EXERCICE

- 1. (a) Soit $(x,t) \in \mathbb{R} \times \mathbb{R}^+$, alors $|f(x,t)e^{-t}| = |f(x,t)|e^{-t} \le Me^{-t}$.
 - (b) Soit $x \in \mathbb{R}$.La fonction $t \mapsto f(x,t)e^{-t}$ est continue sur $[0,+\infty[$. D'après a) ci-dessus elle est intégrable sur $[0,+\infty[$ car majorée par une fonction intégrable sur $[0,+\infty[$, donc φ_f est bien définie sur \mathbb{R} .
 - (c) Soit $x \in \mathbb{R}$. Pour tout t > 0, on a $|f(x,t)|e^{-t} \leq Me^{-t}$ et $\lim_{t \to +\infty} e^{-t} = 0$, donc $\lim_{t \to +\infty} f(x,t)e^{-t} = 0$.
- 2. (a) Les fonctions g et h sont bornées sur $\mathbb{R} \times \mathbb{R}^+$, donc d'après la question 1), les fonctions φ_g et φ_h sont bien définies sur \mathbb{R} .
 - (b) On a $\varphi_g(x) = \int_0^{+\infty} \cos(xt)e^{-t}dt = [-\cos(xt)e^{-t}]_0^{+\infty} x \int_0^{+\infty} \sin(xt)e^{-t}dt$. On sait que $\lim_{t\to +\infty} (-\cos(xt)e^{-t}) = 0$ et la valeur de la quantité dans le crochet en t=0 est -1, donc $\varphi_g(x) = 1 x\varphi_h(x)$.
 - (c) On a $\varphi_h(x) = \int_0^{+\infty} \sin(xt)e^{-t}dt = [-\sin(xt)e^{-t}]_0^{+\infty} + x \int_0^{+\infty} \cos(xt)e^{-t}dt$. On sait que $\lim_{t\to +\infty} (-\cos(xt)e^{-t}) = 0$ et la valeur de la quantité dans le crochet en t=0 est 0, donc $\varphi_h(x) = x\varphi_q(x)$.
 - (d) Compte tenu des deux relations ci dessus, pour tout $x \in \mathbb{R}$, on a : $\varphi_g(x) = 1 x\varphi_h(x) = 1 x^2\varphi_g(x)$, donc $(1+x^2)\varphi_g(x) = 1$, et finalement $\varphi_g(x) = \frac{1}{1+x^2}$
 - (e) Soit $x \in]0, +\infty[$, alors $\int_0^x \varphi_g(t) dt + \int_0^{\frac{1}{x}} \varphi_g(t) dt = \arctan(x) + \arctan(\frac{1}{x}) = \frac{\pi}{2}$. D'après la relation liant φ_h et φ_g , on a $\varphi_h(x) = \frac{1}{x}(1 - \frac{1}{1+x^2}) = \frac{x}{1+x^2}$, donc pour tout $x \in]0, +\infty[$, on a

$$\int_0^x \varphi_h(t) dt + \int_0^{\frac{1}{x}} \varphi_h(t) dt = \frac{1}{2} \ln(1+x^2) - \frac{1}{2} \ln(1+\frac{1}{x^2})$$
$$= \frac{1}{2} (\ln(1+x^2) - \ln(1+x^2) + 2\ln(x))$$
$$= \ln(x)$$

PROBLÈME

Partie 1 : Étude d'une série géométrique particulière et son application

- 1. (a) Soit $x \in \mathbb{R}$ tel que $x \neq 1$, alors $\sum_{k=0}^{n} f_k(x) = \sum_{k=0}^{n} x^k = \frac{1-x^{n+1}}{1-x}$ (somme des n+1 premiers termes d'une suite géométrique de raison x avec $x \neq 1$.
 - (b) En dérivant la relation ci-dessus par rapport x, il vient

$$\sum_{k=1}^{n} kx^{k-1} = \frac{-(n+1)x^n(1-x) + 1 - x^{n+1}}{(1-x)^2} = \frac{nx^{n+1} - (n+1)x^n + 1}{(1-x)^2}$$

- (c) i. Soit $x \in]-1,1[$, alors
 - \bullet Si x=0, la suite est nulle à partire de n=1, donc sa limite est nulle,
 - si $x \neq 0$, alors $\ln(|nx^n|) = \ln(n) + n \ln(|x|) = n \left(\ln(|x|) + \frac{\ln(n)}{n}\right)$, comme $\ln(|x|) < n$

0 et $\lim_{n\to+\infty} \frac{\ln(n)}{n} = 0$, on a $\lim_{n\to+\infty} \ln(|nx^n|) = -\infty$, donc $\lim_{n\to+\infty} |nx^n| = 0$ donc $\lim_{n\to+\infty} (nx^n) = 0$..

