambda_2 = \lambda_1^{-1}$ et $\lambda_1^2 \neq 1$, donc en posant $\lambda = \lambda_1$, on a $A \sim X_0 = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$, cette similitude ayant lieu dans $\mathbf{GL}(2, \mathbb{R})$, donc il existe $P \in \mathbf{GL}(2, \mathbb{R})$. tel que $X_0 = PAP^{-1}$.

→Si det(P) > 0, on pose $\delta = \sqrt{\det(P)}$ et $P' = \frac{1}{\delta}P$, alors $P' \in \mathbf{SL}(2, \mathbb{R})$ et on a toujours $X_0 = P'AP'^{-1}$, et comme H est normal dans $\mathbf{SL}(2, \mathbb{R})$, on a $X_0 \in H$.

⇒Si det(P) < 0, on note u l'endomorphisme canoniquement associé à A et $\Omega = (\omega_1, \omega_2)$ la matrice de passage de A à X_0 , on considère $\mathscr{V} = (\omega_1', \omega_2')$ tel que $\omega_1' = -\omega_1$ et $\omega_2' = \omega_2$, alors $u(\omega_1) = \lambda \omega_1$, $u(\omega_2) = \lambda^{-1}\omega_2$, ce qui fournit aussi $u(\omega_1') = \lambda \omega_1'$, $u(\omega_2') = \lambda^{-1}\omega_2'$, donc $\max_{\mathscr{V}}(u) = X_0$, par ailleurs la matrice de passage de la base canonique \mathscr{E} à \mathscr{V} est $P_2 = \mathcal{P}_{\mathscr{E}}^{\mathscr{V}} = \mathcal{P}_{\mathscr{E}}^{\Omega} \mathcal{P}_{\Omega}^{\mathscr{V}} = PQ$ avec

 $Q = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, donc $\det(P_2) = \det(P) \det(Q) = -\det(P) > 0$ et on termine comme ci-dessus en utilisant $\delta_2 = \sqrt{\det(P_2)}$.

ightharpoonupSoit A est semblables à une matrice de la forme $X_1 = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ avec $\lambda \in \mathbb{R}$ et dans notre cas $\det(A) = 1$, donc $\lambda^2 = 1$ donc $\lambda = 1$ ou $\lambda = -1$

Si $\lambda = -1$, posons $Y_1 = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$ alors il existe $P_1 \in \mathbf{GL}(2, \mathbb{R})$ tel que

 $Y_1 = P_1 A P_1^{-1}$, donc $Y_1^2 = P_1 A^2 P_1^{-1}$ or $Y_1^2 = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$, il en découle en vertu

de la question **I.3.d**) que $Y_1^2 \sim X_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, donc il existe $P \in \mathbf{GL}(2, \mathbb{R})$ tel que $X_1 = PA^2P^{-1}$.

ightharpoonupSi $\det(P) > 0$, on construite $P' = \frac{1}{\delta}P \in \mathbf{SL}(2,\mathbb{R})$ tel que $X_1 = P'A^2P'^{-1}$ donc $X_1 \in H$.

→Si $\det(P) < 0$, si on note u l'endomorphisme canoniquement associé à A^2 et $\Omega = (\omega_1, \omega_2)$ tel que $\max_{\Omega} (u) = X_1$, on pose $\mathscr{V} = (V_1, V_2)$ avec

$$V_1 = -\omega_1$$
 et $V_2 = \omega_2$,

 $\operatorname{donc} \left\{ \begin{array}{l} u(V_1) = -u(\omega_1) = -\omega_1 = V_1 \\ u(V_2) = u(\omega_2) = \omega_1 + \omega_2 = -V_1 + V_2 \end{array} \right., \operatorname{de} \operatorname{sorte} \operatorname{que} \max_{\mathscr{V}} (u) = \left(\begin{array}{l} 1 & -1 \\ 0 & 1 \end{array} \right).$ On observe que cette matrice c'est X_1^{-1} , $\operatorname{donc} X_1^{-1} = P_2 A^2 P_2^{-1}$ avec P_2 la matrice de passage de \mathscr{E} à \mathscr{V} donc

$$P_2 = \mathcal{P}_{\mathscr{E}}^{\mathscr{V}} = \mathcal{P}_{\mathscr{E}}^{\Omega} \mathcal{P}_{\Omega}^{\mathscr{V}} = PQ,$$

