Centre Salmane Al Farissi CPGE , Salé.

Donné le : 06 - 10 - 2025

DEVOIR SURVEILLE 1 2025/2026 Commun pour les classes : Durée : 4h MP1,MP2,MP3.

Soit \mathbb{K} un corps.

- $\mathcal{M}_n(\mathbb{K})$ désigne l'anneau des matrices carrées d'ordre n à coefficients dans \mathbb{K} , I la matrice unité.
- $GL(n, \mathbb{K})$ le groupe des matrices inversibles de $\mathcal{M}_n(\mathbb{K})$ et $SL(n, \mathbb{K})$ le sous-groupe des matrices de determinant 1.
- Si $A \in \mathcal{M}_n(\mathbb{K})$, ${}^t\!A$ désigne la matrice transposée de A, $\operatorname{tr}(A)$ la somme des coefficients diagonaux de A.
- On appelle commutateur tout élément de la forme $UVU^{-1}V^{-1}$, où U et V appartiennent à $\mathbf{GL}(n,\mathbb{K})$.
- Un sous-groupe H d'un groupe G est dit normal si quels que soient $h \in H, g \in G, ghg^{-1}$ appartient à H.
- ullet On note $\mathbb C$ le corps des nombres complexes et $\mathbb R$ celui des nombres réels.
- On rappelle que deux matrices $A, B \in \mathcal{M}_n(\mathbb{K})$ sont semblables si et seulement si il existe $P \in \mathbf{GL}(n, \mathbb{K})$ tel que $B = P^{-1}AP$ si et seulement si A et B représentent le même endomorphisme de \mathbb{K}^n dans des bases respectives de \mathbb{K}^n .
- On rappelle que deux matrices semblables ont même trace et même déterminant et que si u est un endomorphisme de \mathbb{K}^n alors sa trace $\mathrm{tr}(u)$ est celle d'une matrice qui le représente et son determinant $\mathrm{det}(u)$ est celui d'une matrice qui le représente.

Partie I

1. Une caractérisation des homothéties

Soit E un \mathbb{K} -espace vectoriel de dimension 2 et $\mathscr{B} = (b_1, b_2)$ une base de E. Soit u un endomorphisme de E tel que :

- (1) $\forall x \in E, (x, u(x))$ est une famille liée
- (a) Justifier l'existence de $\lambda_1, \lambda_2 \in \mathbb{K}$ tel que $u(b_1) = \lambda_1 b_1$ et $u(b_2) = \lambda_2 b_2$.
- (b) Démontrer que $\lambda_1 = \lambda_2$. On note λ la valeur commune de λ_1 et λ_2 .
- (c) Démontrer que u est l'homothétie vectorielle $\lambda \operatorname{Id}_E$ de rapport λ .

2. Caractérisation des matrices semblables dans $\mathcal{M}_2(\mathbb{K})$

- (a) Soit E un \mathbb{K} -espace vectoriel de dimension 2, u un endomorphisme de E et $e \in E$ tel que $\mathscr{E} = (e, u(e))$ est une base de E. Démontrer que la matrice de u dans la base \mathscr{E} est $A = \begin{pmatrix} 0 & -\delta \\ 1 & \tau \end{pmatrix}$ où $\delta = \det(u)$ et $\tau = \operatorname{tr}(u)$.
- (b) Démontrer que toute matrice $M \in \mathcal{M}_2(\mathbb{K})$ est soit scalaire soit semblable à $M' = \begin{pmatrix} 0 & -d \\ 1 & t \end{pmatrix}$ où $t = \operatorname{tr}(M)$ et $d = \det(M)$
- (c) En déduire que deux matrices X et Y non scalaires de $\mathcal{M}_2(\mathbb{K})$ sont semblables si et seulement si elles ont même trace et même determinant. Quand est ce que deux matrices scalaires λI_2 et μI_2 sont semblables?

(d) Soit
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

- i. Vérifier que tr(A) = tr(B) et det(A) = det(B) et que A et B ne sont pas scalaires.
- ii. A et B sont elles semblables?
- (e) Donner un exemple de deux matrices non scalaires A et B de $\mathcal{M}_4(\mathbb{R})$ qui ont même trace et même déterminant et qui ne sont pas semblables.

3. Caractérisation des matrices semblables dans $\mathcal{M}_2(\mathbb{C})$

(a) Démontrer que pour tout $s, p \in \mathbb{C}$, le système :

(1)
$$\begin{cases} z_1 + z_2 = s \\ z_1 z_2 = p \end{cases}$$

admet des solutions. A quelle condition sur s et p le système (1) admet-il une solution unique?