- Une deuxième méthode consiste à remarquer que par la régle de D'Alembert la série $\sum nx^n$ est absolument convergente, donc son terme général tend vers 0.
- Une troisième méthode : La série entière $\sum nx^n$ a 1 pour rayon de convergence car c'est la série entière dérivée de $\sum x^n$, donc elle converge absolument pour |x| < 1, donc son terme général converge vers 0.
- ii. D'après I)1)b) la somme partielle d'ordre n de la série $\sum n f_{n-1}(x)$ est

$$S_n = \sum_{k=1}^n kx^{k-1} = \frac{nx^{n+1} - (n+1)x^n + 1}{(1-x)^2},$$

donc $\lim_{n\to+\infty} S_n = \frac{1}{(1-x)^2}$, puisque le numérateur est $(x-1)(nx^n) - x^n + 1$, converge vers 1 car $\lim_{n\to+\infty} nx^n = \lim_{n\to+\infty} x^n = 0$. Il en découle que la série demandée est convergente et sa somme est $\sum_{n=0}^{+\infty} nx^{n-1} = \frac{1}{(1-x)^2}$.

- 2. (a) Il s'agit d'une série entière $\sum_{n\geq j} \binom{n}{j} x^{n-j}$, qu'on peut par le changement d'indice n-j=k, écrire $\sum_{k\geq 0} \binom{k+j}{j} x^k$, c'est donc la série entière $\sum \alpha_k x^k$, de coefficients $\alpha_k = \binom{k+j}{j}$ pour tout $k\in\mathbb{N}$. Pour tout $k\in\mathbb{N}$, on a donc $\alpha_k>0$ et $\frac{\alpha_{k+1}}{\alpha_k}=\frac{(k+j+1)!k!}{(k+j)!(k+1)!}=\frac{k+j+1}{k+1}$, donc $\lim_{k\to +\infty} \frac{\alpha_{k+1}}{\alpha_k}=1$ et le rayon de convergence de la série entière proposée est R=1.
 - (b) On sait que toute série entière est de classe C^{∞} sur son intervalle ouvert de convergence et qu'on peut la dériver terme à terme autant de fois que l'on veut, en particulier la série entière $S_j(x)$ est dérivable et $S'_j(x) = \sum_{n \geq j+1} \binom{n}{j} (n-j) x^{n-j-1}$. Remarquons que pour tout $n \geq j+1$, on a

$$\binom{n}{j}(n-j) = (n-j)\frac{n!}{j!(n-j)!} = (j+1)\frac{n!}{(j+1)!(n-(j+1))!} = (j+1)\binom{n}{j+1},$$

ce qui permet de dire que $S'_{j}(x) = (j+1) \sum_{n \geq j+1} {n \choose j+1} x^{n-(j+1)} = (j+1) S_{j+1}(x)$.

- (c) On commence par:
 - Démarrage : Pour j=0, on a $S_0(x)=\sum_{n\geq 0}\binom{n}{0}(n-0)x^n=\sum_{n=0}^{+\infty}x^n=\frac{1}{1-x}=\frac{1}{(1-x)^{0+1}}$.
 - Hérédité : Soit $j \in \mathbb{N}$ tel que $\forall x \in]-1,1[,S_j(x)=\frac{1}{(1-x)^{j+1}},$ alors, compte tenu du résultat de la question $\mathbf{I})\mathbf{2})\mathbf{b})$, pour tout $x \in]-1,1[$, on a $S_{j+1}(x)=\frac{1}{j+1}S_j'(x)$. Par hypothèse de récurrence, on a :

$$S'_j(x) = \frac{d}{dx} \left(\frac{1}{(1-x)^{j+1}} \right) = \frac{1+j}{(1-x)^{j+2}},$$

donc $S_{j+1}(x) = \frac{1}{(1-x)^{j+2}}$, ce qui termine la démonstration du résultat demandé, en utilisant un raisonnement par récurrence.

(d) Soit $x \in]-1,1[$, pour tout $n \in \mathbb{N}^*$, on a

$$u_n = n^2 f_{n-1}(x) = n^2 x^{n-1} = [n(n-1) + n]x^{n-1},$$

donc si $n \ge 2$, on a $u_n = xn(n-1)x^{n-2} + nx^{n-1} = xw_n(x) + v_n(x)$ avec $w_n(x)$ et $v_n(x)$ sont les termes généraux des dérivées seconde et première de la série entière $S_0(x)$, donc la série est convergente et sa somme est

$$\sum_{n=1}^{+\infty} n^2 f_{n-1}(x) = x S_0''(x) + S_0'(x) = \frac{2x}{(1-x)^3} + \frac{1}{(1-x)^2}$$
$$= \frac{2x + (1-x)}{(1-x)^3} = \frac{x+1}{(1-x)^3}.$$

- 3. (a) Si on note q=1-p, alors pour tout $k \in \mathbb{N}^*$, on a $k\mathbb{P}(X=k)=kpq^{k-1}$. D'après la question $\mathbf{I}(\mathbf{I})$ La famille $(kq^{k-1})_{k\in\mathbb{N}^*}$ est sommable de somme $\frac{1}{(1-q)^2}=\frac{1}{p^2}$, donc $\mathbb{E}(X)$ existe et $\mathbb{E}(X) = \frac{p}{p^2} = \frac{1}{p}$.
 - (b) D'après la question **I)2)d)** La famille $(k^2q^{k-1})_{k\in\mathbb{N}^*}$ est sommable(car la série associée est absolument convergente) de somme $\frac{1+q}{(1-q)^3} = \frac{2-p}{p^3}$, donc $\mathbb{E}(X^2)$ existe et

$$\mathbb{E}(X^2) = \frac{2p - p^2}{p^3} = \frac{2}{p^2} - \frac{1}{p}.$$

(c) On sait que $\mathbb{V}(X)$ existe si et seulement si $\mathbb{E}(X^2)$ existe et alors

$$\mathbb{V}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \frac{2}{p^2} - \frac{1}{p} - \frac{1}{p^2} = \frac{1}{p^2} - \frac{1}{p} = \frac{1-p}{p^2}.$$