avec $Q = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, par suite $\det(P_2) = \det(P) \det(Q) = -\det(P)$ et alors $\det(P_2) > 0$. En adoptant la construction de $P_2' = \frac{1}{\delta}P_2$ avec $\delta = \sqrt{\det(P_2)}$, on se ramène à X_1^{-1} est conjuguée avec A^2 donc $\mathbf{SL}(2,\mathbb{R})$ et comme H est normal dans $\mathbf{SL}(2,\mathbb{R})$ et $A^2 \in H$, on a $X_1^{-1} \in H$, par suite $X_1 \in H$.

Si $\lambda = 1$ alors A est semblable à $X_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, similitude ayant lieu dans $\mathbf{GL}(2, \mathbb{K})$, on écrit $X_1 = PAP^{-1}$ avec $P \in \mathbf{GL}(2, \mathbb{R})$ et on fait comme ne haut en discutant les cas $\det(P) > 0$ puis $\det(P) < 0$.

- Soit A est semblables à une matrice de la forme $X_2 = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ avec $a, b \in \mathbb{R}$ et pour notre cas $\det(A) = 1$ donc $a^2 + b^2 = 1$ et $b \neq 0$. On écrit $X_2 = PAP^{-1}$ avec $P \in \mathbf{GL}(2, \mathbb{R})$ et on discute deux cas :
- →Si $\det(P) > 0$, on considère $P' = \frac{1}{\delta}P$ avec $\delta = \sqrt{\det(P)}$ et on a alors

$$X_2 = P'AP'^{-1}$$
 avec $P' \in \mathbf{SL}(2, \mathbb{R}),$

donc $X_2 \in H$ car H est normal dans $\mathbf{SL}(2,\mathbb{R})$ et $A \in H$.

→Si det(P) < 0, on considère u l'endomorphisme canoniquement associé à A et $\Omega = (\omega_1, \omega_2)$ tel que $\max_{\Omega}(u) = X_2$, donc $u(\omega_1) = a\omega_1 + b\omega_2$ et $u(\omega_2) = -b\omega_1 + a\omega_2$, on prend $\mathscr{V} = (V_1, V_2)$ avec $V_1 = -\omega_1$ et $V_2 = \omega_2$, donc

$$\begin{cases} u(V_1) = -u(\omega_1) = -a\omega_1 - b\omega_2 = aV_1 - bV_2 \\ u(V_2) = u(\omega_2) = bV_1 + aV_2 \end{cases}$$

de sorte que la matrice de u relativement à \mathscr{V} est $Y_2 = \max_{\mathscr{V}}(u) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ qui est de la forme de $X_2 = \begin{pmatrix} a & -c \\ c & a \end{pmatrix}$ avec $a, c \in \mathbb{R}, c \neq 0$ et $a^2 + c^2 = 1$. Par ailleurs la matrice de passage de la base canonique à \mathscr{V} est

$$P_2 = \mathcal{P}_{\mathcal{E}}^{\mathcal{V}} = \mathcal{P}_{\mathcal{E}}^{\Omega} \mathcal{P}_{\Omega}^{\mathcal{V}} = PQ$$

avec $Q = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, de sorte que

$$\det(P_2) = \det(PQ) = \det(P)\det(Q) = -\det(P) > 0,$$

donc on peut procéder comme on a fait en haut en considérant $\delta = \sqrt{\det(P_2)}$ et $P_2' = \frac{1}{\delta}P_2$ et la similitude deviens dans $\mathbf{SL}(2,\mathbb{R})$ donc $X_2 \in H$.

Conclusion : Tout ce qui précède montre que si H est un sous-groupe normale de $\mathbf{SL}(2,\mathbb{R})$ qui comporte une matrice $A \neq \pm I_2$ alors H contient l'une des matrices suivantes :

$$X_0 = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}, X_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, X_2 = \begin{pmatrix} a & -c \\ c & a \end{pmatrix},$$

avec $\gamma \in \mathbb{R}$, $a, c \in \mathbb{R}$ tel que $\gamma^2 \neq 1$ et $a^2 + c^2 = 1$ et $c \neq 0$.