- (b) Soit $A \in \mathcal{M}_2(\mathbb{C})$. Montrer que A est semblable à une matrice ayant l'une des formes suivantes :
 - (1) $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ avec $(\lambda_1, \lambda_2) \in \mathbb{C}^2$
 - (2) $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ avec $\lambda \in \mathbb{C}$.
- (c) Soit $A \in \mathcal{M}_2(\mathbb{C})$. On note $d = \det(A)$ et $t = \operatorname{tr}(A)$. Quelle relation doit lier d et t pour que A soit semblable à un matrice de la forme (2) ci-dessus?
- (d) Soit $\lambda, \mu \in \mathbb{C}$ tel que $\mu \neq 0$. Démontrer que les matrices $\begin{pmatrix} \lambda & \mu \\ 0 & \lambda \end{pmatrix}$ et $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ sont semblables.

4. Caractérisation des commutateurs dans $\mathcal{M}_2(\mathbb{C})$

- (a) Soit $A \in \mathcal{M}_2(\mathbb{C})$. Vérifier que si A est un commutateur, alors PAP^{-1} est un commutateur quel que soit $P \in \mathbf{GL}(2,\mathbb{C})$.
- (b) Soit $U = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $V = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, où $i^2 = -1$. Calculer $UVU^{-1}V^{-1}$.
- (c) Soit $a \neq 0$ un nombre complexe tel que $a^2 \neq 1$. Calculer pour $b \in \mathbb{C}$, $\operatorname{tr}(X(b))$ où

$$X(b) = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} 1 & b \\ 1 & b+1 \end{pmatrix} \begin{pmatrix} a^{-1} & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} b+1 & -b \\ -1 & 1 \end{pmatrix}$$

En déduire que si $A \neq \pm I$ est une matrice de déterminant égal à 1, alors il existe $b \in \mathbb{C}$ tel que A soit semblable à X(b).

- (d) Pour $A \in \mathcal{M}_2(\mathbb{C})$, démontrer que les conditions suivantes sont équivalentes :
 - (i) $\det A = 1$;
 - (ii) $A = UVU^{-1}V^{-1}$, où U et V appartiennent à $\mathbf{SL}(2,\mathbb{C})$.

5. Décomposition en produit de deux matrices symétriques dans $\mathcal{M}_2(\mathbb{C})$

(a) Soit $A \in \mathcal{M}_2(\mathbb{C})$. Montrer qu'il existe $P \in \mathbf{GL}(2,\mathbb{C})$ tel que $A = PSP^{-1}$ où S est une matrice symétrique.

- (b) Montrer que $A = S_1S_2$ où S_1 et S_2 sont des matrices symétriques et où S_2 est inversible. (On pourra introduire la matrice $PS^{t}P$).
- 6. Sous-groupes normaux de $SL(2, \mathbb{C})$
 - (a) Soit H un sous-groupe normal de $\mathbf{SL}(2,\mathbb{C})$ contenant une matrice $A \neq \pm I$. Montrer que H contient une matrice de l'une des deux formes suivantes :

$$X_0 = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}, \lambda^2 \neq 1; X_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

(b) Pour $a \in \mathbb{C}$, montrer que pour tout $c \in \mathbb{C}$ tel que $c(c^2 + 4) \neq 0$ et $c^2 + a^2 = 1$, la matrice Z(c) suivante :

$$Z(c) = \begin{pmatrix} a & -c \\ c & a \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & c \\ -c & a \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$$

est semblable à une matrice diagonale.

En déduire que H contient toujours une matrice de la forme X_0 .

- (c) Montrer que $H = \mathbf{SL}(2, \mathbb{C})$ et déterminer tous les sous-groupes normaux de $\mathbf{SL}(2, \mathbb{C})$. (On pourra utiliser les matrices X(b) introduites dans 2)c)).
- 7. Lien entre similitude dans $\mathcal{M}_2(\mathbb{C})$ et dans $\mathcal{M}_2(\mathbb{R})$

Soient M et M' deux matrices de $\mathcal{M}_2(\mathbb{R})$ semblables dans $\mathcal{M}_2(\mathbb{C})$, c'est-à-dire qu'il existe $P \in \mathbf{GL}(2,\mathbb{C})$ tel que $M' = P^{-1}MP$. On se propose de démontrer que M et M' sont semblables dans $\mathcal{M}_2(\mathbb{R})$. Pour cela on pose $P = P_1 + iP_2$ avec P_1 et P_2 deux matrices de $\mathcal{M}_2(\mathbb{R})$. Pour tout nombre complexe $t \in \mathbb{C}$, on pose $f(t) = \det(P_1 + tP_2)$.