Partie 2 : La résolution d'une équation différentielle

1. Soit t un réel strictement positif. Pour tout $x \in [0, +\infty[$, on a

$$g_{(n,t)}(x) = x^n f(x,t) = x^n \frac{e^{-tx}}{1+x^2}.$$

- La fonction $x \mapsto g_{(n,t)}(x)$ est donc continue sur $[0, +\infty[$. Pour x au voisinage de $+\infty$, on a $g_{(n,t)}(x) \sim x^{n-2}e^{-tx}$, comme t>0, alors, pour x au voisinage $+\infty$, on a $g_{(n,t)}(x) = o\left(\frac{1}{x^2}\right)$, donc $\int_1^{+\infty} g_{(n,t)}(x) dx$ est convergente. • Il en découle finalement que l'intégrale $\int_0^{+\infty} g_{(n,t)}(x) dx$ est convergente.
- 2. Soit $n \in \mathbb{N}$. Pour tout réel strictement positif t, on a $h_n(t) = \int_0^{+\infty} \frac{x^n e^{-tx}}{1+x^2} dx$. Notons ul'application de $u: \mathbb{R}_+ \times \mathbb{R}_+^* \to \mathbb{R}; (x,t) \mapsto \frac{x^n e^{-tx}}{1+x^2}$. La fonction u est de classe C^1 sur $\mathbb{R}_+ \times \mathbb{R}^{+*}$ et pour tout $(x,t) \in \mathbb{R}_+ \times \mathbb{R}^{+*}$, on a : $\frac{\partial u}{\partial t}(x,t) = -\frac{x^{n+1}}{x^2+1}e^{-xt}$, de sorte que pour a > 0 fixé, on a

$$\forall (x,t) \in \mathbb{R}^+ \times [a, +\infty[, \left| \frac{\partial u}{\partial t}(x,t) \right| = \frac{x^{n+1}}{x^2 + 1} e^{-xt} \le \frac{x^{n+1}}{x^2 + 1} e^{-ax} = \psi_a(x)$$

et l'application ψ_a est continue et intégrable sur $[0, +\infty[$. Par le théorème de dérivation sous le signe intégral, la fonction h_n est de classe C^1 sur $[a, +\infty[$ pour tout a > 0, donc sur $]0, +\infty[$ et pour tout t > 0, on a la formule de Leibnitz

$$h'_n(t) = \int_0^{+\infty} \frac{\partial}{\partial t} \frac{x^n e^{-tx}}{1+x^2} dx = -\int_0^{+\infty} \frac{x^{n+1} e^{-tx}}{1+x^2} dx = -h_{n+1}(t).$$

3. Notons que les justifications de base pour l'application du théorème de dérivation sous le signe intégrale k fois, sont validée par le fait que l'application

$$u: \mathbb{R}^{+*} \times \mathbb{R}^{+*} \to \mathbb{R}, (x,t) \mapsto u(x,t) = g_{(n,t)}(x) = \frac{x^n e^{-tx}}{1+x^2},$$

est de classe C^{∞} sur l'ouvert $\mathbb{R}^{+*} \times \mathbb{R}^{+*}$. Les autres validations qui restent(l'hypothèse de domination notamment), seront traitées dans la suite.

• Pour tout $(x,t) \in]0, +\infty[^2, \text{ on a } \frac{\partial u}{\partial t^k}(x,t) = (-x)^k \frac{e^{-tx}}{1+x^2} x^n = (-1)^k x^{n+k} \frac{e^{-tx}}{1+x^2}, \text{ donc, si } a \text{ est}$ un nombre réel strictement positif, alors

$$\forall (x,t) \in]0, +\infty[\times[a, +\infty[, \left|\frac{\partial u}{\partial t^k}(x,t)\right| = x^{n+k} \frac{e^{-tx}}{1+x^2} \le x^{n+k} \frac{e^{-ax}}{1+x^2} = \psi_a(x).$$

- L'application ψ_a est continue et intégrable sur $]0, +\infty[$.
- Donc le théorème de dérivation sous le signe intégral concernant les fonctions de classe C^k s'applique et on peut dire que h_n est de classe C^k sur \mathbb{R}^{+*} et que pour tout $t \in \mathbb{R}^{+*}$, on a

$$h_n^{(k)}(t) = \int_0^{+\infty} (-1)^k x^{n+k} \frac{e^{-tx}}{1+x^2} dx = (-1)^k \int_0^{+\infty} x^{n+k} \frac{e^{-tx}}{1+x^2} dx = (-1)^k h_{n+k}(x).$$

- 4. Pour $n \in \mathbb{N}$ et t > 0, on donne $I_n(t) = \int_0^{+\infty} x^n e^{-tx} dx$.
 - (a) L'application $x \mapsto x^n e^{-tx}$ est continue sur $[0, +\infty[$. Au voisinage de $+\infty$, on a $x^n e^{-tx} =$ $o\left(\frac{1}{x^2}\right)$, donc $I_n(t)$ existe.
 - (b) On fait une intégration par parties, on a $I_n(t) = \left[-\frac{1}{t}e^{-tx}x^n\right]_0^{+\infty} + \frac{n}{t}\int_0^{+\infty}x^{n-1}e^{-tx}dx$. Le crochet est nul car puisque $n \in \mathbb{N}^*$, la quantité entre crochets est nulle pour x = 0, par ailleurs $\lim_{x \to +\infty} -\frac{1}{t}e^{-tx}x^n = 0$, donc $I_n(t) = \frac{n}{t}I_{n-1}(t)$.