 $\boxed{\textbf{I.11.b)}}$ On a $Z(c) \in H$

 \Rightarrow Si H contient $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ on procède comme au **I.4.b**)

ightharpoonup Si H contient $A = \begin{pmatrix} a & -c \\ c & a \end{pmatrix}$, on échange les rôles de X_1 et A dans le $\mathbf{I.4.b}$), $Z(c) \in H$ et on peut conclure que H contient X_0 .

I.11.c) S'il existe $A \neq \pm I_2$ dans H alors H contient X_0 donc X(b). \Rightarrow Soit $B \in SL(2, \mathbb{R})$.

- $ightharpoonup \operatorname{Si} B = I_2 \text{ alors } B \in H,$
- Si $B \neq \pm I_2$ alors il existe $P \in GL(2,\mathbb{R})$ telle que $B = PX(b)P^{-1}$.
- →Si det P > 0, pas de problème.
- \rightarrow Si det P < 0, on procède comme aux questions précédentes : on pose

$$Q = \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right).$$

On a alors

$$Q^{-1}X(b)Q = \begin{pmatrix} b+1 - \frac{b}{a^2} & (b+1)\left(\frac{1}{a^2} - 1\right) \\ b\left(a^2 - 1\right) & b+1 - a^2b \end{pmatrix} = X'(b),$$

dans ce cas $A = PQX'(b)(PQ)^{-1}$ avec det PQ = 1 (on a $X'(b) = X_{a^{-1}}(b)$). On peut alors conclure, $B \in H$.

➤Conclusion : On en déduit alors que les sous-groupes normaux de $SL(2, \mathbb{R})$ sont $\{I_2\}$, $\{I_2, -I_2\}$ et $SL(2, \mathbb{R})$

 \Rightarrow Justification de $-I_2 \in H$: si H sous-groupe contient $SL(2,\mathbb{R}) \setminus \{-I_2\}$, alors

$$X_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in H \quad \text{et} \quad Y_1 = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \in H,$$

donc $-I_2 = X_1 Y_1 \in H$, donc $-I_2 \in H$.

PARTIE II

II.1) On a $\alpha^n = 1$ et $n \in \mathbb{N}^*$, il en découle que dans le groupe (\mathbb{C}^*, \times) , le nombre complexe α est d'ordre fini. Notons p l'ordre de α alors p est le plus petit entier naturel non nul qui vérifie $\alpha^p = 1$ et on sait alors que p|n.

(ii) \Rightarrow (ii) : Si $x \in E_i$ alors $uv(x) = \alpha vu(x) = \alpha v\left(\alpha^i x\right) = \alpha^{i+1}v(x)$ donc $v(x) \in E_{i+1}$ i.e. $v\left(E_i\right) \subset E_{i+1}$. Comme v est un automorphisme

$$\dim v(E_i) = \dim E_i = \dim E_{i+1},$$

donc $v(E_i) = E_{i+1}$ (on fait de même avec i = p).

 \Rightarrow (ii) \Rightarrow (i) si $x \in E_i$ alors $u(v(x)) = \alpha^{i+1}v(x)$ car $v(x) \in E_{i+1}$ et de plus on a $\alpha vu(x) = \alpha v\left(\alpha^i x\right) = uv(x)$.

II.3) $ightharpoonup
m{Si} \ \alpha I$ est un commutateur de $GL(n,\mathbb{C})$ on a : $UVU^{-1}V^{-1} = \alpha I$ et en prenant les déterminants, on obtient immédiatement $\alpha^n = 1$.

ightharpoonupRéciproquement : si $\alpha^n = 1$, on définit l'endomorphisme u comme à la question II.1), et v pour que $v(E_i) = E_{i+1}$ alors $uv = \alpha vu$ ce qui donne avec les matrices : $UV = \alpha IVU$ et c'est qu'il fallait démontrer.

 $\overline{[\mathbf{II.4})}$ Il suffit de s'inspirer du $\mathbf{II.2}$), avec $j=e^{i2\pi/3}$ on a

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha^2 \end{pmatrix}, \quad V = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

 et

$$U^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \alpha^2 & 0 \\ 0 & 0 & \alpha \end{pmatrix}, \quad V^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

et après calcul on trouve bien :

$$UVU^{-1}V^{-1} = \alpha I_3.$$