- (a) Montrer que $P_1M' = MP_1$ et $P_2M' = MP_2$.
- (b) Démontrer que pour tout $t \in \mathbb{C}$, on a $f(t) = t^2 \det(P_2) + \lambda t + \det(P_1)$ où λ est un nombre complexe qu'on ne demande pas de calculer.
- (c) Démontrer que la polynôme $L(X) = \det(P_2)X^2 + \lambda X + \det(P_1)$ est un polynôme non nul de $\mathbb{C}[X]$.
- (d) En déduire qu'il existe aux moins un nombre réel t_0 tel que $f(t_0) \neq 0$. On pose alors $Q = P_1 + t_0 P_2$.
- (e) Justifier que $Q \in \mathbf{GL}(2,\mathbb{R})$ et en utilisant le résultat de la question **I.7.a**), démontrer que $M' = Q^{-1}MQ$.
- (f) Conclure.
- 8. **Application**: Soit $A \in \mathcal{M}_2(\mathbb{R})$. Montrer qu'il existe un matrice $P \in \mathbf{GL}(2, \mathbb{R})$ tel que $B = PAP^{-1}$ soit de la forme $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ ou $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ ou $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ où $\lambda, \lambda_1, \lambda_2, a$ et b appartiennent à \mathbb{R} .
- 9. Caractérisation des commutateurs dans $\mathcal{M}_2(\mathbb{R})$.
 - (a) Soient $a \neq 0$ un nombre réel tel que $a^2 \neq 1$, $A \neq \pm I$ une matrice de $\mathbf{SL}(2,\mathbb{R})$. Montrer qu'il existe $b \in \mathbb{R}$ tel que X(b) soit semblable à A. En déduire que si A est un élément de $\mathbf{SL}(2,\mathbb{R})$, tel que $A \neq -I$, alors $A = UVU^{-1}V^{-1}$, où U et V appartiennent à $\mathbf{SL}(2,\mathbb{R})$.

- (b) Soient $U \in \mathbf{SL}(2,\mathbb{R})$, $V \in \mathbf{GL}(2,\mathbb{R})$ tels que UV = -VU. Montrer que $\mathrm{tr}(U) = 0$ et que U est semblable à la matrice $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. En déduire que V n'appartient pas à $\mathbf{SL}(2,\mathbb{R})$ et déterminer l'ensemble des commutateurs $ABA^{-1}B^{-1}$ où A et B décrivent $\mathbf{SL}(2,\mathbb{R})$.
- 10. Décomposition en produit de deux matrices symétriques dans $\mathcal{M}_2(\mathbb{R})$. Soit A une matrice de $\mathcal{M}_2(\mathbb{R})$. D'après la question $\mathbf{I.5.b}$), on a $A = S_1S_2$ où S_1 et S_2 sont des matrices symétriques complexes et où S_2 est inversible. On pose

$$S_2^{-1} = T_1 + iT_2, S_1 = T_1' + iT_2'$$

où T_1, T_2, T_1', T_2' sont des matrices à coefficients réels.

- (a) Montrer que pour tout nombre complexe λ , $A(T_1 + \lambda T_2) = T_1' + \lambda T_2'$. Montrer qu'il existe au moins un nombre réel λ tel que la matrice $T_1 + \lambda T_2$ soit inversible.
- (b) Montrer que toute matrice réelle d'ordre 2, A, peut s'écrire $A = S_1'S_2'$ où S_1' et S_2' sont deux matrices symétriques réelles, et où S_2' est inversible.
- 11. Sous-groupes normaux de $SL(2, \mathbb{R})$
 - (a) Soit H un sous-groupe normal de $\mathbf{SL}(2,\mathbb{R})$ contenant une matrice A tel que

$$A \neq I$$
 et $A \neq -I$.

Montrer que H contient une matrice de l'une des trois formes suivantes

$$X_0 = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}, \lambda^2 \neq 1; X_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}; X_2 = \begin{pmatrix} a & -c \\ c & a \end{pmatrix}, c \neq 0.$$

- (b) Montrer que H contient toujours une matrice de la forme X_0 .
- (c) Déterminer tous les sous-groupes normaux de $\mathbf{SL}(2,\mathbb{R})$.

Partie II

Soit E un \mathbb{C} —espace vectoriel de dimension n > 1 et soit $\alpha \neq 1$ un nombre complexe tel que $\alpha^n = 1$; p désigne le plus petit des entiers r non nuls tels que $\alpha^r = 1$.

1. Montrer que p divise n. On pose n=pm et soit $(E_i)_{0\leq i\leq p-1}$, une famille de p espaces vectoriels de dimension m tels que $E=\bigoplus_{i=0}^{p-1}E_i$. On définit un automorphisme u de E en posant

$$u(x) = \alpha^i x, x \in E_i, 0 \le i \le p - 1.$$

- 2. Pour un automorphisme v de E, montrer que les conditions suivantes sont équivalentes :
 - (i) $u \circ v = \alpha(v \circ u)$
 - (ii) $v(E_i) = E_{i+1}$, pour tout $i \in [0, p-2]$ et $v(E_{p-1}) = E_0$.
- 3. Soit α un nombre complexe tel que $\alpha \neq 0$. Montrer que αI est un commutateur de $\mathbf{GL}(n,\mathbb{C})$ si et seulement si $\alpha^n = 1$.
- 4. Soit α une racine troisième de 1 tel que $\alpha \neq 1$. Déterminer explicitement deux éléments U et V de $\mathbf{SL}(3,\mathbb{C})$ tels que $UVU^{-1}V^{-1} = \alpha I$.