 - (c) On démontre le résultat par récurrence : Pour n=0, on a $I_0(t)=\int_0^{+\infty}e^{-tx}\mathrm{d}x=\frac{1}{t}=\frac{0!}{t^{0+1}}.$
 - Soit $n \in \mathbb{N}^*$ tel que $\forall t > 0$, $In(t) = \frac{n!}{t^{n+1}}$. Soit t > 0; d'après la question II)4)b), on a $I_{n+1}(t) = \frac{n+1}{t}I_n(t)$, et d'après l'hypothèse de récurrence, on a

$$I_{n+1}(t) = \frac{n+1}{t} \frac{n!}{t^{n+1}} = \frac{(n+1)!}{t^{n+2}}.$$

On a donc démontré par récurrence que $\forall n \in \mathbb{N}, \forall t > 0, I_n(t) = \frac{n!}{t^{n+1}}$

(d) On sait d'après **II)3)** que $h''_n(t) = (-1)^2 h_{n+2}(t) = h_{n+2}(t)$. Il en découle que

$$h_n''(t) + h_n(t) = h_{n+2}(t) + h_n(t) = \int_0^{+\infty} (x^n + x^{n+2}) \frac{e^{-xt}}{1 + x^2} dx,$$

donc

$$h_n''(t) + h_n(t) = \int_0^{+\infty} x^n(x^2 + 1) \frac{e^{-xt}}{1 + x^2} dx = \int_0^{+\infty} x^n e^{-xt} dx = I_n(t) = \frac{n!}{t^{n+1}}.$$

(e) On a $h_n(t) = \int_0^{+\infty} x^n \frac{e^{-tx}}{x^2+1} dx$. On a

$$\forall t \in [1, +\infty[, \quad \left| x^n \frac{e^{-tx}}{x^2 + 1} \right| \le \frac{x^n e^{-x}}{x^2 + 1} = \varphi(x),$$

et l'application φ est continue integrable. Le théorème de convergence dominée appliqué à la famille de fonctions $(f_t)_{t\geq 1}$ définie par $f_t(x)=h_n(t)$ (l'entier naturel n ici est fixé), donne $\lim_{t\to +\infty}h_n(t)=\int_0^{+\infty}\lim_{t\to +\infty}h_t(x)=0$. D'où, pour tout $n\in\mathbb{N}$, on a $\lim_{t\to +\infty}h_n(t)=0$. 5. (a) La solution générale de l'équation différentielle $y'' + \omega^2 y = 0$ pour $\omega > 0$ donné est $y(t) = \lambda \cos(\omega t) + \mu \sin(\omega t)$, $\lambda, \mu \in \mathbb{R}$, en particulier pour le présent cas, $\omega = 1$, la solution générale de l'équation différentielle (\mathcal{EH}) y'' + y = 0 est

$$y(t) = \lambda \cos(t) + \mu \sin(t)$$
, avec $\lambda, \mu \in \mathbb{R}$.

(b) D'après la question II)4)d) on a vu que h_n est une solution de l'équation différentielle (\mathcal{E}_n) , et d'après la question II)4)d) on a $\lim_{t\to+\infty} h_n(t) = 0$. Supposons que h et k sont des solutions de (\mathcal{E}_n) alors h - k = f est une solution de $(\mathcal{E}\mathcal{H})$. Si on suppose de plus que $\lim_{t\to+\infty} h(t) = \lim_{t\to+\infty} k(t) = 0$, alors $\lim_{t\to+\infty} f(t) = 0$. D'après la question II)5)a), il existe $\lambda, \mu \in \mathbb{R}$ tel que $f(t) = \lambda \cos(t) + \mu \sin(t)$, donc si on suppose $(\lambda, \mu) \neq (0, 0)$, soit z le nombre complexe $z = \lambda + \mu i$, donc $|z| = A = \sqrt{\lambda^2 + \mu^2}$, si $\theta = \arg(z)$ alors $z = A(\cos\theta + i\sin\theta)$, donc $\begin{cases} \lambda = A\cos(\theta) \\ \mu = A\sin(\theta) \end{cases}$, et

$$f(t) = A(\cos(\theta)\cos(t) + \sin(\theta)\sin(t)) = A\cos(t - \theta).$$

On a $f(t) = A\cos(t-\theta)$ et $A \neq 0$, donc $\cos(t-\theta) = \frac{1}{A}f(t)$ et comme $\lim_{t\to +\infty} f(t) = 0$, on a une contradiction car la fonction $t\mapsto \cos(t-\theta)$ ne possède pas de limite quand t tend vers $+\infty$. Il en découle que $\lambda = \mu = 0$ et par suite que f est nulle donc que h = k, d'où l'unicité de la solution k_n de (\mathcal{E}_n) qui réalise $\lim_{t\to +\infty} k_n(t) = 0$

Partie 3 : Une autre expression de $\int_0^{+\infty} \frac{e^{-tx}}{1+x^2} dx$

- 1. On donne $k \in \mathbb{N}$, la fonction φ de classe C^k sur \mathbb{R}^{+*} et $\int_1^{+\infty} \varphi(t) dt$ est convergente. Pour tout x > 0, on a $\psi(x) = \int_x^{+\infty} \varphi(t) dt$, donc $\psi(x) = \int_1^{+\infty} \varphi(t) dt \int_1^x \varphi(t) dt$. D'après le théorème fondamental de l'analyse, la fonction ψ est de classe C^{k+1} sur $]0, +\infty[$ et $\psi^{(k+1)} = -\varphi^{(k)}$.
- 2. (a) Une intégration par parties donne

$$\int_{t}^{s} \frac{\sin(x-u)}{x} dx = \left[-\frac{\cos(x-u)}{x} \right]_{t}^{s} - \int_{t}^{s} \frac{\cos(x-u)}{x^{2}} dx$$
$$= \frac{\cos(t-u)}{t} - \frac{\cos(s-u)}{s} - \int_{t}^{s} \frac{\cos(x-u)}{x^{2}} dx$$

(b) On a $\left|\frac{\cos(x-u)}{x^2}\right| \leq \frac{1}{x^2}$ et $\int_1^{+\infty} \frac{1}{x} dx$ est convergente donc l'intégrale $\int_t^{+\infty} \frac{\cos(x-u)}{x^2} dx$ est absolument convergente, or $\lim_{s \to +\infty} \frac{\cos(s-u)}{s} = 0$ car $\left|\frac{\cos(s-u)}{s}\right| \leq \frac{1}{s} \underset{s \to +\infty}{\longrightarrow} 0$, donc l'intégrale $\int_t^{+\infty} \frac{\sin(x-u)}{x} dx$ est convergente et

$$\int_{t}^{+\infty} \frac{\sin(x-u)}{x} dx = \frac{\cos(t-u)}{t} - \int_{t}^{+\infty} \frac{\cos(x-u)}{x^{2}} dx.$$

(c) On a $\theta(t) = \int_t^{+\infty} \frac{\sin(x-t)}{x} dx$. Une intégration par parties donne

$$\theta(t) = \left[-\frac{\cos(x-t)}{x} \right]_t^{+\infty} - \int_t^{+\infty} \frac{\cos(x-t)}{x^2} dx$$

et comme cos(x - t) = cos(x)cos(t) + sin(x)sin(t), il vient

$$\theta(t) = \frac{1}{t} - \cos(t) \int_{t}^{+\infty} \frac{\cos(x)}{x^{2}} dx - \sin(t) \int_{t}^{+\infty} \frac{\sin(x)}{x^{2}} dx$$

Les deux derniers termes de $\theta(t)$ sont au signe près de la forme $\int_t^{+\infty} \varphi_j(x) dx$ pour $j \in \{1,2\}$ avec avec $\varphi_1(x) = \frac{\cos(x)}{x^2}$ et $\varphi_2(x) = \frac{\sin(x)}{x^2}$ donc φ_j satisfait les conditions de la question III)1) à savoir φ_j est de classe C^k , pour tout $k \in \mathbb{N}$, sur $]0, +\infty[$ et l'intégrale $\int_1^{+\infty} \varphi_j(x) dx$ est convergente, il en découle que les deux fonctions $t \mapsto \int_t^{+\infty} \varphi_j(x) dx$ sont de classe C^k , pour tout $k \in \mathbb{N}$. Il en découle que la fonction θ est de classe C^k , pour tout $k \in \mathbb{N}$ et on retient l'expression de θ

$$\forall t > 0, \quad \theta(t) = \frac{1}{t} - \cos(t) \int_{t}^{+\infty} \varphi_1(x) dx - \sin(t) \int_{t}^{+\infty} \varphi_2(x) dx,$$

avec

$$\forall x > 0, \quad \begin{cases} \varphi_1(x) = \frac{\cos(x)}{x^2} \\ \varphi_1(x) = \frac{\cos(x)}{x^2} \end{cases}.$$

(d) On va utiliser l'expression ci-dessus de θ pour calculer θ' et θ'' , il vient pour tout t>0,

$$\theta'(t) = -\frac{1}{t^2} + \cos(t)\varphi_1(t) + \sin(t)\varphi_2(t) + \sin(t)\int_t^{+\infty} \varphi_1(x)dx - \cos(t)\int_t^{+\infty} \varphi_2(x)dx.$$

Remarquons que $\cos(t)\varphi_1(t) + \sin(t)\varphi_2(t) = \frac{1}{t^2}$, il en découle que :

$$\theta'(t) = \sin(t) \int_{t}^{+\infty} \varphi_1(x) dx - \cos(t) \int_{t}^{+\infty} \varphi_2(x) dx.$$

Par suite:

$$\theta''(t) = -\sin(t)\varphi_1(t) + \cos(t)\varphi_2(t) + \cos(t)\int_t^{+\infty} \varphi_1(x)dx + \sin(t)\int_t^{+\infty} \varphi_2(x)dx.$$

Remarquons ensuite que $-\sin(t)\varphi_1(t) + \cos(t)\varphi_2(t) = 0$, il en découle que :

$$\theta''(t) = \cos(t) \int_{t}^{+\infty} \varphi_1(x) dx + \sin(t) \int_{t}^{+\infty} \varphi_2(x) dx.$$

Or, l'expression de $\theta(t)$ est :

$$\theta(t) = \frac{1}{t} - \cos(t) \int_{t}^{+\infty} \varphi_1(x) dx - \sin(t) \int_{t}^{+\infty} \varphi_2(x) dx,$$

donc, en combinant les deux relations on a $\forall t \in]0, +\infty[, \quad \theta''(t) + \theta(t) = \frac{1}{t}.$

- (e) D'après l'expression $\theta(t) = \frac{1}{t} \cos(t) \int_{t}^{+\infty} \varphi_{1}(x) dx \sin(t) \int_{t}^{+\infty} \varphi_{2}(x) dx$, on a $|\theta(t)| \leq \frac{1}{t} + |\int_{t}^{+\infty} \varphi_{1}(x) dx| + |\int_{t}^{+\infty} \varphi_{2}(x) dx|$. Comme les intégrales $\int_{1}^{+\infty} \varphi_{j}(x) dx$ convergent pour tout $j \in \{1, 2\}$, on a $\lim_{t \to +\infty} \int_{t}^{+\infty} \varphi_{j}(x) dx = 0$. Il en découle par comparaison que $\lim_{t \to +\infty} \theta(t) = 0$.
- 3. La fonction h_0 définie par $h_0(t) = \int_0^{+\infty} \frac{e^{-tx}}{1+x^2} dx$. D'après la question **II)5)b)**, cette fonction h_0 est l'unique solution de l'équation différentielle $y'' + y = \frac{1}{t}$ tel que $\lim_{t \to +\infty} h_0(t) = 0$. Comme la fonction θ ci-dessus vérifie ces conditions on a $h_0 = \theta$ sur $[0, +\infty[$, ainsi :

$$\forall t > 0, \quad \int_0^{+\infty} \frac{e^{-tx}}{1+x^2} dx = \int_t^{+\infty} \frac{\sin(x-t)}{x} dx.$$

4. On donne $u_n = \int_n^{+\infty} \frac{\sin(x-t)}{x} dx$, pour tout $n \in \mathbb{N}^*$, donc pour tout $n \in \mathbb{N}^*$, on a $u_n = \int_0^{+\infty} \frac{e^{-nx}}{1+x^2} dx$. Le théorème de l'intégration terme à terme pour les fonction positives permet de dire que dans $\overline{\mathbb{R}^+} = \mathbb{R}_+ \cup \{+\infty\} = [0, +\infty]$, on a cette interversion pour la suite de fonctions $(f_n)_{n\geq 1}$, tel que $f_n(x) = \frac{e^{-nx}}{1+x^2}$, on a alors :

$$\sum_{n=1}^{+\infty} \int_0^{+\infty} \frac{e^{-nx}}{1+x^2} dx = \int_0^{+\infty} \sum_{n=1}^{+\infty} \frac{e^{-nx}}{1+x^2} dx,$$

donc

$$\sum_{n=1}^{+\infty} u_n = \int_0^{+\infty} \frac{1}{1+x^2} \sum_{n=1}^{+\infty} e^{-nx} dx = \int_0^{+\infty} \frac{1}{1+x^2} \frac{e^{-x}}{1-e^{-x}} = \int_0^{+\infty} \frac{1}{1+x^2} \frac{1}{e^x - 1}$$

Or l'integrale obtenue est divergente car au voisinage de 0 à droite on a $\frac{1}{1+x^2} \frac{1}{e^x-1} \sim \frac{1}{x}$, donc la série $\sum u_n$ est divergente. Plus précisément $\sum_{n=1}^{+\infty} u_n = +\infty$.

Partie 4 : Application : le calcul de $\int_0^{+\infty} \frac{\sin x}{x} dx$

1. La fonction $x\mapsto \frac{\sin(x)}{x}$ est continue sur $]0,+\infty[$ et prolongeable par continuité au point 0 à droite puisque $\lim_{x\to 0}\frac{\sin(x)}{x}=1$. Par ailleurs pour tout $X\in [1,+\infty[$, une intégration par parties donne :

$$\int_{1}^{X} \frac{\sin(x)}{x} dx = \left[-\frac{\cos(x)}{x} \right]_{1}^{X} - \int_{1}^{X} \frac{\cos(x)}{x^{2}} dx$$
$$= \cos(1) - \frac{\cos(X)}{X} - \int_{1}^{X} \frac{\cos(x)}{x^{2}} dx$$

Il en découle que $\lim_{X\to +\infty} \int_1^X \frac{\sin(x)}{x} \mathrm{d}x$ existe et vaut

$$\lim_{X \to +\infty} \int_1^X \frac{\sin(x)}{x} dx = \cos(1) - \int_1^{+\infty} \frac{\cos(x)}{x^2} dx,$$

car, puisque on a $\forall x \geq 1, |\frac{\cos(x)}{x^2}| \leq \frac{1}{x^2}$ et l'intégrale de Riemann $\int_1^{+\infty} \frac{1}{x^2} \mathrm{d}x$ est convergente, on en deduit que l'integrale $\int_1^{+\infty} \frac{\cos(x)}{x^2} \mathrm{d}x$ est absolument convergente. En conclusion $\int_1^{+\infty} \frac{\sin(x)}{x} \mathrm{d}x = \cos(1) - \int_1^{+\infty} \frac{\cos(x)}{x^2} \mathrm{d}x$ et l'intégrale de Dirichlet $\int_0^{+\infty} \frac{\sin(x)}{x} \mathrm{d}x$ est convergente.

- 2. (a) On fixe t > 0. La fonction $x \mapsto \frac{\sin(x)}{x(x+t)}$ est continue sur]0,1] et admet comme limite en 0 le réel $\frac{1}{t}$, donc l'intégrale $\int_0^1 \frac{\sin(x)}{x(x+t)} dx$ est convergente.
 - On sait que $\forall x \in]0,1], \sin(x) \leq x$, donc $\int_0^1 \frac{\sin(x)}{x(x+t)} dx \leq \int_0^1 \frac{1}{(x+t)} dx$ et comme l'intégrale $\int_0^1 \frac{\sin(x)}{x(x+t)} dx$ est positive car c'est celle d'une fonction positive sur]0,1], on a $\left|\int_0^1 \frac{\sin(x)}{x(x+t)} dx\right| \leq \int_0^1 \frac{1}{(x+t)} dx$.
 - (b) La fonction $x \mapsto \frac{\sin(x)}{x(x+t)}$ est continue sur $[1, +\infty]$ et pour tout $x \in [1, +\infty[$, on a $(\star) \mid \frac{\sin(x)}{x(x+t)} \le \frac{1}{x^2}$ et l'intégrale de Riemann $\int_1^{+\infty} \frac{1}{x^2} dx$ est convergente, donc l'intégrale $\int_1^{+\infty} \frac{\sin(x)}{x(x+t)} dx$ est convergente et en vertu de l'inégalité (\star) ci-dessus et que la fonction qu'on intégre est positive on a $\left| \int_1^{+\infty} \frac{\sin(x)}{x(x+t)} dx \right| \le \int_1^{+\infty} \frac{1}{x^2} dx$, pour tout t > 0.

(c) Soit t > 0. On a $\theta(t) - \int_0^{+\infty} \frac{\sin(x)}{x} dt = \int_t^{+\infty} \frac{\sin(x-t)}{x} - \int_0^{+\infty} \frac{\sin(x)}{x} dx$. Le changement de variable y = x - t donne $\int_t^{+\infty} \frac{\sin(x-t)}{x} = \int_0^{+\infty} \frac{\sin(y)}{y+t} dy$. Il en découle que :

$$\theta(t) - \int_0^{+\infty} \frac{\sin(x)}{x} dt = \int_t^{+\infty} \frac{\sin(x-t)}{x} - \int_0^{+\infty} \frac{\sin(x)}{x+t} dx$$
$$= \int_0^{+\infty} \sin(x) \left(\frac{1}{x} - \frac{1}{x+t}\right) dx$$
$$= -t \int_0^{+\infty} \frac{\sin(x)}{x(x+t)} dx$$

Donc:

$$\left| \theta(t) - \int_0^{+\infty} \frac{\sin(x)}{x} dt \right| = \left| -t \int_0^{+\infty} \frac{\sin(x)}{x(x+t)} dx \right|$$

$$= t \left| \int_0^{+\infty} \frac{\sin(x)}{x(x+t)} dx \right|$$

$$\leq t \left(\left| \int_0^1 \frac{\sin(x)}{x(x+t)} dx \right| + \left| \int_1^{+\infty} \frac{\sin(x)}{x(x+t)} dx \right| \right)$$

Tenant compte des majorations des deux intégrales ci-dessus trouvées dans les questions IV(2)a) et IV(2)b) ci-dessus, on a:

$$\left| \theta(t) - \int_0^{+\infty} \frac{\sin(x)}{x} dt \right| \le t \left(\int_0^1 \frac{1}{x+t} dx + \int_1^{+\infty} \frac{1}{x^2} dx \right)$$

$$= t \left[\ln(x+t) \right]_0^1 + \left[-\frac{1}{x} \right]_1^{+\infty} = t(\ln(t+1) - \ln(t) + 1)$$

Finalement, on a:

$$\forall t > 0, \left| \theta(t) - \int_0^{+\infty} \frac{\sin(x)}{x} dt \right| \le t(\ln(t+1) - \ln(t) + 1).$$

- 3. D'après la question **III)3)**, on a pour tout $t \in]0, +\infty[$, $\theta(t) = \int_0^{+\infty} \frac{e^{-tx}}{1+x^2} dx$, donc on peut essayer de calculer $\lim_{t\to 0^+} \theta(t)$ en utilisant le théorème de convergence dominée pour la famille de fonctions $(U_t)_{t>0}$ définies par $U_t(x) = \frac{e^{-tx}}{1+x^2}$. • Pour tout t>0, la fonction U_t est continue et intégrable sur $]0, +\infty[$. • Pour tout $x \in]0, +\infty[$, on a $\lim_{t\to 0^+} U_t(x) = \frac{1}{1+x^2}$.

 - $\forall t \in]0, +\infty[, \forall x \in [0, +\infty[, |U_t(x)| \le \frac{1}{1+x^2}] \text{ et cette dernière est continue et intégrable sur } [0, +\infty[.]]$ On a alors $\lim_{t\to 0^+} \int_0^{+\infty} U_t(x) dx = \int_0^{+\infty} \lim_{t\to 0^+} t dx = \frac{\pi}{2}.$

On a démontré dans la question IV(2)c ci-dessus que :

$$\forall t > 0, \left| \theta(t) - \int_0^{+\infty} \frac{\sin(x)}{x} dt \right| \le t(\ln(t+1) - \ln(t) + 1).$$

On a $\lim_{t\to 0^+} (t(\ln(t+1) - \ln(t) + 1)) = 0$ et on vient de prouver que $\lim_{t\to 0^+} \theta(t) = \frac{\pi}{2}$, donc

$$\int_0^{+\infty} \frac{\sin(x)}{x} \mathrm{d}x = \frac{\pi}{2}$$

- 4. Notons $I = \int_0^{+\infty} \left(\frac{\sin(x)}{x}\right)^2 dx$. La fonction $x \mapsto \left(\frac{\sin(x)}{x}\right)^2$ est continue sur $]0, +\infty[$ et admet 1 comme limite en 0. Par ailleurs pour tout $x \in [1, +\infty[$, on a $0 \le \left(\frac{\sin(x)}{x}\right)^2 \le \frac{1}{x^2}$ et $\int_1^{+\infty} \frac{1}{x^2} dx$ est convergente donc l'intégrale J est convergente.
 - \bullet Calcul de I: On a

$$I = \int_0^{+\infty} \frac{\sin^2(x)}{x^2}$$

$$= \left[-\frac{1}{x} \sin^2(x) \right]_0^{+\infty} + \int_0^{+\infty} \frac{2\sin(x)\cos(x)}{x} dx$$

$$= \int_0^{+\infty} \frac{\sin(2x)}{x} dx.$$

Le changement de variable 2x = u donne $I = \int_0^{+\infty} \frac{\sin(u)}{u} du$, donc compte tenu du résultat de la question **IV**)3) ci-dessus, on a

$$I = \int_0^{+\infty} \left(\frac{\sin(x)}{x}\right)^2 dx = \frac{\pi}{2}$$

- 5. On a $J = \int_0^{+\infty} \frac{1-\cos(x)}{x^2} dx$. La fonction $x \mapsto \frac{1-\cos(x)}{x^2}$ est continue sur $[0, +\infty[$ et quand x tend vers 0 on a $1-\cos(x) \sim \frac{x^2}{2}$ donc $\frac{1-\cos(x)}{x^2} \sim \frac{1}{2}$. Par ailleurs au voisinage de $+\infty$ on a $\frac{1-\cos(x)}{x^2} = O\left(\frac{1}{x^2}\right)$ ce qui justifie que J est convergente.
 - $\frac{1-\cos(x)}{x^2} = O\left(\frac{1}{x^2}\right) \text{ ce qui justifie que } J \text{ est convergente.}$ Calcul de J, on a $J = \int_0^{+\infty} \frac{1-(1-2\sin^2(\frac{x}{2}))}{x^2} dx = \int_0^{+\infty} \frac{2\sin^2(\frac{x}{2})}{x^2} dx$. Le changement de variable $\frac{x}{2} = u$, donne $J = \int_0^{+\infty} \frac{2\sin^2(u)}{4u^2} 2du = \int_0^{+\infty} \frac{\sin^2 u}{u^2} du$, donc J = I et finalement

$$J = \int_0^{+\infty} \frac{1 - \cos(x)}{x^2} dx = \frac{\pi}{2}$$

On a $K = \int_0^{+\infty} \frac{\sin^4(x)}{x^2} dx$. La fonction $x \mapsto \frac{\sin^4(x)}{x^2}$ est continue sur $]0, +\infty[$ et admet 0 comme limite en 0. Par ailleurs pour tout $x \in [1, +\infty[$, on a $0 \le \frac{\sin^4(x)}{x^2} \le \frac{1}{x^2}$ et $\int_1^{+\infty} \frac{1}{x^2} dx$ est convergente donc l'intégrale K est convergente.

 \bullet Calcul de K : On a

$$K = \int_0^{+\infty} \frac{\sin^4(x)}{x^2} dx$$

$$= \int_0^{+\infty} \frac{\sin^2(x)(1 - \cos^2(x))}{x^2} dx$$

$$= I - \int_0^{+\infty} \frac{\sin^2(x)\cos^2(x)}{x^2} dx$$

$$= I - \frac{1}{4} \int_0^{+\infty} \frac{\sin^2(2x)}{x^2}$$

Le changment de variable 2x = u, donne

$$K = I - \frac{1}{4} \int_{0}^{+\infty} 4 \frac{\sin^{2}(u)}{u^{2}} \frac{1}{2} du = I - \frac{1}{2}I = \frac{1}{2}I = \frac{\pi}{4}.$$

Finalement, on a

$$K = \int_0^{+\infty} \frac{\sin^4(x)}{x^2} dx = \frac{\pi}{4}.$$